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Introduction

The Seventh edition of the International Conference on Dependency Linguistics (Depling 2023) follows
a biannual series that started in 2011, in Barcelona, and continued in Prague (2013), Uppsala (2015),
Pisa (2017), Paris (2019) and Sofia (2021/22). The series responds to the growing need for linguistic
meetings dedicated to approaches in syntax, semantics, and the lexicon that are centered around de-
pendency structures as a central linguistic notion. For the first time, Depling is part of GURT2023, an
annual linguistics conference held at Georgetown University, which this year co-locates four related but
independent events:

• The Seventh International Conference on Dependency Linguistics (Depling 2023)

• The 21st International Workshop on Treebanks and Linguistic Theories (TLT 2023)

• The Sixth Workshop on Universal Dependencies (UDW 2023)

• The First International Workshop on Construction Grammars and NLP (CxGs+NLP 2023)

The Georgetown University Round Table on Linguistics (GURT) is a peer-reviewed annual linguistics
conference held continuously since 1949 at Georgetown University in Washington DC, with topics and
co-located events varying from year to year.
In 2023, under an overarching theme of ‘Computational and Corpus Linguistics’, GURT/SyntaxFest
continues the tradition of SyntaxFest 2019 and SyntaxFest 2021/22 in bringing together multiple events
that share a common interest in using corpora and treebanks for empirically validating syntactic theories,
studying syntax from quantitative and theoretical points of view, and for training machine learning mod-
els for natural language processing. Much of this research is increasingly multilingual and cross-lingual
and requires continued systematic analysis from various theoretical, applied, and practical perspectives.
New this year, the CxGs+NLP workshop brings a usage-based perspective on how form and meaning
interact in language.
For these reasons and encouraged by the success of the previous editions of SyntaxFest, we —the chairs
of the four events— decided to facilitate another co-located event at GURT 2023 in Washington DC.
As in past co-located events involving several of the workshops, we organized a single reviewing process,
with identical paper formats for all four events. Authors could indicate (multiple) venue preferences, but
the ultimate assignment of papers to events for accepted papers was made by the program chairs.
33 long papers were submitted, 11 to Depling, 16 to TLT, 10 to UDW and 10 to CxGs+NLP. The program
chairs accepted 27 (82%) and assigned 7 to Depling, 6 to TLT, 5 to UDW and 9 to CxGs+NLP.
16 short papers were submitted, 6 of which to Depling, 6 to TLT, 10 to UDW and 2 to CxGs+NLP. The
program chairs accepted 9 (56%) and assigned 2 to Depling, 2 to TLT, 3 to UDW, and 2 to CxGs+NLP.
Our sincere thanks go to everyone who is making this event possible: everybody who submitted their
papers; Georgetown University Linguistics Department students and staff—including Lauren Levine,
Jessica Lin, Ke Lin, Mei-Ling Klein, and Conor Sinclair—for their organizational assistance; and of
course, the reviewers for their time and their valuable comments and suggestions. Special thanks are
due to Georgetown University, and specifically to the Georgetown College of Arts & Sciences and the
Faculty of Languages and Linguistics for supporting the conference with generous funding. Finally, we
would also like to thank ACL SIGPARSE for its endorsement and the ACL Anthology for publishing the
proceedings.
Owen Rambow, François Lareau (Depling2023 Chairs)
Daniel Dakota, Kilian Evang, Sandra Kübler, Lori Levin (TLT2023 Chairs)
Loïc Grobol, Francis Tyers (UDW2023 chairs)
Claire Bonial Harish Tayyar Madabushi (CxG+NLP2023 Chairs)
Nathan Schneider, Amir Zeldes (GURT2023 Organizers)
March 2023
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Abstract

How does the preference for dependency length
minimization (DLM) develop in early child
language? This study takes up this question
with the dative alternation in English as the
test case. We built a large-scale dataset of da-
tive constructions using transcripts of natural-
istic child-parent interactions. Across differ-
ent developmental stages of children, there ap-
pears to be a strong tendency for DLM. The
tendency emerges between the age range of
12-18 months, slightly decreases until 30-36
months, then becomes more pronounced af-
terwards and approaches parents’ production
preferences after 48 months. We further show
the extent of DLM depends on how a given da-
tive construction is realized: the tendency for
shorter dependencies is much more pronounced
in double object structures, whereas the prepo-
sitional object structures are associated with
longer dependencies.

1 Introduction

The principle of Dependency Length Minimiza-
tion (DLM) (Ferrer-i Cancho, 2004), originally de-
veloped based on the framework of Dependency
Grammar (Tesnière, 1959), predicts that words or
phrases that are syntactically dependent on each
other prefer to appear closer in order to minimize
the overall dependency distance, thereby reducing
its structural complexity.

While research on DLM thus far has been fruit-
ful (Hawkins, 1990; Gildea and Temperley, 2010;
Gulordava and Merlo, 2015; Liu, 2020, 2022), one
crucial question remains: how does the preference
for shorter dependencies develop in early child
language? Given that the preference for DLM
has been well-documented in the literature, we
would expect to see similar preferences in child
production as well. That said, it is unclear (1) at
what developmental stage the preference for DLM
emerges; (2) whether and how the extent of DLM
varies along the developmental trajectory; (3) when

children’s production of DLM reaches a compara-
ble level to that in parent/adult production.

