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Abstract

Pretrained large language models have become
indispensable for solving various natural lan-
guage processing (NLP) tasks. However, safely
deploying them in real world applications is
challenging because they generate toxic con-
tent. To address this challenge, we propose two
novel pretraining data augmentation strategies
that significantly reduce model toxicity with-
out compromising its utility. Our two strate-
gies are: (1) MEDA: adds raw toxicity score as
meta-data to the pretraining samples, and (2)
INST: adds instructions to those samples indi-
cating their toxicity. Our results indicate that
our best performing strategy (INST) substan-
tially reduces the toxicity probability up to 61%
while preserving the accuracy on five bench-
mark NLP tasks as well as improving AUC
scores on four bias detection tasks by 1.3%.
We also demonstrate the generalizability of our
techniques by scaling the number of training
samples and the number of model parameters.

1 Introduction

Pretrained large language models (LMs) have
become indispensable for solving various NLP
tasks (Brown et al., 2020; Smith et al., 2022;
Chowdhery et al., 2022), yet it has been challeng-
ing to safely deploy them for real world applica-
tions (McGuffie and Newhouse, 2020; Prabhumoye
et al., 2021a). They have been known to generate
harmful language encompassing hate speech, abu-
sive language, social biases, and threats (Gehman
et al., 2020; Welbl et al., 2021; Bender et al., 2021;
Hovy and Prabhumoye, 2021). These harmful gen-
erations are broadly referred to as “toxicity”.1 This
work focuses on reducing the toxicity in large LMs
by augmenting their pretraining data.

Prior work has primarily focused on reducing
toxicity either by finetuning LMs on non-toxic

1In this work we use toxicity as defined by Perspec-
tiveAPI (PerspectiveAPI, 2022) but our techniques can be
applied to other broader definitions of bias or toxicity.

Figure 1: Overview of the proposed approaches and the
baseline (BASE). We propose two new data augmen-
tation strategies, MEDA and INST. The text in purple
are control variables indicating the desired toxicity level
of the text. The text in black is the input to the model
and the text in green is the generated output using each
strategy with 1.3b parameter model.

data (Gururangan et al., 2020; Ouyang et al., 2022;
Wang et al., 2022) or using decoding time al-
gorithms to re-weight the probabilities of toxic
words (Krause et al., 2021; Schick et al., 2021; Liu
et al., 2021). These methods typically incur further
costs of finetuning additional LMs (Krause et al.,
2021; Liu et al., 2021), generating large amount
of non-toxic data (Wang et al., 2022), or procur-
ing human feedback (Ouyang et al., 2022). These
techniques are known to reduce toxicity but also
compromise perplexity and downstream task per-
formance (Wang et al., 2022; Xu et al., 2021). Fur-
thermore, these methods are only useful after the
LMs are pretrained.

Our approach aims to reduce toxicity during pre-
training itself, thus incurring no additional cost
once the LM is trained. We augment the pretrain-
ing data with information pertaining to its toxicity.
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We believe that instead of filtering toxic data (Welbl
et al., 2021; Ngo et al., 2021), the toxicity informa-
tion can guide the LM to detect toxic content and
hence generate non-toxic text. Hence, we develop
two novel data augmentation strategies: (1) MEDA:
adds raw toxicity score of a sample as meta-data,
and (2) INST: augments an instruction to the sam-
ple indicating its toxicity. We use a classifier to
obtain sample-level toxicity score of the pretrain-
ing data. These scores are used by MEDA and
INST to educate the LM about toxicity.

Fig. 1 shows an example of how MEDA and
INST are applied. We add the raw toxicity score of
the sample along with a tag “toxicity: 0.1” for the
MEDA strategy. Similarly, we add an instruction
such as “This is a non-toxic post. Post:” to the
tokens of a non-toxic sample for INST strategy. No
data augmentation is applied for BASE.

The goal of our strategies is to reduce tox-
icity in text generation while preserving util-
ity on benchmark NLP tasks and bias detection
tasks. Prior work only evaluates the success of
toxicity reduction techniques on REALTOXICI-
TYPROMPTS (Gehman et al., 2020). Few tech-
niques are evaluated for their utility in performing
some benchmark NLP tasks (Wang et al., 2022;
Xu et al., 2021). But toxicity reduction techniques
like data filtering can reduce the bias and toxicity
detection capabilities of the LMs (Xu et al., 2021).
Some techniques like finetuning (Gururangan et al.,
2020; Wang et al., 2022) can also reduce the capa-
bility of the LM to effectively perform downstream
end-to-end text generation tasks.

Hence, we expand the evaluation to include -
(1) Bias Detection Tasks: we evaluate the capabil-
ity of our strategies to detect social biases (Sap
et al., 2020), and (2) Text Generation Task: we
measure the performance of our strategies on the
E2E task (Novikova et al., 2017).

In summary, our primary contribution is: we de-
velop MEDA and INST - two new strategies to re-
duce toxicity by augmenting pretraining data (§2.2).
To our knowledge, these are the first toxicity reduc-
tion techniques which augment the pretraining data
with toxicity information without filtering any data.
Additionally, we broaden the current evaluation to
include two new metrics on bias detection and text
generation task (§3.1). Furthermore, we perform
experiments with scaling the number of training
samples and the number of parameters of the LM.
Our results demonstrate that our best performing

strategy (INST) considerably reduces the toxicity
probability of the generations by as much as∼ 61%
while preserving the utility of the LM on five bench-
mark NLP tasks as well as improving on the four
bias detection tasks by 1.3% (§4). Moreover, we
demonstrate that our strategies applied at sample-
level perform better than document-level (Welbl
et al., 2021; Ngo et al., 2021) by 11% in toxicity
probability reduction (§6).

2 Methodology

Our approach guides the LM about the toxicity of
the data it sees during training and directs it to gen-
erate non-toxic content. We educate the LM by
augmenting the pretraining dataset D with toxic-
ity information. We first use a classifier to obtain
toxicity scores for samples (S) in D. We add the
desired toxicity scores to S in two forms - as raw
scores in the form of meta-data and as instructions
in natural language form.

2.1 Toxicity Scoring

We use the widely accepted Commercial Perspec-
tiveAPI (PerspectiveAPI, 2022) to get toxicity
scores for each sample. Note that our strategies
can be applied using any other classifier. Perspec-
tiveAPI scores text of at most size 20KB characters
or∼ 4000 tokens. This is larger than the maximum
sequence length permitted by LMs (typically 1024
or 2048 tokens). Hence, first obtaining Perspec-
tiveAPI score and then splitting the documents into
samples of maximum permitted sequence length
would yield inaccurate toxicity scores for the sam-
ples. Moreover, some documents are larger than
4000 tokens. Note that simply splitting the larger
documents into chunks of 2000 tokens and then av-
eraging the PerspectiveAPI scores for each chunk
does not yield accurate results.2 Hence, we first
process the documents in our dataset into samples
of 2000 tokens and then get PerspectiveAPI scores
for all the samples.

