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Abstract

Sentiment analysis has become a central
tool in various disciplines outside of natural
language processing. In particular in applied
and domain-specific settings with strong
requirements for interpretable methods,
dictionary-based approaches are still a popular
choice. However, existing dictionaries are
often limited in coverage, static once annota-
tion is completed and sentiment scales differ
widely; some are discrete others continuous.
We propose a Bayesian generative model that
learns a composite sentiment dictionary as
an interpolation between six existing dictio-
naries with different scales. We argue that
sentiment is a latent concept with intrinsically
ranking-based characteristics — the word
“excellent” may be ranked more positive than
“great” and “okay”, but it is hard to express
how much more exactly. This prompts us to
enforce an ordinal scale of ordered discrete
sentiment values in our dictionary. We achieve
this through an ordering transformation in the
priors of our model. We evaluate the model
intrinsically by imputing missing values in
existing dictionaries. Moreover, we conduct
extrinsic evaluations through sentiment
classification tasks. Finally, we present two
extension: first, we present a method to aug-
ment dictionary-based approaches with word
embeddings to construct sentiment scales along
new semantic axes. Second, we demonstrate a
Latent Dirichlet Allocation-inspired variant of
our model that learns document topics that are
ordered by sentiment.

https://github.com/niklasstoehr/
ordinal-sentiment

1 Introduction

Sentiment analysis is being applied in various do-
mains from political science (Young and Soroka,
2012; Griindl, 2020; Widmann and Wich, 2022) to
economics (Stephany et al., 2022) and computa-
tional social science (West et al., 2014; Falck et al.,
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2020; Stoehr et al., 2021). In all of these applica-
tions, there is a strong demand for domain-specific
and interpretable methods (Hofman et al., 2021;
Widmann and Wich, 2022) making dictionary-
based sentiment analysis still a popular choice
(Young and Soroka, 2012; Hoyle et al., 2019;
Griindl, 2020; Friedrichs et al., 2022).

Sentiment dictionaries describe a mapping be-
tween word types and some form of sentiment val-
ues. We consider the most general notion of senti-
ment value referring to the polarity score along a
positive-negative axis, instead of fine-grained emo-
tion dimensions (Plutchik, 1980) or stance (Mo-
hammad, 2016). Sentiment values are measured on
scales of different support (§2): some dictionaries
assign binary “positive” and “negative” values (Hu
and Liu, 2004; Wilson et al., 2005; Stone et al.,
2007). These discrete values are often falsely inter-
preted as unordered, nominal categories. Other dic-
tionaries have continuous scales that assign cardi-
nal, floating point values (Hutto and Gilbert, 2014;
Cambria et al., 2014).

In this work, we propose a method for merg-
ing sentiment dictionaries with different scales into
a single, composite dictionary. Paying tribute to
the subjective and ranking-based characteristics of
sentiment, we design the dictionary to have an or-
dinal scale. Ordinal scales define discrete, ordered
classes where interval sizes between classes are
unequal and typically unknown (Stevens, 1946).
For instance, the word “excellent” may be ranked
more positive than “great” and “okay”, but it is
hard to express how much more positive. An exam-
ple is the ordinal Likert scale (Likert, 1932) used
to measure attitudes in psychometrics.

Our ordinal sentiment scale is derived from an
ordinal latent variable within a probabilistic, gener-
ative model (§3). In particular, the latent variable’s
classes represent sentiment values. The classes
are uniquely ordered which is achieved through
an ordering transformation that is applied to the
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priors of our model (§3.2). Our model is tightly
coupled with recent advancements in probabilistic
programming (Bingham et al., 2018; Phan et al.,
2019) and gradient-based inference (Homan and
Gelman, 2014). These advancements alleviate the
strict requirement of closed-formedness and con-
jugacy to perform posterior inference in complex
Bayesian models with latent ordering motifs.

Our ordinal scale is learned as an unsupervised
interpolation between 6 popular sentiment dictio-
naries. This has several benefits: on the other hand,
we can impute missing sentiment values in exist-
ing dictionaries. We evaluate this capacity in a
Bayesian data imputation task (§4.2). On the other
hand, interpolating between different dictionaries
causes our composite dictionary to have high cov-
erage of word types from widely different sources.
We evaluate our composite dictionary in 6 senti-
ment classification tasks from different domains
(§4.3). Taking a Bayesian approach, we have ac-
cess to uncertainty estimates for each sentiment
value per word type. We find that uncertainty is
larger for ambiguous and rare word types that are
covered by only few dictionaries (§5).

