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Abstract
Recent task-oriented dialogue systems are
trained on annotated dialogues, which, in turn,
reflect certain domain information (e.g., restau-
rants or hotels in a given region). However,
when such domain knowledge changes (e.g.,
new restaurants open), the initial dialogue
model may become obsolete, decreasing the
overall performance of the system. Through a
number of experiments, we show, for instance,
that adding 50% of new slot-values reduces
of about 55% the dialogue state-tracker perfor-
mance. In light of such evidence, we suggest
that automatic adaptation of training dialogues
is a valuable option for re-training obsolete
models. We experimented with a dialogue adap-
tation approach based on fine-tuning a genera-
tive language model on domain changes, show-
ing that a significant reduction of performance
decrease can be obtained.

1 Introduction

Most of the recent approaches in task-oriented di-
alogue systems (McTear, 2020) assume that each
component is trained using annotated dialogues.
Such data-driven approaches are common both
for intent detection and slot filling (Louvan and
Magnini, 2020a) and for dialogue state tracking
(Balaraman and Magnini, 2021). In this paper,
we deal with the situation where we have a con-
versational dataset, i.e., a collection of annotated
dialogues for a certain domain (e.g., booking a
restaurant), and then the domain changes (e.g., new
restaurants open, or some restaurants change food
or price). We investigate to what extent dialogue
models trained on the initial dialogues are adequate
for the occurred changes, and whether those di-
alogues can be automatically adapted to domain
changes. Being able to manage domain changes
is highly relevant for practical purposes, as the
process of data collection (in the order of several
thousand dialogues for a medium-size domain) for
an application domain is both rather complex (e.g.,

Wizard of Oz (Kelley, 1984)) and very expensive.
On the other side, automatic adaptation of training
dialogues (Labruna and Magnini, 2021a,b) such
that they reflect domain changes, is still a challeng-
ing research goal. In the paper, we first provide a
definition for the domain changes we are interested
in. Second, we set an experimental framework, in-
cluding evaluation metrics, where we can simulate
how the performance of current dialogue models
is sensitive to different kinds and amounts of do-
main changes. Finally, a relevant contribution of
the paper is the design and experimentation of unsu-
pervised approaches for training dialogue models
from synthetically adapted dialogues.

To be more concrete, Figure 1 presents an ex-
ample of the situation we are addressing. On the
left side we have an initial knowledge base (a) for
the restaurant booking domain, and, below it, we
show a reservation dialogue (c) between a user and
a system. We assume that this dialogue has been
human-generated (e.g., through Wizard of Oz) and
that it is coherent with the content of the knowl-
edge base. Then, we assume that the knowledge
base changes (reported on the right side of Figure 1
(b)), as a new restaurant has opened offering a new
kind of food, and one restaurant closed. According
to these changes, the initial dialogue is no more
consistent with the new domain.

Our intuition is that an adapted dialogue should
preserve as much as possible the dialogic struc-
ture (e.g., user communicative goals, order of turns,
conversation style) of the original dialogue, while
it should be adapted to changes occurred in the
domain knowledge. In principle, both the user re-
quests and the system responses might be affected
by domain changes. On one side the user might
be (partially) aware of changes, and adapt its goals
and requests (e.g., in Figure 1 the user might be
aware of a new restaurant with Poke food, and ask
about it). On the other side we assume that the sys-
tem is fully aware of domain changes and that, in
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Figure 1: Domain Dialogue Adaptation. (a) shows the initial situation of the KB, with 3 British restaurants in the
center. In (b) the first instance is removed and a new instance is added. (c) is the original dialogue, consistent with
the KB, and (d) is the adapted dialogue, according to the changes in the new KB.

order to provide correct information to the user, its
responses have to be coherent with such changes.
In this context, dialogue adaptations are well de-
fined changes of an original dialogue that make the
dialogue coherent with a new domain knowledge.
Such adaptation include changing the name of a
slot value (e.g., Poke in place of British in Figure
1), change number of instances (e.g., one in place
of 3), change name of instances (e.g., Poke House
in place of The Oak Bistro). Overall, the structure
of the initial dialogue has been as much as possible
preserved, while modifications aim at reflecting the
occurred changes and reconstructing consistency
with the new domain.
Although the long-term perspective of our research
is to fully automatize dialogue adaptation, the goal
of this paper is limited to an investigation of the
main issues behind it, following the research direc-
tions mentioned above. Particularly, we are inter-
ested in two aspects: first, assessing the impact of
domain changes in current dialogue state tracking
models; second taking advantage of the generative
capacity of large pre-trained language models (e.g.,
(Chen et al., 2019) (Raffel et al., 2020) (Li et al.,
2022)) to provide appropriate dialogue adaptations.