Dataset We use the corpus and the sampling
weights for each dataset described in Smith et al.
(2022). In total we used 15 datasets - the Com-
mon Crawl (CC-2020-50 and CC-2021-04) (Com-
monCrawl, 2022) accounting for majority of the
samples. From The Pile (Gao et al., 2020), we
use Books3, OpenWebText2, Stack Exchange,
PubMed Abstracts, Wikipedia, Gutenberg (PG-19),

2We show this analysis in detail in Appendix A.

2637



Figure 2: Histogram of toxicity scores for the entire pre-
training corpus and the percentage of samples belonging
to each category. We observe that 73.6% samples have
toxicity scores below 0.2 and only 4.14% samples have
toxicity scores above 0.5.

BookCorpus2, NIH ExPorter, ArXiv, GitHub, and
Pile-CC datasets. In addition, we also use Real-
news (Zellers et al., 2019b) and CC-Stories (Trinh
and Le, 2018). In total, this corpus consists of 339
billion tokens and we only select a subset of the
corpus to train models that use our strategy.

Analysis of Toxicity Scores We divide the doc-
uments in our corpus into samples of sequence
length 2000 tokens. Fig. 2 shows a histogram of
the toxicity scores of the samples for the entire cor-
pus. We observe that a majority of 73.6% samples
have toxicity scores below 0.2 and only 4.14% of
the samples have toxicity scores above 0.5. This is
in agreement with the document-level data analysis
shown in Gehman et al. (2020).

Fig. 3 shows the percentage of samples that have
toxicity scores≥ 0.5 for each dataset in our corpus.
We identify that BookCorpus2 and Stories have the
highest percentages of toxic samples - 18% and
11%. The datasets with less than 1% toxic sam-
ples are Github, Wikipedia, ArXiv, StackExchange,
PubMedAbstracts, and NIH-ExPorter.

Filter Approach (FILT) This strategy filters data
with toxicity scores above a certain threshold. Prior
work removes the toxic documents and trains the
LM on less data (Welbl et al., 2021; Ngo et al.,
2021). To avoid inconsistency in obtaining toxi-
city score at document-level and then applying it
to samples, we employ this strategy at the sample-
level. We use a toxicity threshold of 0.5. From
Fig. 2, we see that this method filters out 4.14%
of the samples. In contrast, for fair comparison

Figure 3: Percentage of samples in each dataset of our
corpus with toxicity score≥ 0.5. We observe that Book-
Corpus2 has the highest percentage of toxic samples
(18%) and NIH-ExPorter has the lowest percentage of
toxic samples (0.1%).

with baseline, we maintain the same number of
samples across strategies. Hence, we replenish the
pretraining dataset with 4.14% of non-toxic sam-
ples. Note that this is a stronger strategy compared
to completely removing documents.

2.2 Proposed Strategies

We suppose that filtering data can potentially com-
promise the capability of the LM in performing
benchmark NLP tasks and especially hinder its bias
detection capabilities. Our approach is designed
to guide the LM by providing it information about
toxicity of the samples it sees during training.

Our Algorithm for Data Augmentation Algo-
rithm 1 illustrates the logic of augmenting the
data for the two strategies - MEDA and INST.
These strategies modify samples S in the pre-
training dataset D based on their toxicity scores
(tox_score) received through PerspectiveAPI. We
consider two threshold: HIGHTHRESH above
which the samples are augmented with the control
variable Ctox and LOWTHRESH below which sam-
ples are appended with the control variable Cnont.
Each strategy described below has its own value of
Ctox indicating that S is toxic and Cnont marking
that S is non-toxic.

Note that we don’t augment Ctox or Cnont to
every sample that lies within a threshold. We use
additional variables - PRMTOX controls the permis-
sible toxic samples for which Ctox can be added,
and PRMNONT regulates the percentage of non-
toxic samples for which Cnont can be augmented.
This is done to encourage generalizability of the
LM where we show the model toxic samples with
Ctox and without it (just the way the sample is seen
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Algorithm 1 Data Augmentation Method
for S in D do

tox_score← PerspectiveAPI(S)
if tox_score ≥ HIGHTHRESH then

r ← get_random()
if r < PRMTOX then

S ← Ctox+S

else if tox_score < LOWTHRESH then
r ← get_random()
if r < PRMNONT then

S ← Cnont+S

without any modification by the baseline model).
Additionally, all the samples with LOWTHRESH

≤ tox_score < HIGHTHRESH are not modified.

Meta-Data Augmentation (MEDA) This strat-
egy guides the LM by adding toxicity score in the
form of raw meta-data at the beginning of some
of the samples in the pretraining set. This makes
Cnont = “toxicity: 0.1” for all the samples with
toxicity scores below the LOWTHRESH and Ctox

= “toxicity: 0.5” for all the samples with toxicity
scores above the HIGHTHRESH. Note that all the
samples within a threshold get the same value, ei-
ther 0.1 or 0.5. For example, even if a sample has
a toxicity score of 0.8, Ctox will still be equal to
“toxicity: 0.5” if the HIGHTHRESH= 0.6.

Instruction Augmentation (INST) This strategy
guides the LM by adding an instruction in the nat-
ural language form at the beginning of samples
indicating if they are toxic or not. This instruc-
tion is based on the toxicity score of the sample.
For samples with toxicity score above the HIGH-
THRESH, Ctox= {“Instruction: Complete the fol-
lowing text in a toxic manner. Text:”, “This is
a toxic post. Post:”, “Instruction: Complete the
following text in a toxic manner. Text:”}. Simi-
larly, Cnont= {“Instruction: Complete the follow-
ing prompt in a non-toxic manner. Prompt:”, “This
is a non-toxic post. Post:”, “Instruction: Complete
the following text in a respectable manner. Text:”}.
We randomly select one of the three possible in-
structions to be added to the samples.

3 Experimental Setup

Modeling Details We train all our models from
scratch using the decoder-only architecture in
Megatron-LM (Shoeybi et al., 2019). We train
baseline models (BASE) without any data augmen-

tation strategies. Subsequently, we train models
using each data augmentation strategy under four
different configurations which scale the number of
pretraining samples as well as the number of model
parameters. We train 357 million parameter mod-
els with 96 million (357m-96m) samples and 150
million (357m-150m) samples. Similarly, we train
1.3 billion parameter models with 96 million (1.3b-
96m) and 150 million (1.3b-150m) samples.3

For all models, we use HIGHTHRESH = 0.5,
LOWTHRESH = 0.1 and PRMTOX= 0.9. This im-
plies 90% of toxic samples in the dataset are ap-
pended with Ctox. Note that only 4.14% of the en-
tire train set has tox_score ≥ 0.5 (Fig. 2) which
means that 3.73% (90% of 4.14) of the entire train
set receive Ctox. For MEDA PRMNONT= 0.5
and for INST PRMNONT= 0.9. 34.59% of the en-
tire dataset has tox_score < 0.1 (from Fig.2).
This means that for MEDA 17.3% of samples
and for INST 31.13% of samples are augmented
with Cnont. From these values, we derive that for
MEDA ∼ 79% of samples and for INST 65.14%
of samples don’t undergo any modification. Unless
mentioned otherwise, we use greedy decoding for
all the evaluation tasks.