In §6, we present two possible extension of our
ordinal latent variable model. To further expand
word type coverage, we incorporate sentiment val-
ues derived from bi-polar semantic axes within
word embeddings (§6.1). To demonstrate the wide
applicability of our ordinal modeling motif, we in-
troduce a model variant that is closely related to
Latent Dirichlet Allocation (LDA; Blei et al., 2003),
but learns topics ordered by sentiment (§6.2). We
publish our code together with our learned, high-
coverage sentiment dictionary, annotated with pos-
terior credible intervals.

2 Data: Sentiment Dictionaries

We consider 6 popular English-language sentiment
dictionaries: SenticNet (SC) (Cambria et al., 2014),
(Baccianella et al., 2010),

(Hutto and Gilbert, 2014),

(Stone et al., 2007) Hu-Liu (HL) (Hu
and Liu, 2004) and MPQA (MP) (Wilson et al.,
2005). The dictionaries vary in the number of in-
cluded word types, the word source, application do-
main and the sentiment scale, see appendix Tab. 3.
SC, and have continuous, bounded senti-
ment values, while GI, HL and MP have discrete,
binary values as visualized in Fig. 1. We scale all
continuous values to a [0, 1] range. Some of the
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Figure 1: Sentiment value distributions of 6 sentiment
dictionaries. Some dictionaries assign continuous float
values to word types {SC, 5/, VA}, others limit them-
selves to discrete, (binary) values {GI, HL, MP}.

dictionaries such as and feature multiple
sentiment values per word type. We average those
to consistently obtain one value per word type for
all dictionaries, which allows for a fair comparison.
We group the sentiment dictionaries in a single data
table by word type. Since different dictionaries
contain different word types, this results in many
missing values. We filter the data table so that each
word type is covered by at least 2 dictionaries. This
leaves us with V' =12,342 unique word types that
serve as our dataset.

3 Model

Our goal is to learn a unifying sentiment dictionary
as an interpolation between existing sentiment dic-
tionaries. Each word type v is described by one or
multiple sentiment values of a dictionary. Depend-
ing on the dictionary’s scale, sentiment values can
be continuous ¢ or discrete 2¢. The superscripts
c and d represent continuous and discrete dictio-
naries respectively, i.e., ¢ € {SC,""/, VA} and
d € {GI,HL, MP}. Considering all 6 sentiment
dictionaries, we have a tuple of 6 sentiment val-
ues {z°C, ) Lol aHE aMPY ber word type.
Due to our filtering in §2, at most 4 of those values
can be missing (NaN).

3.1 Generative Story

For each word type v, we assume that its senti-
ment class z, is sampled from a Categorical dis-
tribution over K classes, parameterized by 7, a
K-dimensional vector of class probabilities. We
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Figure 2: Model for interpolating sentiment dictionaries.
Each word type v is described by observed sentiment
values 2¢ and z¢ from different sentiment dictionaries.
The continuous, bounded dictionaries ¢ are modeled
by Beta and the discrete dictionaries d by Binomial
distributions. Some priors are ordered, as indicated by
double-border nodes (©). This spurs the categorical
latent z, to be ordinal. Solid, black squares represent
fixed hyperparameters.

further assume that 7 is drawn from a Dirichlet
distribution. Conditioned on the sentiment class z,,,
each observed continuous z¢ € [0, 1] and discrete
z € {0,...,q"} sentiment value per dictionary is
independently sampled as depicted in Fig. 2. We
assume that the values 25¢, and " that come
from dictionaries with continuous, bounded sup-
port are drawn from Beta distributions. The Values
from binary dictionaries, , 2 and 2MP, are
naturally Bernoulli random Varlables—however we
represent them more generally as Binomial random
variables, with number of trials equal to ¢ (where
¢® = 1 in our case), to accommodate dictionaries
with arbitrary ordinal support:

7 ~ Dirichlet(cx) (1)

~ Categorical(m) (2)

xS | 2y ~ Beta(w; , K%, ) 3)

d o]z ~ Blnomlal( d pd ) 4)

We discuss the parameters wy , k7 and pfu that

induce ordering on the latent variable z, in the
following section.