More specifically, Section 2 presents the rele-
vant background on task-oriented dialogues, par-
ticularly on dialogue state tracking and dialogue
manager. Sections 3.1 and 3.2 face domain changes
due to, respectively, slot-value and instance alter-
ations, showing their impact on dialogue models.
Section 4 introduces dialogue adaptation, which
is put into practice with some initial experiments

presented in Section 5 and corresponding results,
which are discussed in Section 6. Finally, Section
7 presents dialogue adaptation in the context of
recent work in the field.

2 Background on Task-oriented Dialogues

This section provides background on task-oriented
dialogues, with a focus on how domain knowledge
is represented, data-driven approaches, dialogue
state tracking and dialogue manager.

2.1 Domain Knowledge

According to most of the recent literature
(Budzianowski et al., 2018; Bordes et al., 2017;
Mrkšić et al., 2017), we consider a task-oriented di-
alogue between a system and a user as composed of
a sequence of turns {t1, t2, ...tn}. The goal of the
dialogue system is to retrieve a set of entities (pos-
sibly empty) in a domain knowledge base (KB)
that satisfy the user’s needs. A domain ontology
O provides a schema for the KB and typically
represents entities (e.g., RESTAURANT, HOTEL,
MOVIE) according to a pre-defined set of slots S
(e.g., FOOD, AREA, PRICE, for the RESTAURANT

domain), and values that a certain slot can assume
(e.g., EXPENSIVE, MODERATE and CHEAP, for
the slot PRICE).
On the basis of the entities defined in the domain
ontology, the KB is then populated with instances
of such entities. As in most of the literature, we dis-
tinguish informable slots, which the user can use to
constraint the search (e.g., AREA), and requestable
slots (e.g., PHONENUMBER), whose values are typ-
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ically asked only when a certain entity has been
retrieved through the dialogue. At each turn in the
dialogue, both the user and the system may refer to
facts in the KB, the user with the goal of retrieving
entities matching his/her needs, and the system to
propose entities that can help the user to achieve
the dialogue goals.

2.2 Dialogue State Tracking

In a task-oriented system, the Dialogue State
Tracker (DST) is responsible for maintaining a
record of all information exchanged throughout
the entire dialogue history, up to the current step.
A dialogue state di for a turn ti is typically repre-
sented as a set of slot and slot-value pairs, such as
{PRICE=MODERATE, FOOD=ITALIAN}, meaning
that at ti the system assumes that the user is looking
for an Italian restaurant with a moderate price. A
common method for collecting task-oriented con-
versational data-sets is through the Wizard of Oz
technique. This approach involves two individuals:
one person plays the role of a user who asks for
information on a particular topic, while the other
person acts as a system and provides the requested
information. After being collected through Wizard
of Oz, the turns of each dialogue are annotated with
the corresponding dialogue state, consisting of an
intent and a set of slot and slot-value pairs. The
following is an example of the annotation provided
in MultiWOZ 2.1 (Budzianowski et al., 2018):

USER: I would like a moderately priced
restaurant in the west part of town.
INFORM(PRICE=MODERATE,
AREA=WEST)

SYSTEM: There are three moderately priced
restaurants in the west part of town. Do
you prefer Indian, Italian or British?
REQUEST(FOOD)

USER: Can I have the address and phone
number of the Italian location?
INFORM(PRICE=MODERATE,
AREA=WEST, FOOD=ITALIAN)
REQUEST(ADDRESS,PHONE-
NUMBER)

Evaluating dialogue state tracking. The most
common metric for dialogue state tracking is the
Joint Goal Accuracy (JGA), which measures the
proportion of correct dialogue states predictions
at each dialogue turn. A prediction is considered
correct if the slot-values vi for all slots si in the

dialogue turn are correctly predicted. Assuming
that we have n slot-values in the utterance, the
JGA for a single dialogue turn t can be defined as
follows (Kumar et al., 2020):

JGA(t) = 1((
∑n

i=1 1yi=ŷi
)=n) (1)

where yi is the ground truth slot-value, ŷi is the
predicted slot-value and 1x=y is a variable that
takes the value of 1 if x = y, 0 otherwise.