3.1 Evaluation
We evaluate the success of our strategies along four
different dimensions. We would like our strategies
(1) to reduce toxicity in text generation, (2) to per-
form as good as the baseline on benchmark NLP
tasks as well as (3) bias detection tasks, and (4) to
not affect the quality of downstream text generation
tasks. We do not finetune the LMs to evaluate on
any of the below mentioned tasks.

Toxicity Evaluation We follow the setup in
Gehman et al. (2020) and use the full set of prompts
(∼ 100k) to evaluate toxicity of LM generations
via PerspectiveAPI. Gehman et al. (2020) propose
two metrics: (1) Expected Maximum Toxicity cal-
culates the maximum toxicity scores over 25 gener-
ations for the same prompt with different random
seeds, and then averages the maximum toxicity
scores over all prompts, and (2) Toxicity Probabil-
ity evaluates the probability of generating a toxic
continuation at least once over 25 generations for
all prompts. We follow Gehman et al. (2020) and
restrict the generations up to 20 tokens or below.
Wang et al. (2022) show that toxicity scores from
PerspectiveAPI are strongly correlated with human

3Additional hyper-parameter details in Appendix C.

2639



Figure 4: We average the percentage relative gains or losses achieved by each of the strategies over BASE across
the eleven tasks described in §3.1. We show that MEDA and INST perform better than FILT and BASE on all four
model configurations. Average indicates the average of the gains across the four models for each strategy. These
results demonstrate that INST performs the best across the board.

evaluation (Pearson correlation coefficient = 0.97).
Hence, we only report PerspectiveAPI evaluation.

Under this setup, we perform two types of experi-
ments: (1) with no control variable which is exactly
same as (Gehman et al., 2020), and (2) generating
continuations by adding the respective control vari-
able Cnont for MEDA and INST. Note that we only
add Cnont at beginning of all the prompts and not
Ctox. This is because we want to encourage the LM
to generate a non-toxic continuation to the given
prompt without sacrificing their quality.

Benchmark NLP Tasks To ensure that our strate-
gies do not affect the utility of the LMs, we
evaluate them on five benchmark NLP tasks cov-
ering - completion prediction (LAMBADA (Pa-
perno et al., 2016)), natural language understand-
ing (ANLI (Nie et al., 2020)), and commonsense
reasoning (Winogrande (Sakaguchi et al., 2020),
Hellaswag (Zellers et al., 2019a), PiQA (Bisk et al.,
2020)). We evaluate them in the fewshot set-
ting without any finetuning following the setup in
Brown et al. (2020); Smith et al. (2022). We report
average accuracy across the five tasks.

Note that these are prediction tasks where the
LM has to choose an answer given a set of choices.
The model does not have to perform free-form gen-
erations for these tasks. Hence, we do not evaluate
by adding the control variables.

Bias Detection Tasks To ensure that our strate-
gies do not affect the bias detection capabilities
of the LMs, we evaluate them on four social bias
detection tasks - detect if the text is offensive, inten-
tional insult, contains lewd language, and predict
if the text is offensive to a group or an individual.
The bias detection tasks are described in Sap et al.
(2020). We follow the setup in Prabhumoye et al.
(2021b) to perform 32-shot classification where 32
samples are selected from the train set to be pro-

vided as in-context samples to the LM. We report
average Area Under Cover (AUC) scores (Scikit-
learn, 2022) across the four tasks. In these tasks as
well, we don’t use the control variables.

Text Generation Task To evaluate if our tech-
niques affect the downstream text generation, we
assess them on the E2E dataset (Novikova et al.,
2017). We perform the task in a few-shot manner
by providing the LM with 10-shots as context. We
measure the success on Rouge-L metric by compar-
ing the generation with ground truth. The primary
goal of this task is to check if adding control vari-
ables affects the performance of E2E task.

4 Results and Discussions

Through this section we present the aggregated re-
sults and analyze them. To do this, we calculate the
relative percentage difference compared to BASE
for all the twelve metrics across the eleven tasks
- expected maximum toxicity, toxicity probability,
accuracy of five NLP tasks, AUC scores of four
bias detection tasks, and Rouge-L for E2E task.
We then compute an average across all the met-
rics (we also include the experiments with control
variable Cnont). In Fig. 4 we show the average per-
centage gains achieved by each strategy across the
eleven tasks. The detailed results for all the tasks
are shown in Tables 2 and 3 in Appendix B. We
will go in detail about each evaluation metric in
subsequent sections.

Fig. 4 demonstrates that all the strategies are
better than BASE. Fig. 4 illustrates that MEDA
and INST are generalizable because they deliver
consistent gains when scaled from 96m samples
to 150m samples and from 357m to 1.3b model
parameters. If we average the gains across the
four models, then we observe that INST strategy
attains the most gains (14%) and hence is the best
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Figure 5: We show the average percentage gain in toxic-
ity reduction by MEDA and INST across the four model
configurations. We observe that we get higher gains
(43% higher for MEDA and 54% higher INST in abso-
lute terms) when using Cnont.

strategy. Moreover, both the strategies developed in
this work - the meta-data-based MEDA is 6% and
instruction-based INST is 6.3% better than FILT.

Since the performance of the strategies is con-
sistent across the four models, we only show the
average behavior of the approaches across the four
models for each of the metrics.

Toxicity Evaluation Fig.5 presents the relative
percentage gains in expected maximum toxicity
and toxicity probability compared to BASE. It also
shows the results for MEDA and INST by using
their respective control variable Cnont vs not.

We observe that MEDA and INST are successful
in reducing the toxicity of generations as evaluated
by REALTOXICITYPROMPTS setup (Gehman et al.,
2020). Specifically, we see huge gains in toxicity
reduction when we use control variable Cnont asso-
ciated with MEDA and INST (compare striped vs
non-striped bars for each color). This is because we
are directing the LM to generate non-toxic content
by prefacing the prompt with Cnont. FILT gives
8% improvement over BASE on expected maxi-
mum toxicity and 17% gain on toxicity probability.
But this cannot be improved further because there
are no control variables associated with this strat-
egy. INST on the other hand establishes 29.3%
improvement in expected maximum toxicity and
a 61.3% improvement in toxicity probability i.e
INST reduces the probability of generating toxic
content by ∼ 61% and the probability is as low
as 0.14. This suggests that guiding the LM with
toxicity information in the form of instructions is
more successful in reducing toxicity compared to
filtering data.