3.2 Ordinal Latent Variable

While the classes of a Categorical distribution are
generically unordered, the structure of our model

induces a natural ordering over the K classes that
2y can take. When z,, = k, the parameters wyi, <},
and p‘,f parameterize the Beta and the Binomial
distributions from which word type v’s sentiment
scores are drawn. By imposing an ordering on
those parameters (e.g., wy < wy, ), we induce
ordering on z,. In the following subsections, we in-
troduce prior distributions over the vectors w® and
p? that ensure they are ordered, such that higher
classes correspond Beta and Binomial classes that
are centered around higher sentiment values.

OrderedNormal Distribution. To induce or-
dering into the parameters w® and p? and thus
the categories of z,, we import the Ordered-
Normal distribution of Stoehr et al. (2022).
The OrderedNormal is a distribution over a K-
dimensional vector A = (A1,...,\x) whose el-
ements are ordered, A\y < Agy1. Specifically,
for parameters p = (p1,...,4x) and o =
(01,...,0K), an OrderedNormal random variable
A ~ OrderedNormal(pu, o) can be generated as:

Sk ing- Normal(uy, o) forkin {1, ... K}
(A, Ak) < Ord({s1,...,5K}) 5)

where Ord(-) is a deterministic function that trans-
forms the set of Normal variates {s1, ..., sk}, into
a strictly increasing vector—specifically:

ifk=1
R : (©)
s1+ Y i oexp(s;) ifk>1

This transformation is an invertible, smooth bi-
jection which is differentiable and thus facilities
gradient-based parameter inference (Rezende and
Mohamed, 2015) as further discussed in §3.3.

Ordered Beta parameters. When z, = k, the
continuous sentiment score x¢, is drawn from a
Beta(wg, x§) distribution, where wf € (0,1) is
the mode and «j, > 0 is the concentration parame-
ter. We impose ordering over the K-dimensional
vector of mode parameters w® = (w§,...,w% ) by
positing the following prior:

S~ (w®) ~ OrderedNormal(u®, o)  (7)
where S~1(-) is the inverse sigmoid function. In
other words, we first sample from an Ordered-
Normal, and then apply the element-wise sigmoid
function to ensure that all elements of w® are be-
tween 0 and 1. We do not impose any ordering on
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the concentration parameters (xS, ..., k%) and as-
sume they are independent shifted Gamma random
variables with shape ~;; and rate 7 :

(v — 2) ™ Gamma(~g, n) ®)

This formulation ensures that the concentration pa-
rameter is k7, > 2 so that the Beta distribution is
unimodal at wy.

Ordered Binomial parameters. Our model as-
sumes observed discrete values x¢ are sampled
from a Binomial(q?, pﬁv) distribution where the
number of trials ¢¢ is based on the number of dis-
crete sentiment classes in the dictionary d, and pi}
is the probability parameter. We impose ordering
on the vector of probabilities p? by positing the

following prior:
S71(p?) ~ OrderedNormal(u?, &%)  (9)

3.3 Posterior Inference

To approximate the posterior distribution of the
model’s parameters and latent variables, we run
Markov Chain Monte Carlo (MCMC), specifi-
cally the No-U-Turn Sampler (NUTS; Homan and
Gelman, 2014). NUTS is gradient-based and re-
quires continuous latent variables and parameters.
However, the latent variable z, in our model is
explicitly non-continuous. We implement our
model using the probabilistic programming frame-
work Pyro (Bingham et al., 2018; Phan et al.,
2019) that offers an “enumeration” strategy, termed
parallel_enumeration, to handle the discrete la-
tent z, during inference. This enumeration strategy
effectively marginalizes z, out numerically so that
we can draw samples of the continuous parameters
6 from ) ~ p(# | X), where X are all of the
observed sentiment values. We can draw samples
of the latent variables 2" ~ p(z,|0®, z¢, 24). To
realize the ordering transformation presented in
Eq. (6), we rely on Pyro’s OrderedTransform.

Inferring Ordinal Sentiment Values. Ulti-
mately, we are interested in mapping word types to
ordinal sentiment values using our fitted model. As
discussed, we approximate the posterior p(z, | X)
using MCMC samples {zf)t)}le, and then com-
pute a point estimate either by taking the mean
Zy = % Zthl zf,t) or the mode 2,. Considering the
mode, we obtain an integer value 2, € {1,..., K}
that may be interpreted as an ordinal sentiment
value. In union, these values describe an ordinal
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Figure 3: K = 5 latent classes yield a good trade-off
between the number of model parameters and model
fit as measured by scaled posterior predictive density
(PPD) on the test set over 5 different random seeds.

scale that is part of a learned, composite sentiment
dictionary that we term ORDSCALE.