2.3 Dialogue Manager
Given a certain dialogue state, the goal of the Di-
alogue Manager (DM) component (Kwan et al.,
2022; Liu and Lane, 2017) is to decide the best
action to take next, which typically consists of
an intent and a list of slot-value pairs. As an
example, an output action for the DM can be
RESTAURANT-INFORM (FOOD_TYPE=ITALIAN,
AREA=CENTER), where the system decides to re-
turn a response message with intent RESTAURANT-
INFORM and ITALIAN and CENTER as slot values
for the slot names FOOD_TYPE and AREA. Then, a
generation component will be in charge of actually
generating responses, like We have several Italian
restaurants in the city centre.

Evaluating dialogue manager. Dialogue man-
ager is typically evaluated in terms of effective-
ness of suggested dialogue actions to achieve the
user’s goals (Papangelis et al., 2012). Evaluation
is carried out in a reinforcement learning setting
with rewards, either through interactions with users
or, more frequently, using a dialogue simulator
(El Asri and Trischler, 2017). For the purposes of
our investigation, we are not interested in measur-
ing action effectiveness. Rather, we aim at estimat-
ing the impact of domain changes on the dialogue
manager behaviour. According to this perspective,
we evaluate the correctness of the system responses
provided by the DM, given the dialogue history
(i.e., the dialogue states). A response is judged as
correct if the information it conveys is consistent
with the current knowledge base of the dialogue
system. For instance, in the example reported in
Figure 1, the response I have 3 different options for
you. is correct if in the knowledge base there are
three restaurants that serve British food and they
are located in the centre, otherwise, this response is
considered as incorrect. We check the system’s ut-
terance correctness considering both the case where
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the system presents instances whose slot-values do
not correspond in the KB, and cases where the
number of instances in the response does not match
with the KB. Accordingly, we define the dialogue
manager correctness DMC as follows:

DMC = (
n∑

i=1

1C(ui))/n (2)

where n is the total number of utterances in the
dialogue, 1x is equal to 1 if x is True, 0 otherwise.
C(u) is True if the utterance u is evaluated as cor-
rect with respect to the current KB, False if at least
one of the domain information in the utterance is
evaluated as incorrect with respect to the KB.

3 Domain Changes

In this section we define a number of domain
changes that will be investigated in the paper.

3.1 Changing Slot-values
The first type of domain change is slot-value
change. This occurs every time a slot-value v used
to describe an existing instance in the initial knowl-
edge base is changed with another slot-value (see
Figure 1 for an example). This change may involve
an already existing slot-value (e.g., a certain restau-
rant moved from INDIAN to PIZZA food, assuming
that PIZZA was already used for other instances),
or a new slot-value (e.g., moving from INDIAN to
MEDITERRANEAN, which was never used before).
An important side effect of slot-value changes is
that they modify the distribution of slot-values
through instances. For example, after some
changes, it might be the case that the initial dis-
tribution (e.g., 30% INDIAN restaurants and 10%
PIZZA restaurants) is significantly modified (e.g.,
20% INDIAN and 20% PIZZA). This is relevant be-
cause we need to reflect the same distribution in the
test dialogues. As it will be clarified in section 4,
this is achieved by substituting occurrences of the
initial slot-value (e.g., INDIAN) with occurrences
of the new slot-value (e.g., PIZZA) till the domain
distribution is reached.

3.2 Changing Instances
The second type of domain change is changing
instances, where a new instance (e.g., a new restau-
rant) is added to the domain knowledge, or an ex-
isting instance is removed. Adding a new instance

implies that the KB slot-value distribution varies,
as it has been already noted in Section 3.1, and
we assume that its impact follows a similar pattern.
However, changing instances may also affect the
system’s responses, as the dialogue in Figure 1 il-
lustrates. Here, in the initial dialogue, there are
three restaurants in the KB that satisfy the user
query (FOOD=BRITISH, AREA=CENTER), while
in the new KB one restaurant has been removed,
and therefore the same query would require a dif-
ferent response from the system. Particularly, as-
suming that such responses have to be consistent
with the KB, the initial dialogue should be adapted
so as to be consistent with instance changes.