Benchmark NLP tasks Fig. 6 shows the average
accuracy of five benchmark NLP tasks across the
four model configurations for the three strategies
along with BASE. We observe that MEDA and

Figure 6: We report average accuracy across five bench-
mark NLP tasks and average AUC across four bias de-
tection tasks for each strategy (including BASE) across
four models. We see that all the strategies perform as
good as the BASE proving that our data augmentation
strategies don’t compromise the utility of the LM.

INST are as competent as BASE on the NLP tasks.
In fact, we observe a marginal gain of < 1% for
FILT, MEDA and INST. This shows that our data
augmentation strategies don’t harm the utility of
the LMs trained on it.

Bias Detection Tasks Additionally, Fig. 6 also
shows the average AUC scores of the models across
the four configurations for the four bias detection
tasks. Similar to NLP tasks, the results illustrate
that all the strategies perform better than baseline
(we see a gain of 2.5% for FILT, 1.4% for MEDA,
and 1.3% for INST). We believe MEDA and INST
perform well on these tasks because they were
shown examples of both toxic and non-toxic sam-
ples through their respective control variables.

We suppose that FILT performs well on both
benchmark NLP tasks and bias detection tasks be-
cause it was trained on equal number of samples
as MEDA and INST. Additionally, it saw only non-
toxic samples (the toxic samples were replaced by
non-toxic samples). Hence, the perplexity for toxic
sentences would be higher in FILT. We discuss this
in detail in §6.

Text Generation Task Since we see huge gains
in Fig. 5 by adding Cnont, we want to evaluate if
adding Cnont affects the performance of a down-
stream text generation task. Fig. 7 shows the av-
erage of Rouge-L scores across the four model
configurations for MEDA and INST strategy us-
ing Cnont (striped bars) and without using it (non-
striped bars). Fig. 7 illustrates that overall there is
no effect of adding control variables on the E2E
task (we see a gain of 0.5% and 2.0% for MEDA
and INST respectively when using Cnont).
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Figure 7: We report Rouge-L scores for the E2E task
for MEDA and INST strategies with and without Cnont.
We demonstrate that augmenting Cnont does not affect
the performance of the LM on E2E task.

4.1 Ablations

Additional details are provided in Appendix D.

Scaling the Model Size We scale our experi-
ments to a 8.3 billion parameter models with 150
million samples and train using three strategies -
BASE, FILT and our best performing INST. Table
5 shows the results of these models on toxicity eval-
uation, benchmark NLP tasks and bias detection
tasks. We see similar trends to our main results i.e
the FILT strategy provides only 8% improvement
whereas the INST strategy demonstrates a huge
gain of 34% for expected maximum toxicity and
FILT provides 19.6% and INST illustrates a signif-
icant gain of 69.5 % for toxicity probability when
we use the non-toxic control variable Cnont. Sim-
ilarly, we observe a 0.1% decrease for FILT and
0.7% increase for INST in benchmark NLP tasks;
and we see a 11.5% increase for FILT and 12.7%
increase for INST for bias detection tasks. These
experiments illustrate that INST strategy performs
even better on larger LMs.

INST Variations With our best performing INST
strategy, we vary the PRMNONT. For INST, PRM-
NONT is 0.9. We train INST-11 with PRMNONT
= 0.11 and INST-50 with PRMNONT = 0.5 for
all four model configurations. The percentage of
toxic samples for which the model sees Ctox re-
mains the same (3.73%) for all the three variations.
The percentage of non-toxic samples for which the
model sees Cnont is 3.8% for INST-11, 17.3% for
INST-50 and 31.13% for INST.

The results in Fig. 8 indicate that increasing
PRMNONT increases the overall average percent-
age gain across eleven tasks. This implies that
adding Cnont to more number of samples is helpful
for the model in understanding toxicity. We leave it
for future work to explore the limit of PRMNONT.

Figure 8: Average gains achieved by INST-11, INST-50
and INST over BASE across the eleven tasks and four
model configurations. We see that the average perfor-
mance of the model improves when higher percentage
of samples receive the control variable Cnont.

FILT Variations We also vary the threshold of
filtering toxic data. The threshold is 0.5 for FILT,
0.4 for FILT-0.4 and 0.35 for FILT-0.35. The per-
centage of toxic samples removed is 4.14% for
FILT, 8.07% for FILT-0.4 and somewhere between
8.07 and 14.94% for FILT-0.35. Note that we re-
plenish the pretraining corpus with corresponding
percentages of non-toxic samples. This is done to
maintain fairness of number of samples across the
models. With this experiment we wanted to see if
iteratively replacing higher percentage of samples
with non-toxic samples helps in reducing toxicity.
We train a 357m parameter model on 96m samples
for FILT-0.4 and FILT-0.35 data strategies.

Results in Fig. 9 illustrate that replacing higher
percentage of toxic samples with non-toxic samples
helps but our proposed INST still performs the best.
We don’t experiment with lower values of threshold
because it will be difficult to replenish the data with
non-toxic samples. Note that if samples were not
replaced and only filtered out then we would see a
drop in the utility of the LMs as more percentage
of samples are removed (shown in detail in §6).

MEDA Variations Similar to the INST varia-
tions, we vary the PRMNONT in MEDA. For
MEDA, PRMNONT= 0.5. We train MEDA-11
with PRMNONT= 0.11 and MEDA-90 with PRM-
NONT= 0.9 for 357m-96m configuration.

Fig. 10 shows the resulting gain over the BASE.
We observe a different trend here compared to
Fig. 8. Here the best performing strategy is MEDA
and increasing the percentage of non-toxic sam-
ples (MEDA-90) for which the model receives the
control variable Cnont does not improve the aver-
age gain. This is because we have identified the
optimal value of PRMNONT for MEDA and its
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Figure 9: Average gains achieved by FILT, FILT-0.4,
FILT-0.35 and INST over BASE across the eleven tasks
on 357m-96m model configuration. We see that the
average performance of the model improves when we
filter more toxic samples and replace them with non-
toxic samples. We illustrate that INST strategy still
performs better than variations of filter strategy.

variations. We have not yet explored the optimal
value of PRMNONT for INST.

We also experimented with using the raw toxi-
city scores from Perspective API directly without
binning them as in case of MEDA for 357m-96m
configuration. Specifically, in case of MEDA all
the samples within a threshold get the same value,
either 0.1 or 0.5. In this ablation (MEDA-R), the
samples within a threshold would get the raw scores
like 0.01 or 0.67 up to two decimal points. We ob-
serve that MEDA-R does not reduce as much toxic-
ity compared to MEDA (toxicity probability: only
7% reduction by MEDA-R compared to 36% by
MEDA; xpected maximum toxicity: 5% reduction
by MEDA-R as opposed to 22% by MEDA).