4 Experiments

We evaluate our model intrinsically (§4.2) and our
inferred ordinal sentiment dictionary, ORDSCALE,
extrinsically (§4.3). Therefore, we first fit our
model to existing sentiment dictionaries, identify
the optimal number of latent classes and finally in-
fer the ordinal scale. First, we splitthe V' = 12,342
word types into a 70% training and 30% test set.
Next, we run the NUTS sampler to perform pos-
terior inference as introduced in §3.3. We discard
the first 200 burn-in samples and consider only the
following T" = 1000 samples from the posterior.

4.1 Optimal Number of Latent Classes

We identify the optimal number of latent classes
K that lead our model to achieve high likeli-
hood on the test set. Therefore, we fit and eval-
uate our model on a range of class settings, e.g.,
K = {2,...,7}. We find that K = 5 yields a
high scaled Posterior Predictive Density (PPD; Gel-
man et al., 1996, 2014)! on the test set as shown
in Fig. 3. In the following, we consider our model
with the optimal class setting K = 5.

'We explain all evaluation metrics in App. A.2.
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Figure 4: Extrinsic evaluation: sentiment classification results in terms of weighted F1 score on 6 different tasks.
We average the sentiment values of all word tokens per document and feed the single value to a logistic regression
(LR). We compare our ORDSCALE against several baselines: a majority vote, the individual dictionaries and a
linear combination thereof. ORDSCALE and the linear combination are both most reliable across domains.
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Figure 5: Intrinsic evaluation: we impute the missing
sentiment value y, ¢ of one removed dictionary, e.g.,
SC, based on sentiment values y£" " of other dictionar-
ies, e.g., , VA, GI, HL, MP, in a test dataset. We
consider two baselines: a majority vote fitted only to
the later removed dictionary with K = 5; a linear re-
gression trained on the direct mapping y5"°" — yo L,
Our model condenses observations into a single latent.

4.2 Intrinsic Evaluation: Data Imputation

Experimental Setup. We perform an imputation
task to evaluate model fit. We first approximate
the posterior distribution of the continuous model
parameters 6 on the full training set using the op-
timal class setting of K = 5. On the testing
set, we remove one sentiment dictionary entirely
and refer to the corresponding, but now missing
sentiment values as 3, ¢. For instance, we re-

move yp ¢ = {25C}, which leaves us with the

given __ VA HL ,.MP
={ N O i el

five-way tuple y3 s Ly
The objective is to impute the removed sentiment
values of entirely unseen word types. To this end,

(t)

we sample the discrete latent variable 2, ’ per word

type v according to 2~ (200, y%iven). Then,
we draw 5 ~ p(ymsine| {0 9(®)) and take the
mean over samples % Z?:l g’fvt) to predict a single
missing sentiment value.

Results. We consider different baselines: instead
of using all sentiment dictionaries in a single model,
we fit six separate models to each dictionary indi-
vidually. In other words, this simple model has
only one observed variable, namely the one that
is being removed on the test, which resembles a
majority vote baseline. Moreover, we train six
linear regression models in a supervised task to
predict g, ¢ from 5. We report the results in
terms of mean squared error (MSE) in Fig. 5. Our
model outperforms both baselines in imputing all

dictionaries, except the dictionaries G| and MP.

4.3 Extrinsic Evaluation: Classification

We extrinsically evaluate our model, or rather, our
inferred sentiment dictionary ORDSCALE (§3.3)
in a sentiment classification task. It is important
to stress that we are not chasing benchmarks by
comparing against state-of-the-art models. Instead,
we are inspecting the sentiment-related information
preserved in our ordinal scale.

Task Data. We consider 6 diverse sentiment clas-
sification tasks. These are PeerRead (Kang et al.,
2018), specifically the splits ACL and ICLR, IMDB
(Maas et al., 2011), MultiDom (Blitzer et al., 2007),
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Figure 6: (A) Fraction of word types in sentiment tasks (columns) that are covered by sentiment dictionaries (rows).
ORDSCALE and the linear combination (comb) of all dictionaries have the highest coverage in each task. (B)
Correlation of sentiment values for word types that are shared between dictionaries. Overall, sentiment dictionaries
are strongly correlated. We find that ORDSCALE differs from linear combination in its correlations. As can be seen

in Fig. 1, contains many neutral values explaining its overall low correlation.