4 Dialogue Adaptation

In this section, we provide a definition for the dia-
logue adaptation task, as well as its main features.

4.1 Task Definition

Dialogue adaptation consists in modifying a task-
oriented dialogue D0, collected for a certain knowl-
edge base KB0, with the goal of reflecting a modi-
fied knowledge base KB1, where KB0 and KB1

share the same domain ontology O (i.e., they share
domain entities and thier slots). The resulting di-
alogue D1 is adapted to KB1 if: (i) D1 is still
a coherent dialogue; (ii) D1 is consistent with
the domain KB1. We distinguish between ini-
tial and adapted training dialogues (notated, re-
spectively, with D0_train and D1_train), and
initial and adapted test dialogues (D0_test and
D1_test). Although our definition is neutral with
respect to how D0 is collected, we assume that
D0 are human-generated dialogues, and that the
adapted D1 should maintain the main character-
istics of human-human dialogues. We will detail
those requirements in the next sections.

4.2 Maintaining Dialogue Coherence

As a first requirement, dialogue adaptations need
to maintain the internal coherence of a dialogue,
meaning that if an entity is mentioned in a portion
of a dialogue, then appropriate references have to
be maintained in the rest of the dialogue. As an
example of dialogue coherence, in Figure 1(c) the
user is looking for British food in the centre, the
system asks for the price range, and the user indi-
cates moderate as his/her preference; finally, the
system proposes a restaurant that is consistent to all
the requests made throughout the dialogue. If the
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system proposed a Poke restaurant instead, the dia-
logue coherence would not have been maintained.
An automatic adaptation procedure should preserve
the coherence of all turns of the dialogue.

4.3 Preserve Domain Adherence

A second requirement for dialogue adaptation is the
need to preserve consistency with domain knowl-
edge. Here there are two aspects to consider: adap-
tation of the system’s responses and adaptation of
the user’s queries. As for the system’s responses,
the assumption is that the system has complete
knowledge of the domain, and adaptations are nec-
essary so that the training dialogues contain re-
sponses based on correct information, this way al-
lowing correct training of the DM component. As
for user utterance adaptation, users may be partially
aware of the domain, and of the changes that may
have occurred (e.g., a new popular type of food is
served in many restaurants). This means that the
user goals may also change, and this fact has to be
reflected through dialogue adaptation.

4.4 Maintaining Language Variability

Dialogue adaptations should preserve as much as
possible the language variability of human-like di-
alogues. This is relevant both for maintaining the
naturalness of dialogues and for favouring the ro-
bustness of the models that are trained. There are
several aspects of language variability that need
to be considered, including lexical variability, e.g.,
semantically related expressions, like synonyms,
and syntactic variability, e.g., passive forms, or
left dislocation. In terms of automatic adaptation
procedures, rule-based adaptation (e.g., based on
patterns) is likely to produce repetitive dialogues
with low variability, while approaches based on
generative language models may work better.

4.5 Respect Morpho-Syntactic Constraints

A quite obvious requirement is that adaptation
should respect morpho-syntactic constraints of the
language, such as the agreement for genre and num-
ber, and tense for verbs. As an example, in Figure
1, dialogue adaptation has involved changing the
plural options into the singular option, to respect
the agreement with, respectively, three and one.

5 Experiments

We now define an experimental framework for sim-
ulating domain changes in a conversational system.

We have two main goals: (i) investigate the impact
of the domain changes defined in section 3 on a
model trained on D0_train dialogues and tested
on D1_test adapted dialogues; (ii) simulate the
use of a model trained on adapted D1_train dia-
logues and tested on D1_test adapted dialogues.
For the first goal, we consider both a DST model
(for slot-value changes) and a DM model (for in-
stance changes), while for the second goal we carry
on a comparison on a DST model.