5 Related Work

Finetuning-based Methods Pretrained LMs can
be further finetuned using different training al-
gorithms like domain-adaptive training meth-
ods (Gehman et al., 2020; Gururangan et al., 2020;
Solaiman and Dennison, 2021; Wang et al., 2022)
and reinforcement learning (Ouyang et al., 2022;
Perez et al., 2022) on non-toxic data. These meth-
ods can only be employed after LMs are pretrained.
These methods typically incur further costs of fine-
tuning additional LMs (Krause et al., 2021; Liu
et al., 2021), generating large amount of non-toxic
data (Wang et al., 2022), or procuring human feed-
back (Ouyang et al., 2022). Our work on the other
hand is targeted towards reducing toxicity by aug-
menting the pretraining corpus and hence will not
incur additional cost after the LM is trained.

Decoding Time Algorithms They reduce toxic-
ity of the generations at decoding time by altering
the probabilities of certain tokens. Gehman et al.
(2020) show a study on using PPLM (Dathathri
et al., 2020), word-filtering, and vocabulary shift-
ing (Keskar et al., 2019). Schick et al. (2021) use
the internal knowledge of the LM to reduces the
probability of generating toxic text. The GeDi ap-
proach (Krause et al., 2021) guides the generation
at each step by computing classification probabili-
ties for all possible next tokens. Liu et al. (2021)
propose DEXPERTS which controls the generation
with an“expert” LM trained on non-toxic data and
“anti-expert” LM trained on toxic data. These tech-
niques are efficient at reducing toxicity but fail to
consider the underlying semantic meaning of the
generated text at the sequence level. They may
also reduce the utility of the LM at performing
downstream tasks (Wang et al., 2022).

Analysis of Toxicity in Pretraining Data Large
body of work analyzes the pretraining data and ad-
vocates for choosing it carefully (Gehman et al.,
2020; Welbl et al., 2021; Bender et al., 2021).
Gehman et al. (2020) provide an analysis of toxicity
on a subset of pretraining data at a document-level.
Our analysis (§2.1) of the entire pretraining corpus
is at a sample-level and in agreement with Gehman
et al. (2020). An analysis by Sap et al. (2019) re-
ports that filtering data based on PerspectiveAPI
could lead to a decrease in text by African Amer-
ican authors. Our proposed approaches (MEDA
and INST) don’t filter data. Additionally, Xu et al.
(2021) present an analysis on different detoxifica-
tion techniques like DAPT, PPLM, GeDi and filter-
ing (Gururangan et al., 2020; Dathathri et al., 2020;
Krause et al., 2021). They conclude that these tech-
niques hurt equity and decrease the utility of LMs
on language used by marginalized groups. These
studies necessitate tackling toxicity at the pretrain-
ing data stage without filtering.

Ngo et al. (2021) present experiments by filtering
toxic documents based on the loglikelihood of the
text. Our work augments pretraining data with
toxicity information.

6 Comparison with Prior Work

Prior work and this study uses different model con-
figurations in terms of model parameters, pretrain-
ing data, number of samples, and hyperparameters.
We show comparison with closest model configura-
tion with our work. We only compare the relative
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changes because the baselines are different for our
work and Wang et al. (2022); Liu et al. (2021);
Welbl et al. (2021). Also, PerspectiveAPI (Perspec-
tiveAPI, 2022) update their models regularly and
hence scores returned by it may change over time.

Finetuning-based Methods Wang et al. (2022)
develop SGEAT which first generates large amount
of non-toxic data using a pretrained LM (Smith
et al., 2022) and then uses domain adaptive finetun-
ing. They have the same model parameters and
pretraining data as our models. We follow the
same toxicity evaluation setup and similar setup
for benchmark NLP tasks. We compare 357m-
150m INST model (Table 2) with the SGEAT 357m
model in Tables 1 and 3 of Wang et al. (2022). We
see that toxicity probability is relatively reduced
by a massive 60% for INST and 38% for SGEAT;
accuracy for benchmark NLP tasks show a relative
improvement of 0.9% for INST whereas SGEAT
decreases the NLP utility by 1.4%; perplexity is
relatively increased by 0.85% for INST and 9% for
SGEAT. We would like to note that prior work (Gu-
rurangan et al., 2020; Wang et al., 2022; Ouyang
et al., 2022) has not evaluated bias detection tasks
and text generation task (E2E).

Decoding Time Algorithms Due to similar
model configuration with Wang et al. (2022), we
compare DEXPERTS (reported in Table 2) with re-
sults on INST 1.3b-150m configuration (Table 3).
We observe that toxicity probability gets relatively
reduced by 69.5% for DEXPERTS and 63.5% for
INST; but accuracy of benchmark NLP tasks is
significantly decreased by DEXPERTS (15%) and
only 1.3% by INST. Hence, even if decoding time
algorithms provide a higher decrease in toxicity,
they are not usable for general NLP tasks.

Filtering Methods Prior work (Welbl et al.,
2021; Ngo et al., 2021) removes entire documents
with toxicity above a threshold from the training set.
FILT strategy replaces the toxic samples with equiv-
alent number of non-toxic samples. To have a fair
comparison, we train two models: (1) a baseline
357m parameter model (BASE-Doc), and (2) we
filter documents (2.5%) with toxicity score above
0.5 and train a model (FILT-Doc) on the remain-
der 97.5% of the documents. FILT-Doc reduces
expected maximum toxicity by 4.2% and toxicity
probability by 4.6% compared to BASE-Doc. This
demonstrates that FILT-Doc provides lesser rela-
tive gains in toxicity reduction compared to FILT

and INST (FILT gives 7.3% and INST provides
28.1% reduction in expected maximum toxicity;
FILT shows 16% and INST displays 59.7% reduc-
tion in toxicity probability for 357m-150m in Ta-
ble 2). This shows that sample-level FILT is∼ 11%
better than document-level FILT-Doc on toxicity
probability. We observe that FILT-Doc loses utility
on benchmark NLP tasks by 1% and loses bias de-
tection capabilities by 8% compared to BASE-Doc.

Based on the above comparisons, we conclude
that INST strategy developed in this work demon-
strates massive reduction in toxicity while preserv-
ing the utility of the LM on benchmark NLP tasks
as well as bias detection tasks.

7 Conclusion and Future Work

We develop two new strategies to reduce toxic-
ity using data augmentation - MEDA and INST.
Through extensive experiments, we demonstrate
that MEDA and INST reduce toxicity probability
substantially (54% and 61% respectively) while
not compromising on the utility of the LM on five
benchmark NLP tasks and four bias detection tasks.
We also show that adding control variables does
not compromise performance on E2E task.

In this work, we show how toxicity can be re-
duced in LMs by augmenting the pretraining data
with toxicity information. We believe that this idea
can be extended to other dimensions of social bi-
ases and hate speech. Prior work shows that adding
instructions during finetuning can help various NLP
tasks and improve the LMs capabilities to gener-
alize for instructions on unseen tasks (Wei et al.,
2021; Ouyang et al., 2022). We postulate that these
observations can be applied to adding instructions
to the pretraining data which can make INST gen-
eralizable to reduce different types of biases.