SemEval 2016 Task 4 (Palogiannidi et al., 2016) 2S¢ i oMP oz 2,
and the Yelp reviews dataset (Zhang et al., 2015). excellent| 0.7 - 27 1 1 - 38 4
All tasks consists of full text (e.g., reviews or great 0.1 08 18 - 1 1 34 3
tweets), referred to as documents, labeled with okay 01 0 o - 202
sentiment classes. They are split in pre-defined bad 03-06250 0 0 10 1
train—test sets and differ in the number of unique horrible 109 - 25 0 0 0 01 0

sentiment classes, ranging from 2 to 5 (see Tab. 4).

Experimental Setup. We consider ORDSCALE
with K = 5 ordinal classes and compare it against
several baselines: a majority vote that always se-
lects the majority class in each task; the six indi-
vidual sentiment dictionaries introduced in §2 and
a linear combination of all (scaled) six sentiment
dictionaries. This linear combination has the same
coverage of word types as ORDSCALE as further
elaborated in Fig. 6). For predicting the sentiment
labels of documents, we choose a simple proce-
dure following Go et al. (2009); Kiritchenko et al.
(2014); Ozdemir and Bergler (2015); Hoyle et al.
(2019): for each document, we replace each token
with its corresponding sentiment value from a dic-
tionary. Then, we average all values per document
and pass it to a logistic regression (LR) model that
is fitted on the training set to predict document la-
bels. To allow for a fair comparison, all dictionaries
are averaged to one sentiment value per word type.

Results. Results expressed as weighted F1
Scores are presented in Fig. 4. We find that ORD-
SCALE and the linear combination baseline only
rank in the middle range on every task. Yet, they
never perform poorly and may be considered very

Table 1: Sentiment scores for selected word types. z,
represents the mean and 2,, the mode over samples per
word type from our ordinal latent variable.

reliable across different tasks and data domains.
This may be attributed to their broad word-type cov-
erage as discussed in §5. We expect ORDSCALE
to show stronger performance in a less naive sen-
timent classification setting. In Fig. 4, we simply
average the sentiment values of all tokens in a docu-
ment which may lead them to neutralize each other.
Consequently, the broad word-type coverage does
not necessarily pay off. Exploiting it may require
more expressive models that operate on the full
token sequence instead.

5 Discussion

Interpretability of Ordinal Sentiment Scale.
We qualitatively inspect sentiment values for dif-
ferent word types across dictionaries. As shown
in Tab. 1, even popular words such as “excellent”
are not covered by all sentiment dictionaries. Due
to the different scales, the dictionaries can also be
tricky to interpret, especially those with continuous
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Figure 7: Posterior credible interval of z, over disagree-
ment of sentiment dictionaries. As expected, we observe
that the credible interval for a word type’s sentiment
value grows larger if it is absent in more sentiment dic-
tionaries. Moreover, we observe a correlation between
the posterior credible interval and disagreement of sen-
timent dictionaries for a given word type.

support. In for instance, there is no
difference between “bad” and “horrible”. Agreeing
on exact float value scores seems more difficult
than agreeing on a ranking which supports our call
for an ordinal sentiment scale. The mode %, of our
latent variable represents 5 distinct ordinal levels
that match the mental ordering of the words based
on sentiment. It is ranking “excellent” as more
positive than “great” and “okay”.

Correlation Requirement. Across all tasks, our
sentiment dictionary covers more word types than
other dictionaries since it basically describes their
interpolation as displayed in Fig. 6A. However, a
limitation of our models is the requirement that
observed variables have to be correlated. Consid-
ering Fig. 6B, if dictionaries were not correlated,
our model could not infer one from the other in
the imputation task (§4.2) nor learn a latent corre-
late. Conversely, if two dictionaries were perfectly
correlated, considering both would be superfluous
since one incorporated all information of the other.