5.1 General Experimental Setting
We assume the availability of a data-set of anno-
tated training and test dialogues, mostly follow-
ing the MultiWOZ (Budzianowski et al., 2018)
style. We also assume that such dialogues reflect
the information described in the knowledge base
of the dialogue system (cfr. Section 2.1), in the
sense that the system responses should be as much
as possible coherent with the domain knowledge.
The experiments presented in the paper are all car-
ried out on MultiWOZ 2.3 (Eric et al., 2020). For
all the experiments we consider four incremental
amount of changes (25%, 50%, 75%, and 100%),
randomly selected from the different domains (e.g.,
RESTAURANT, HOTEL, ATTRACTION) of the Mul-
tiWOZ 2.3 knowledge base, and from their slots
(e.g., FOOD, PRICE, DESTINATION).
As for training DST models, we used two well-
known approaches: TRADE and TripPy.

TRADE (Wu et al., 2019) consists of three
components: an utterance encoder based on bi-
directional GRU, responsible for transforming the
utterance into a fixed-size vector; a slot gate, which
determines whether a slot-value appears in the ut-
terance; a state generator, which predicts the slot
that is triggered by the dialogue. The model shares
all parameters across multiple domains, being able
to perform few-shot and zero-shot learning for the
DST task.

TripPy (Heck et al., 2020) is a DST model based
on a triple copy strategy that, in order to select the
best slot-value for its predictions, performs the
following operations: copying the value from user
utterances, copying values from system utterances,
inferring new values from values that are already
present in the dialogue state. It involves BERT as
the front-end context encoder and it is equipped
with a slot gate for each domain-slot pair.

As for dialogue manager (DM), we employ
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Figure 2: Impact on DST. TRADE and TripPy JGA when trained on D0_train and tested on adapted D1_test,
with (a) increasing percentages of slot-values removed, and (b) increasing percentages of slot-values added.

a simple algorithm that, given the intent and the
slot-values predicted for a user’s message, queries
the KB and returns the best action based on the
query results (e.g. if no entities are found in the
KB, it returns the action NO-RESULTS).

5.2 Impact of Slot-value Changes
In the following experiments a DST model is first
trained on D0_train dialogues, and then tested on
adapted D1_test dialogues, in order to assess the
impact of slot-value changes. D1_test dialogues
for both Experiment1 and Experiment2 are auto-
matically produced through a dialogue adaptation
procedure based on a large pre-trained language
model.

Dialogue adaptation procedure. We have
adopted a dialogue adaptation strategy based on
the method proposed in (Labruna and Magnini,
2022). There are three steps:

• (i) Modify KB0 introducing a specified
amount of changes, i.e., introducing or remov-
ing slot-values and instances.

• (ii) From the resulting KB1, using a set of
manually defined patterns, we extract a corpus
of about 100K textual sentences; this corpus is
used to fine-tune a pre-trained language model
(we use BERT (Devlin et al., 2019)).

• (iii) Once BERT has been fine-tuned on
KB1, we use the resulting model (i.e.,
BERTKB1) to predict slot-values to be sub-
stituted in D0_test test dialogues. We prompt
BERTKB1 masking all the slot-values in
D0_test, and, in order to maximize the slot-
value language variability, we randomly select
from the top ten predictions returned by the
model.

The resulting D1_test has exactly the same
amount of dialogues of the original D0_test pro-
vided by MultiWOZ 2.3. More specific details of
this procedure are presented in the next paragraphs.
As an example, the following user utterance from
D0 dialogues: "I’m looking for an Indian restau-
rant in the north part of town" will first be masked
as follows:
"I’m looking for an [MASK] restaurant in the
[MASK] part of town"
and finally, we will ask BERTKB1 to predict the
substitutions to the masks, which will produce
something like:
"I’m looking for an English restaurant in the north-
west part of town"
which populates D1_test dialogues. Note that the
substitutions are produced sequentially from left to
right, therefore the first prediction will condition
the subsequent ones.

Generating the fine-tuning patterns. In order to
fine-tune BERT on our domain, we select a number
of utterances - both from user and system - ran-
domly taken from the original MultiWOZ dataset.
Then, we mechanically substitute the slot-values in
the utterance with all the possible slot-values from
KB1 (the target domain) that have the same slot
as the original one. For example, in the utterance
"I’m looking for an Indian restaurant" the value
INDIAN is substituted with all values with the slot
RESTAURANT-FOOD in KB1.