The key idea of adding relevant information to
the pretraining data via instructions can be applied
more broadly and opens new directions for future
work. Future work can focus on controlling the
generation by adding general instructions to the
pretraining data. Current work has applied MEDA
and INST on binary view of toxicity i.e something
is toxic or non-toxic. Hence, another interesting
direction is to explore the degrees of toxicity and
incorporate it with MEDA and INST strategies.
Future work can also evaluate the generalizability
and applicability of INST strategy on more text
generation tasks.
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Limitations

The current studies presented in this work rely
on PerspetiveAPI (PerspectiveAPI, 2022). Per-
spectiveAPI scoring has been shown to be biased
against marginalized communities (Gehman et al.,
2020; Welbl et al., 2021; Xu et al., 2021). This can
impact the strategies developed in this work. But
we would like to note that MEDA and INST tech-
niques can be used with any other classifier which
provides toxicity scores. Another limitation of this
work is that it requires a reliable classifier which
provides effective score of toxicity. If the classi-
fier provides with inaccurate toxicity scores then it
would impact the performance of MEDA and INST.
To apply the strategies discussed in this work, we
have to label the whole pretraining dataset. This
is true even for FILT strategy. Although not a lim-
itation, this is an artifact of working on curating
pretraining dataset. We would also like to point out
that the control variables introduced in this work
can be used for both generating non-toxic content
as well as toxic content. If we append sample with
Ctox control variable instead of Cnont then the LM
would generate toxic data. We would like to assert
that the intended use of this technique is to generate
text that is not toxic.
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A Analysis of PerspectiveAPI scores

Doc. Id #chars Doc. Score 2k chars 5k chars
1 3198 0.0816 0.1052 0.0816
2 7053 0.0778 0.0996 0.0827
3 4337 0.0806 0.0731 0.0806
4 3575 0.1293 0.1275 0.1293
5 2168 0.0763 0.0767 0.0763
6 9820 0.1395 0.1801 0.2051
7 9917 0.0851 0.2052 0.2428
8 3971 0.2400 0.2612 0.2400
9 9644 0.2586 0.3880 0.2843
10 6964 0.2208 0.3644 0.3546

Table 1: PerspectiveAPI scores of documents using
three different ways. #chars denotes the number of char-
acters in a document. Doc. Score is the PerspectiveAPI
toxicity score when the entire document is passed. 2k
chars displays the average PerspectiveAPI toxicity score
when the document is split into chunks of 2k chars and
5k chars displays the average PerspectiveAPI toxicity
score when the document is split into chunks of 5k chars.
Doc. Id denotes the id of the document.

PerspectiveAPI accepts maximum text size per
request of 20 KB. This is approximately 20k char-
acters. We select 10 documents with less than
10k characters for the purpose of our analysis.
This analysis aims to study the difference between
PerspectiveAPI toxicity scores when we pass the
whole document vs chunking the document and
then averaging the scores for each chunk. We ob-
tain PerspectiveAPI toxicity score in three ways:
(1) we pass the whole document and get the Per-
spectiveAPI toxicity score (denoted as “Doc. Score”
in Table 1), (2) we split the document into chunks
of 2000 characters and then take the weighted av-
erage of PerspectiveAPI toxicty scores for all the
chunks (denoted as “2k chars” in Table 1), and (3)
we split the document into chunks of 5000 charac-
ters and then take the weighted average of Perspec-
tiveAPI toxicity scores for all the chunks (denoted
as “5k chars” in Table 1).

Table 1 shows the result of this analysis. We ob-
serve that all the three types of scores are different.
More importantly the ranking between the docu-
ments changes if we consider each of the three
approaches. For example if we rank the docu-
ment ids from lowest score to highest toxicity score
then the ranking according to the approaches are:
(1) Doc. Score is 5, 2, 3, 1, 7, 4, 6, 10, 8, 9 (2) 2k
chars is 3, 5, 2, 1, 4, 6, 7, 8, 10, 9 and (3) 5k chars
is 5, 3, 1, 2, 4, 6, 8, 7, 9, 10. This study shows that
document longer than 20k characters cannot be
split into multiple chunks to obtain an average Per-
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Model 96m-samples 150m-samples
EMT TP NLP BD E2E EMT TP NLP BD E2E

BASE 0.44 0.36 47.5 50.6 27.6 0.43 0.35 48.2 50.0 30.8
FILT 0.40 0.29 48.0 51.2 27.4 0.40 0.30 48.5 52.2 30.0

↓8.1% ↓18.5% ↑1.1% ↑1.2% ↓0.8% ↓7.3% ↓16.0% ↑0.6% ↑4.4% ↓2.8%
MEDA 0.41 0.31 48.1 50.1 28.5 0.41 0.31 48.2 49.5 30.7

↓5.9% ↓13.2% ↑1.4% ↓1.0% ↑3.2% ↓4.8% ↓11.0% ↑0.0% ↓1.0% ↓0.7%
INST 0.42 0.33 47.9 50.2 28.9 0.42 0.33 48.7 51.1 29.7

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9% ↓1.9% ↓5.4% ↑0.9% ↑2.3% ↓3.7%

Experiment using control variable Cnont

MEDA 0.33 0.18 - - 28.3 0.33 0.17 - - 30.7
↓24.0% ↓49.8% ↑2.6% ↓23.9% ↓51.2% ↓0.5%

INST 0.31 0.15 - - 29.8 0.31 0.14 - - 29.7
↓29.0% ↓59.3% ↑7.8% ↓28.1% ↓59.7% ↓3.5%

Table 2: Results for 357m parameter models on all the metrics. EMT is Expected Maximum Toxicity; TP is Toxicity
Probability; NLP indicates the average of accuracy on five benchmark NLP tasks; BD displays the average AUC on
four bias detection tasks; and E2E shows the Rouge-L scores of the LMs on the E2E task. For benchmark NLP
tasks, bias detection tasks and E2E task we show the relative percentage improvement over BASE with a ↑% and
decrement with a ↓% . For the expected maximum toxicity and toxicity probability, we show the improvement with
↓% because lower is better for these metrics. We may observe that two strategies obtain the exact same score but
there is a difference in their relative percentages. This is because these scores are computed up to 4 decimal digits
but we only report scores up to 2 decimals here.

spectiveAPI score.
More importantly, even for documents which are

less than 20k characters, it is not guaranteed that
the entire sequence will appear together in a sample
during the data preprocessing phase. Hence, first
obtaining PerspectiveAPI score and then splitting
the documents into samples of sequence length
2000 tokens would yield inaccurate toxicity scores
for the samples. Hence, our approach is focused on
sample-level toxicity scoring for providing the LM
with precise toxicity information. This impacts our
MEDA and INST strategies which rely on guiding
the LM at sample-level about toxicity information.