Sentiment Uncertainty. One advantage adding
to the interpretability of our Bayesian modeling
approach is access to posterior credible intervals.
Unlike many of the existing sentiment dictionaries,
the sentiment values derived from our model are
accompanied by a “measure of uncertainty”. Fig. 7
shows that the posterior credible intervals are larger
for word types that are missing in more sentiment

pain | ™ 2, humor | z¢™ 2,
painful 0.64 4 funny | 0.66 4
unsettling | 0.40 3 comic | 0.33 3
stressful | 0.25 2 normal | 0.08 2
nontoxic | -0.21 1 tedious | -0.32 1
cured -0.64 0 boring | -0.44 0

Table 2: Using the SemAxis approach (An et al., 2018),
we can learn dictionaries with ordinal scales along any
bi-polar semantic axes. We demonstrate this for the seed
words “painful — cured” and “funny — boring”.

dictionaries. Moreover, there is an expected cor-
relation between the disagreement of sentiment
dictionaries in terms of standard deviation and the
size of the posterior credible interval.

Label Switching. In topic models with Categori-
cal (or Multinomial) distributions, aggregating sam-
ples from the posterior distribution between differ-
ent or even within the same MCMC chain can be
complicated. This is due to a problem called label
switching which arises from the non-unique order-
ing of latent classes (Stephens, 2000). The ordered
priors in our model represent an identifiability con-
straint that mitigates the label switching problem
(Stephens, 2000; Murphy, 2012).

6 Extensions and Applications

6.1 Word Embeddings

Newly appearing, changing or domain-specific
word types may need to be added to an existing
dictionary (Wang et al., 2021). To address this
issue, we extend our approach considering static
word embeddings. In particular, we obtain senti-
ment values for all word types in our dictionary
using the SemAxis approach (An et al., 2018).
We consider 300-dimensional Glove embed-
dings (Pennington et al., 2014). First, we choose
two pole word types such as vy =“good” and
v_ ="“bad” and obtain their vector representations
v and v_.? Next, we compute the linear semantic
axis between the poles according to v — v_. Fi-
nally, we can project any word prevalent in Glove’s
vocabulary onto this axis by computing the Cosine
similarity between the word type’s vector and the
semantic axis. The similarity can be interpreted as
a word’s embedding-based polarity value 5™ on
the respective semantic axis. We simply treat the

2We may also choose a set of word types, e.g., {good,
positive} and {bad, negative} and consider their mean vector.
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Figure 8: Document-level model with ordered topics.
Following Latent Dirichlet Allocation (LDA), we can
add another plate over M documents and include a
topic-word type matrix ® where each row is sampled
independently from a Dirichlet distribution. Different
to LDA, we now have multiple observed variables: the
word types v n and the sentiment values 7, . xfnm
per word token n in each document m. Double-border
nodes are ordered (@).

word type—value pairs as its own dictionary with
continuous support. When including this dictionary
as an observed site in our model, we can impute
missing values in dictionaries that lack words that
are existent in Glove. Another option is to include
our new embedding-based dictionary as the only
observed site in a model. The model then learns
an ordinal discretization of the semantic axis. In
Tab. 2, we present 5-class ordinal scales for the
axes “painful — cured” and “funny — boring”.

6.2 Document-level Model

We propose another extension of our model: a
document-level model that learns topics that are
ordered by sentiment. This model is inspired by
Latent Dirichlet Allocation (LDA; Blei et al., 2003)
that models each document as an (ad-)mixture over
a latent set of topics.

Generative Story. The generative story goes as
follows: we have a corpus of M documents. A
corpus-wide alpha concentration o parameterizes
a Dirichlet over K topics. Now, for each docu-
ment m, a topic distribution 7, is sampled from
the Dirichlet. Instead of iterating over word types
V', this model iterates over the [V, tokens in all
M documents of a corpus. Following LDA, the
number of tokens per document N,,, = N is kept
fixed since we are interested in relative differences
between documents. For each token n, a topic zp, 5
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Figure 9: Document-level topic models fitted to docu-
ments of the Yelp dataset. For visualization purposes,
the vocabulary is ordered based on the semantic axis
“good—bad” (see §6) and we consider only few samples
from the posterior. (A) The LDA model yields top-
ics that are hard to interpret. (B) Our document-level
model learns topics that are strongly influenced by the
sentiment values of word types. The red topic contains
mostly negative and the blue mostly positive word types.

is drawn from a Categorical parameterized by 7.