Experiment1: Removing slot-values. Here the
goal is to quantify the impact of removing exist-
ing slot-values on a DST model. We have de-
fined four versions of modified KB1 (25%, 50%,
70%, 100%), where we have removed increasing
amounts of slot-values from KB0, randomly sub-
stituting them with values that are not removed.
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Percentages refer to the proportion between the
slot-values that are removed and those kept (e.g.,
100% means that the same number of slot-values
are removed and kept). In order to choose which
slot-values are to be removed, we used an algorithm
that minimizes the difference between the actual
percentage of removed values and the desired per-
centage. Note that, after removing, the number of
instances in KB0 and KB1 is exactly the same,
although the slot-value distribution is changed. As
for evaluation, we use adapted D1_test dialogues
generated by the dialogue adaptation procedure de-
scribed in this section, applied on the four versions
of KB1.

Experiment 2: Introducing new slot-values.
Here the goal is to quantify the impact of intro-
ducing new slot-values (unseen in KB0) on a DST
model. We have defined four versions of modified
KB1 (25%, 50%, 70%, 100%), where we have
added an increasing amount of slot-values from
KB0. The percentages refer to the proportion be-
tween the new slot-values and the old ones (e.g.
100% means that the number of the new values
is the same as the old ones). The new slot-values
where taken from a number of different databases,
taking care to preserve the domain affinity with
respect to each slot. After the addition, the number
of instances in KB0 and KB1 is exactly the same,
although the slot-value distribution is changed. As
for the evaluation, we use adapted D0_test dia-
logues, generated by the dialogue adaptation proce-
dure described in this section, on the four versions
of KB1.

5.3 Assessing the impact of Instance Changes

We now aim at assessing the impact on the dialogue
manager (DM) component caused by introducing
or removing domain instances. We start from the
MultiWOZ KB0 and randomly simulated varia-
tions both increasing and reducing the number of
instances, to obtain KB1. We consider only the
RESTAURANT domain since it is the most com-
plete and well-representative of all domains. The
dialogue manager is evaluated checking whether
its responses on the D0_test MultiWOZ dialogues
are consistent with the modified KB1. The intu-
ition is that as new instances are added or removed,
the DM capacity to correctly predict the next ac-
tion would correspondingly decrease. As evalu-
ation metric we used dialog manager correctness
(DMC), introduced in Section 2.3.

Experiment 3: Increasing the number of in-
stances. In the increasing setting, we considered
five incremental percentages of instance addition
(10, 20, 30, 40 and 50). Each new instance was
created by selecting random slot-values from those
already in KB0 (no new slot-value is added).

Experiment 4: Decreasing the number of in-
stances. In the reduction setting, we used the
same percentages for deciding how many instances
have to be randomly removed at each variation of
KB0. Each of the modified KBs was then com-
pared to the original MultiWOZ dialogue and the
corresponding DMC correctness is assessed.

5.4 Training on Adapted Dialogues

In this experiment we apply dialogue adaptation
on D0_train dialogues, build a DST model on top
of such adapted D1_train dialogues, and evaluate
the resulting model against adapted D1_test test
dialogues. The goal is to investigate whether auto-
matic dialogue adaptation on D0_train can reduce
the decrease in performance of the DST model.

Experiment 5: Training on adapted slot-values.
This is similar to Experiment 2 in Section 5.2, in-
troducing new slot-values, with the difference that
now, instead of training DST on D0_train, it is
trained on adapted D1_train dialogues. To pro-
duce D1_train we apply the same procedure used
in Experiment 2 to produce D1_test and defined in
this Section. Note that, although the same dialogue
adaptation procedure is applied to both training and
test data, being independently run on D0_train
and D0_test, the resulting adaptations may still
differ, and slot-values that are present in D1_train
may not appear in D1_test.

6 Results and Discussion

In this section we present the results obtained on
the five experiments introduced in Section 5.

6.1 Impact of Slot-value Changes

As for Experiment 1, Figure 2(a) plots the varia-
tion of TRADE and TripPy global joint accuracy
at different slot-value removing rates. We observe
that removing slot-values in the dialogues brings
a massive impact on the degradation of the DST
models. Both models show a similar degradation
pattern, with TripPy having better scores in general.
In both cases, however, the JGA shows a decrease
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Figure 3: Impact on DM. Correctness when different amounts of instances are added or removed.