B Details of Main Results

Table 2 and 3 show the results for the eleven tasks
with and with the control variable Cnont for 357m
and 1.3b parameter models respectively. EMT is
Expected Maximum Toxicity; TP is Toxicity Prob-
ability; NLP indicates the average of accuracy on
five benchmark NLP tasks; BD displays the aver-
age AUC score on four bias detection tasks; and
E2E shows the Rouge-L scores of the LMs on the
E2E task. For benchmark NLP tasks, bias detection
tasks and E2E task we show the relative percentage
improvement over BASE with a ↑% and decrement
with a ↓% . For the expected maximum toxicity and
toxicity probability, we show the improvement with
↓% because lower is better for these metrics. In Ta-
bles 2 and 3, we may observe that two strategies

obtain the exact same score but there is a difference
in their relative percentages. This is because these
scores are computed up to 4 decimal digits but we
only report scores up to 2 decimals here.

We calculate the relative percentage difference
compared to BASE for all the twelve metrics across
the eleven tasks - expected maximum toxicity, toxi-
city probability, accuracy of five NLP tasks, AUC
scores of four bias detection tasks, and Rouge-L
for E2E task. We then compute an average across
all the metrics (we also include the experiments
with control variable Cnont). These aggregated re-
sults are shown in Fig. 4. Fig. 4 shows the average
percentage gains achieved by each strategy across
the eleven tasks.

C Hyper-parameter Details

All the LMs trained in this work are GPT-
style (Brown et al., 2020) Transformer architec-
tures (Vaswani et al., 2017) trained with Megatron
toolkit (Shoeybi et al., 2019). We use BPE tok-
enization with a vocabulary of size 50256. All the
models are trained on sequence length of 2048 to-
kens. Note that our samples are of size 2000 tokens.
We leave 48 tokens for adding either raw scores for
MEDA or instructions for INST. Note that the base-
line is also trained on same samples of 2000 tokens.
We pad the extra spaces with a PAD_TOKEN.
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Model 96m-samples 150m-samples
EMT TP NLP BD E2E EMT TP NLP BD E2E

BASE 0.44 0.37 52.6 53.0 30.7 0.44 0.37 54.4 53.8 31.1
FILT 0.40 0.30 52.9 55.9 29.9 0.41 0.31 54.5 53.2 31.9

↓8.5% ↓18.8% ↑0.6% ↑5.5% ↓2.5% ↓7.4% ↓16.5% ↑0.2% ↓1.1% ↑2.6%
MEDA 0.42 0.33 53.0 57.2 31.8 0.42 0.34 53.9 53.5 33.0

↓4.7% ↓10.7% ↑0.8% ↑7.9% ↑3.7% ↓4.2% ↓9.1% ↓0.9% ↓0.6% ↑6.1%
INST 0.43 0.34 53.3 53.9 30.6 0.42 0.34 53.7 54.9 31.7

↓3.6% ↓9.7% ↑1.3% ↑1.7% ↓0.2% ↓3.7% ↓9.2% ↓1.3% ↑2.0% ↑2.1%

Experiment using control variable Cnont

MEDA 0.32 0.16 - - 31.9 0.32 0.16 - - 33.6
↓27.5% ↓58.1% ↑4.2% ↓26.8% ↓57.4% ↑8.2%

INST 0.31 0.15 - - 31.3 0.31 0.14 - - 32.6
↓30.2% ↓62.7% ↑2.1% ↓30.0% ↓63.5% ↑4.9%

Table 3: Results for 1.3b parameter models. EMT is Expected Maximum Toxicity; TP is Toxicity Probability;
NLP indicates the average of accuracy on five benchmark NLP tasks; BD displays the average AUC on four bias
detection tasks; and E2E shows the Rouge-L scores of the LMs on the E2E task. For benchmark NLP tasks, bias
detection tasks and E2E task we show the relative percentage improvement over BASE with a ↑% and decrement
with a ↓% . For the expected maximum toxicity and toxicity probability, we show the improvement with ↓% because
lower is better for these metrics. We may observe that two strategies obtain the exact same score but there is a
difference in their relative percentages. This is because these scores are computed up to 4 decimal digits but we
only report scores up to 2 decimals here.

357m parameter models We train them with 24
layers, with a hidden size of 1024 and 16 attention
heads. We use max− position− embeddings

of 2048; 162761 warmup samples; a learning rate
of 3.0e−4 with minimum learning rate of 3.0e−5.
We use cosine learning decay style. Additionally,
we use clip-grad = 1.0, weight-decay = 0.1, adam-
beta1 = 0.9, and adam-beta2 = 0.95. Each of these
models are trained on 64 A100 GPUs with 40GB
memory. The models with 96m samples are trained
for 54 GPU hours and models with 150m samples
are trained for 84 GPU hours.

1.3b parameter models We train them with 24
layers, with a hidden size of 2048 and 32 attention
heads. We use max-position-embeddings = 2048
with 244141 warmup samples; a learning rate of
2.0e−4 with a minumum learning rate of 2.0e−5

and cosine decay style. We use clip-grad = 1.0,
weight-decay = 0.1, adam-beta1 = 0.9, and adam-
beta2 = 0.95. Each of these models are trained on
64 A100 GPUs with 40GB memory. The models
with 96m samples are trained for 113 GPU hours
and models with 150m samples are trained for 176
GPU hours.

Bounds for the new variables We describe the
bounds for LOWTHRESH, HIGHTHRESH, PRM-
TOX and PRMNONT variables introduced in this
work.

0 < LOWTHRESH < 1

0 < HIGHTHRESH < 1

0 ≤ PRMTOX ≤ 1

0 ≤ PRMNONT ≤ 1

Note that PRMTOX = 0 means that no samples
above the HIGHTHRESH are augmented with Ctox;
and PRMTOX = 1 means that all the samples above
the HIGHTHRESH are augmented with Ctox. Simi-
larly, PRMNONT = 0 implies that no samples below
LOWTHRESH are modified; and PRMNONT = 1
means that all the samples below LOWTHRESH are
augmented with Cnont.

Number of Shots for Tasks Table 4 shows the
number of shots used as context for each task fol-
lowing the setups in Brown et al. (2020); Smith
et al. (2022); Prabhumoye et al. (2021b).

Task # of Shots
LAMBADA (Paperno et al., 2016) 15
ANLI (Nie et al., 2020) 50
Winogrande (Sakaguchi et al., 2020) 50
PiQA (Bisk et al., 2020) 50
Hellaswag (Zellers et al., 2019a) 20
Bias Detection (Prabhumoye et al., 2021b) 32

Table 4: Number of shots used as context for each task.

2649



Model 150m-samples
EMT TP NLP BD

BASE 0.43 0.35 64.9 54.7
FILT 0.39 0.28 64.8 61.0

↓8.0% ↓19.6% ↓0.1% ↑11.5%
INST 0.41 0.30 65.3 61.7

↓4.5% ↓13.4% ↑0.7% ↑12.7%

Experiment using control variable Cnont

INST 0.28 0.11 - -
↓34.0% ↓69.5%

Table 5: Results for 8.3b parameter models trained with
150 million samples.