(10)
(11)

Conditioned on z,, ,,, we sample multiple observed
sites per word: the word type vy, , and the word
type’s associated sentiment values z, ,, € [0,1]
and xfn’n € {0, 1} as given by the dictionaries d
and c. Sampling word types is identical to LDA:
Zm,n indexes into a K x |V| topic-word type ma-
trix ® where each row is sampled from a Dirichlet
distribution. |V| is the size of the vocabulary. The
selected row vector ¢, parameterizes a Cate-
gorical distribution over words in the vocabulary
associated with topic z,,,, = k. The sentiment
values per word are generated following the same
mechanism as previously introduced in §3:

70 ~ Dirichlet(a)

Zm,n ~ Categorical(7,,)

Umn | Zm,n ~ Categorical(¢, ) (12)
xfn,n | Zm,n ™~ Beta(wgm,n’ sz,n) (13)
28 o | Zmn ~ Binomial(¢%, pl ) (14)
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Applications. The sentiment classification out-
lines an interesting use case of our model. Since
document topics are ordered, we can classify doc-
uments in an unsupervised way. Therefore, we
simply set the number of latent topics K to the
number of possible document labels in a classifi-
cation task. Then, we predict labels based on the
inferred topic 2, of a document. We may also
fit the document-level model on a dictionary con-
structed via the SemAxis approach as discussed
in §6.1. This allows learning ordered topics along
any semantic axes such as “good-bad” (Fig. 9) or
“funny-boring” (App. Fig. 10) without supervision.

7 Related Work

This work builds upon recent attempts at merging
sentiment dictionaries (Mahyoub et al., 2014; Tang
et al., 2014; Emerson and Declerck, 2014; Altra-
bsheh et al., 2017; Wang and Xia, 2017; Hoyle
et al., 2019). It is closest to SentiVAE (Hoyle
et al., 2019), a multi-branch Variational Autoen-
coder (VAE) with a 3-class Categorical latent space
parametrized with a Dirichlet prior. Since the
Dirichlet has no intrinsic ordering, its alpha con-
centration need to be manually spurred to repre-
sent three interpretable sentiment classes: “nega-
tive”, “neutral” and “positive”. In contrast to Hoyle
et al. (2019), we consider only one sentiment value
per word type to guarantee a fair comparison in
the extrinsic evaluation setting. Our latent vari-
able model is inspired by Stoehr et al. (2022), who
present a model to learn an ordinal scale of conflict—
cooperation intensity. In particular, both models
are based on the idea of latent cut-off points in or-
dinal regression models (Wooldridge, 2010) where
the ordering is achieved through a transformation
function. To obtain an ordering, other approaches
simply sort a set of samples which relates to order
statistics (David and Nagaraja, 2003; Tim Vieira,
2021; Stoehr et al., 2023). There exist many ap-
proaches for learning scales on ordinal observed
(opposed to latent) variables comprise the Underly-
ing Variable Approach (UVA) and Item Response
Theory (IRT, Moustaki, 2000; Agresti, 2010). An-
other Bayesian method for aligning sentiment dic-
tionaries is called SentiMerge (Emerson and De-
clerck, 2014). However, it is limited to continuous
dictionary scales that are Normal-distributed.
There exists a plethora of extensions of the La-
tent Dirichlet Allocation (LDA, Wallach, 2006;
Mcauliffe and Blei, 2007; Chang and Blei, 20009;

Blei, 2012; Dieng et al., 2020). Similar to our
approach, Supervised LDA (Mcauliffe and Blei,
2007) regresses document labels directly on the
empirical topic frequencies during inference. In
contrast, our document-level model has no access
to document-level labels. Dieng et al. (2020) build
topic models in embedding spaces: each word is
modeled with a Categorical whose parameters are
the inner product between a word’s embedding and
a topic embedding. Stoehr et al. (2023) present
an ordering constraint on the topic-word type ma-
trix ® to learn ordered topics based on ordered
vocabularies.

8 Conclusion

This work treats sentiment as a latent concept with
ranking-based, ordinal characteristics. Other or-
dinal phenomena such as pain perception (Griffin
et al., 2020), conflict intensity (Stoehr et al., 2022)
or political ideology (Vafa et al., 2020; Russo et al.,
2022) can similarly be measured on ordinal scales.
Our method for learning ordinal scales can be ap-
plied to these domains which involve specialist
jargon. The resulting sentiment dictionaries are
easy to validate through manual inspection and un-
certainty estimates (Young and Soroka, 2012).
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Limitations

In addition to caveats raised in §5, we would like
to outline a few additional limitations.