Figure 4: Performances (JGA) of DST models when trained on non-adapted dialogues (continuous line) and adapted
dialogues (dotted line) for incremental additions of slot-values.

of about 50% with respect to the zero-change situa-
tion.
As for Experiment 2, Figure 2(b) plots the varia-
tion of TRADE and TripPy when we incrementally
introduce the new slot-values. We note that, again,
TripPy scores slightly better than Trade, with both
models showing similar degradation rates. As for
Experiment 1, the JGA decreases of around 50%
with respect to the zero-change situation, showing
that the two DST models are poorly robust to the
domain changes we have introduced.
For both experiments, the JGA difference among
increasing changes is minimal, with a loss of a
couple of points in the adding situation, and about
5 points in the removing situation. This can be
explained because the current dialogue adaptation
procedure does not guarantee that all the changes in
KB0 are actually reflected in D1_test after BERT
fine-tuning.

6.2 Impact of Instance Changes

Figure 3 plots the variation of DM correctness
(DMC) when we incrementally add new instances,
or reduce them (Experiments 3 and 4). Here, reduc-
ing instances comes with a more significant degra-
dation, while adding instances brings the score

down by only 3 points. This is due to the fact
that cutting off pieces of knowledge, until halving
it, has a much stronger impact on the system re-
sponses in the dialogues, rather than adding new
knowledge, which leaves all previous information
untouched. For instance, if the system provides
information on a specific restaurant, DMC is not
affected by the number of new restaurants that have
been introduced; on the other hand, a system pre-
senting to the user information on a restaurant that
is not present anymore in the KB, will lead to a
failure situation. This is very clear in the plot, with
the DMC decreasing by up to 27 points when the
reduction rate is set to 50%.

6.3 Training on Adapted Slot-values

As for Experiment 5, Figure 4 compares the DST
models when trained without any dialogue adap-
tation (i.e., using the original MULTIWOZ train-
ing) and with dialogue adaptation. We see that
the automatic adaptation results in a significant
improvement with respect to the no-adaptation situ-
ation. For instance, adding 100% of the slot values,
TripPy gains 35% JGA (from .26 to .40) when
trained on automatically adapted D1_train. On
the other side, the performance degradation from
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the initial no-change situation is about 51% for both
models. This is because, while the original dataset
was collected manually, the adapted dataset uses
values automatically generated by the fine-tuned
BERT, which still introduces noise values.

7 Related Work

This section presents relevant work related to di-
alogue adaptation. Although the idea of adapting
dialogues to reflect domain changes is, to the best
of our knowledge, original, there have been nu-
merous attempts to modify or extend training data
in order to make models more robust to unseen
dialogue phenomena.

Delexicalization. The most similar approach to
dialogue adaptation is delexicalization, which con-
sists of substituting the slot-values in the dialogue
with their corresponding slots (e.g., “I’m looking
for Italian food” with “I’m looking for FOOD-
TYPE food”), or other placeholders (Wen et al.,
2016; Wang et al., 2022). Although the idea is
that the dialogue model can generalize enough for
recognising different slots for similar KBs, delex-
icalization, in practice, does not achieve good per-
formance. On the MultiWOZ data-set, a Trade
DST model trained on delexicalized slot-values
has a Joint accuracy of 0.014, with a significant
decrease in performance.

Data augmentation. The idea behind data aug-
mentation in dialogue modeling (Louvan and
Magnini, 2020b,c) is to automatically create new
training data by applying changes to existing data,
without altering their fundamental characteristics.
In the case of a conversational data-set, new utter-
ances are created substituting every slot-value with
a different value taken from the values for the same
slot (e.g., from the utterance I want to go to the
north, we can create new utterances substituting
"south", "west" and "east" to "north").

8 Conclusion

Dialogue adaptation is useful when collecting
and annotating new dialogues for certain domain
changes becomes too costly, and a cheap solution
is preferable. The idea is that domain changes
(e.g., new slot-values, new instances) are reflected
in training dialogues through corresponding auto-
matic adaptations. We have provided empirical evi-
dence that current dialogue models, both dialogue
state tracking and dialogue manager, are strongly

affected by domain changes, with a significant de-
crease in performance. We discussed a number
of issues that make automatic dialogue adaptation
a challenging task. As for future work, the main
goal is to improve dialogue adaptation techniques.
While the use of pre-trained generative language
models fine-tuned to the specific domain changes
is promising, the amount of generated noise is still
high, and more work is necessary to better con-
straint the slot-value generation to achieve human-
like performance.
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