Model 96m-samples
EMT TP NLP BD E2E

BASE 0.44 0.36 47.5 50.6 27.6
FILT 0.40 0.29 48.0 51.2 27.4

↓8.1% ↓18.5% ↑1.1% ↑1.2% ↓0.8%
FILT-0.4 0.38 0.25 47.4 50.0 28.8

↓13.1% ↓30.8% ↓0.3% ↓1.1% ↑4.3%
FILT-0.35 0.37 0.23 48.0 50.4 28.4

↓15.1% ↓36.8% ↑1.1% ↓0.4% ↑2.9%
INST 0.42 0.33 47.9 50.2 28.9

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9%

Experiment using control variable Cnont

INST 0.31 0.15 - - 29.8
↓29.0% ↓59.3% ↑7.8%

Table 6: Results for 357m-96m configuration on all
the metrics for variations of FILT such as FILT-0.4 and
FILT-0.35 in comparison with INST.

D Ablation Experiments

Scaling the Model Size Table 5 shows results
for 8.3 billion parameter models which use BASE,
FILT and INST strategies on 357m-150m model
configuration.

FILT Variations Table 6 shows the results for
BASE, FILT, FILT-0.4, FILT-0.35 and INST for all
the 357m-96m model configuration on all eleven
tasks. These results are aggregated and presented
in Fig. 9.

MEDA Variations Table 7 shows the results for
BASE, MEDA-11, MEDA, MEDA-90 and INST
for 357m-96m model configuration on all eleven
tasks. These results are aggregated and presented
in Fig. 10.

INST Variations Table 8 shows the results for
BASE, INST-11, INST-50 and INST for all the
four model configuration on all eleven tasks. These
results are aggregated and presented in Fig. 8.

Model 96m-samples
EMT TP NLP BD E2E

BASE 0.44 0.36 47.5 50.6 27.6
MEDA-11 0.42 0.33 47.1 52.6 28.4

↓4.6% ↓8.8% ↓0.8% ↑4.1% ↑3.0%
MEDA 0.41 0.31 48.1 50.1 28.5

↓5.9% ↓13.2% ↑1.4% ↓1.0% ↑3.2%
MEDA-90 0.42 0.33 47.0 47.6 28.6

↓2.9% ↓8.2% ↓1.1% ↓6% ↑3.8%
INST 0.42 0.33 47.9 50.2 28.9

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9%

Experiment using control variable Cnont

MEDA-11 0.35 0.20 - - 28.4
↓20.7% ↓43.5% ↑3.0%

MEDA 0.33 0.18 - - 28.3
↓24.0% ↓49.8% ↑2.6%

MEDA-90 0.31 0.14 - - 28.4
↓28.6% ↓59.9% ↑3.0%

INST 0.31 0.15 - - 29.8
↓29.0% ↓59.3% ↑7.8%

Table 7: Results for 357m-96m configuration on all
the metrics for MEDA and INST in comparison with
MEDA-11 and MEDA-90.

Figure 10: Average the gains achieved by MEDA-11,
MEDA, MEDA-90, and INST over BASE across the
eleven tasks for 357m-96m model configuration.
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Model 96m-samples 150m-samples
EMT TP NLP BD E2E EMT TP NLP BD E2E

Experiments with 357m parameter models

BASE 0.44 0.36 47.5 50.6 27.6 0.43 0.35 48.2 50.0 30.8
INST-11 0.41 0.32 46.6 50.9 28.1 0.42 0.34 48.7 50.7 28.7

↓5.9% ↓11.8% ↓1.8% ↑0.5% ↑1.9% ↓2.0% ↓3.9% ↑1.0% ↑1.4% ↓6.8%
INST-50 0.41 0.32 47.9 49.9 28.2 0.42 0.33 48.3 49.1 29.5

↓5.6% ↓11.9% ↑0.9% ↓1.5% ↑2.3% ↓3.0% ↓6.8% ↑0.2% ↓1.8% ↓4.3%
INST 0.42 0.33 47.9 50.2 28.9 0.42 0.33 48.7 51.1 29.7

↓2.8% ↓6.8% ↑0.8% ↓0.9% ↑4.9% ↓1.9% ↓5.4% ↑0.9% ↑2.3% ↓3.7%

Experiment using control variable Cnont for 357m parameter models

INST-11 0.36 0.23 - - 28.3 0.38 0.25 - - 29.0
↓18.5% ↓36.8% ↑2.7% ↓13.0% ↓27.4% ↓6.0%

INST-50 0.32 0.16 - - 28.0 0.34 0.18 - - 29.5
↓26.7% ↓54.6% ↑1.5% ↓22.3% ↓48.2% ↓4.4%

INST 0.31 0.15 - - 29.8 0.31 0.14 - - 29.7
↓29.0% ↓59.3% ↑7.8% ↓28.1% ↓59.7% ↓3.5%

Experiments with 1.3b parameter model

BASE 0.44 0.37 52.6 53.0 30.7 0.44 0.37 54.4 53.8 31.1
INST-11 0.41 0.32 52.9 54.1 33.5 0.42 0.33 54.3 54.0 31.0

↓6.3% ↓13.3% ↑0.5% ↑2.2% ↑9.1% ↓4.9% ↓11.0% ↓0.1% ↑0.3% ↓0.3%
INST-50 0.41 0.32 53.4 54.5 30.8 0.42 0.34 53.9 54.6 32.6

↓6.3% ↓14.3% ↑1.4% ↑2.9% ↑0.4% ↓3.7% ↓8.4% ↓0.8% ↑1.4% ↑4.9%
INST 0.43 0.34 53.3 53.9 30.6 0.42 0.34 53.7 54.9 31.7

↓3.6% ↓9.7% ↑1.3% ↑1.7% ↓0.2% ↓3.7% ↓9.2% ↓1.3% ↑2.0% ↑2.1%

Experiment using control variable Cnont for 1.3b parameter models

INST-11 0.32 0.15 - - 34.2 0.33 0.18 - - 32.1
↓28.3% ↓59.6% ↑11.7% ↓24.3% ↓51.4% ↑3.3%

INST-50 0.31 0.14 - - 30.9 0.32 0.15 - - 32.9
↓29.6% ↓61.4% ↑0.7% ↓27.3% ↓58.4% ↑6.0%

INST 0.31 0.15 - - 31.3 0.31 0.14 - - 32.6
↓30.2% ↓62.7% ↑2.1% ↓30.0% ↓63.5% ↑4.9%

Table 8: Results for 357m and 1.3b parameter models on all the metrics for INST and its variations INST-11 and
INST-50. For benchmark NLP tasks, bias detection tasks and E2E task we show the relative percentage improvement
over BASE with a ↑% and decrement with a ↓% . For the expected maximum toxicity and toxicity probability, we
show the improvement with ↓% because lower is better for these metrics.
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