Sensitivity of Priors. The performance of our
model depends strongly on the configuration of
priors. Their sensitivity is caused, in part, by the
ordering transform in Eq. (6). In all experiments,
we consistently choose the following parameter
setting: pj = —1.0, oy = 1.0, v = 1.0, ny =
1.0, ¢ = —1.0 and o = 1.0. In §6, we set
pd = =5.0, o = 10.0, u§ = —5.0, of = 10.0,
vi = 1.0 and 7, = 10.0. Details on the inference
procedure and implementation are given in §3.3.
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Number of Parameters. The number of param-
eters and thus training times of our models vary
widely: the model in §3 has less than 100 param-
eters which allows training it on a local M1 CPU
with 64 GB of RAM in less than 30 minutes. The
number of parameters of the document-level mod-
els depends on the vocabulary size || and the num-
ber of latent classes K. In particular, the K x |V|-
shaped matrix ® represents a limiting factor. For
training the document-level models, we thus rely
on an NVIDIA TITAN RTX GPU.

Language Limitation. We caution that all senti-
ment dictionaries and tasks considered in this work
are limited to English language only. Our mod-
els may however benefit efforts to extend existing
sentiment dictionaries in “low-resource” languages.
We provide dataset statistics in App. A.1.

Impact Statement

We do not foresee ethical concerns with the re-
search presented in this paper. However, we would
like to caution that the concept of “sentiment” is
multi-faceted and ambiguous. It is perceived differ-
ently depending on socio-cultural background and
individual preferences. Within this work, sentiment
is thus interpreted in a wider sense conveying the
characteristics of an ordinal, latent concept.
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A Appendix
A.1 Dictionary and Task Statistics

We present dictionary statistics in Tab. 3 and task
statistics Tab. 4, adopted from Hoyle et al. (2019).

dictionary source |4 scale
SC SenticNet - 100,000 cont., bound.
WordNet 14,107 cont., bound.
Social Media 7489 cont., bound.
- 4206  disc., binary
HL Hu-Liu Reviews 6790 disc., binary
MP MPQA News 4397  disc., binary

Table 3: Descriptive statistics of 6 popular sentiment
dictionaries. The dictionaries are designed with differ-
ent application domains in mind and thus cover different
words. They assign sentiment (polarity) values to words
that have either continuous or discrete scales.

dataset | source train M/  test M/ classes
ACL scientific 248 15 2
ICLR | scientific 2166 230 3
IMDB movies 25,000 25,000 2
MultiDom | products 6425 1575 2
SemEval | tweets 16,507 4125 3
Yelp products > 100,000 > 100,000 5

Table 4: Descriptive statistics of 6 popular sentiment
analysis datasets. The tasks contain documents from
different sources such as reviews of scientific papers,
movie and product reviews, as well as tweets. The tasks
also differ in the number of different sentiment classes.

A.2 Evaluation Metrics

We evaluate our model using a scaled variant of the
posterior predictive density (PPD) (Gelman et al.,
1996, 2014):

1

T
sz Yo | Ly, t)))>
t=1

PPD measures the exponentiated averaged predic-
tive log-likelihood. The inner sum over 1" sam-
ples corresponds to a discretized integral over the
probability density function of the parameters’ pos-
terior distribution. exp {- ZX=1 log(-) represents
the geometric mean over V' data points. By ex-
ponentiating, our metric ranges between 0 and oco.
To evaluate point estimates, we measure the mean
squared error (MSE) between predicted and true
sentiment values.

PPD =exp ( Z log

A.3 Inverse of OrderedNormal

The OrderedNormal distribution, defined in Eq. (6),
is based on an ordering transformation. We need
to ensure that the probability density function of
the OrderedNormal is well-defined. To this end,
the transformation needs to be a smooth bijection
where V&, A\, > Ar_1, so the log is well-defined.

M ith =1
log(Ag — Ap_1) ifk > 1

A.4 Document-level Model Details

Sk <

(15)

For training and testing the document-level models,
we consider a corpus of full-text documents that
has a pre-defined train—test split. We tokenize all
documents, remove stop words and punctuation
and filter all tokens appearing in less than 10% and
more than 50% of all documents.

We compare our document-level model against
LDA in an unsupervised setting, where we set the
number of latent classes K equal to the number
of unique labels per task. This allows treating a
document’s inferred latent topic z,, directly as a
predicted document label.
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Figure 10: (A) LDA model fitted to documents of the
Yelp dataset. (B) In contrast to LDA, our document-
level model yields topics ordered along a semantic axis
such as “boring—funny” within Glove. For visualization
purposes, we consider only few posterior samples.

115


http://www.stat.columbia.edu/~gelman/research/published/A6n41.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