This study addresses the aforementioned ques-
tions using the dative construction in English as the
test case. Here (1a) and (1b) are different syntactic
variants of the same dative construction: (1a) is a
double object construction, (1b) is a prepositional
object construction. Within the verb phrase (VP)
of (1a), the head verb has two noun phrase (NP)
dependents, one as the direct object (the toy) and
one as the indirect object (me); the semantic roles
for the two are theme and recipient, respectively.
By comparison, in (1b), the direct object dependent
of the head verb, the toy, is the same as that in (1a),
whereas the recipient is realized as a prepositional
phrase (PP) dependent instead.
(1) a. give [NP the girl] [NP the lunch box]

b. give [NP the lunch box] [PP to the girl]

Leveraging transcripts of naturalistic child-
parent interactions and computational techniques,
we analyze the developmental patterns of DLM in
child production of the dative alternation. We fore-
see two possible directions regarding the extent of
DLM across children’s developmental stages. On
one hand, at earlier stages, utterances produced by
children are comparatively shorter (Brown, 1973);
based on evidence from written data that there is
a positive correlation between overall dependency
length and sentence length (Ferrer-i Cancho et al.,
2020; Futrell et al., 2020), this means that during
these stages the preference for DLM is potentially
weaker, and would gradually increase as utterance
lengths increase when children reach later devel-
opmental stages. On the other hand, if the pri-
mary motivation for DLM is to lessen cognitive
load (Gibson et al., 2019; Hawkins, 2007, 2015),
then at earlier developmental stages, when children
have shorter working memory (Hudson Kam, 2019;
Austin et al., 2022), they may have a stronger pref-
erence for shorter dependencies than they do in
later stages of development.
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2 Related work

The dative alternation in English (Levin, 1993), has
been studied extensively, specially in first language
adult production (Bresnan et al., 2007; Bresnan,
2007; Szmrecsanyi et al., 2017; Engel et al., 2022).
In addition, a number of studies have looked into
the production patterns of the dative constructions
in child (and child-directed) spoken language in
English, though from different angles. One line
of work probes the generalization (Goldberg et al.,
2005; Conwell and Demuth, 2007; Shimpi et al.,
2007) and learnability (Gropen et al., 1989; Yang
and Montrul, 2017) of the dative structures in chil-
dren’s production. Others attended to the develop-
mental order of the different variants of the dative
construction (Campbell and Tomasello, 2001; Sny-
der and Stromswold, 1997). With syntactic orders
in particular, De Marneffe et al. (2012) investigated
what structural constraints, such as animacy and
pronominality, affect children’s syntactic choices.

3 Experiments

3.1 Data and preprocessing
Although prior work has studied the dative alterna-
tion in child production, their constructed datasets
are not publicly available. In addition, they tended
to focus on narrower age ranges of only a handful of
children. Therefore we turned to building a dataset
of our own. For child (and parent) production data,
we resorted to the CHILDES database (MacWhin-
ney, 2000), which contains transcripts of natural-
istic child-parent conversational speech. We fo-
cused on (monolingual) children with typical de-
velopment. Child and parent utterances were first
taken from the English-NA and the English-UK
sections of CHILDES via the childes-db in-
terface (Sanchez et al., 2019). We then automati-
cally assigned part-of-speech (POS) tags as well
as syntactic dependencies to each utterance in or-
der to derive morphosyntactic information; the for-
mer was performed using Stanza (Qi et al., 2020),
a publicly open library for natural language pro-
cessing; and the latter was achieved using Dia-
Parser (Attardi et al., 2021), which has recently
been shown to yield good dependency parsing per-
formance for child spoken language in English (Liu
and Prud’hommeaux, 2022).

We relied on the classes of dative (N = 336) and
benefactive (N = 177) verbs from Levin (1993)
as references when extracting utterances that po-

tentially contain a dative structure from the parsed
data described above. We searched for VPs where
the head verb occurs in either the double object
structure (V-NP-NP) or the prepositional object
structure (V-NP-PP). (See Appendix A for details
on our data extraction process).

Here we used children’s age as an index of their
developmental stage; therefore we removed utter-
ances where the age information of the correspond-
ing child is not provided. This resulted in an initial
dataset of 43,156 utterances. In what follows, we
describe our annotation procedures for deciding
whether an utterance contains a dative construction.
Given the size of the dataset, manually annotat-
ing each instance is plausible yet not practical. To
remedy that, we also illustrate a simple automatic
approach for the identification of dative structures.

3.2 Annotation criteria and process
We determined whether an utterance includes a da-
tive structure or not based on the following two
criteria: (1) the verb takes a direct object which
is the theme, as well as an indirect object or a
prepositional object that serves as either the re-
cipient or the beneficiary; (2) the verb can be
understood as expressing some action of transfer
from the subject/agent of the sentence to the re-
cipient/beneficiary, even if the action is metaphori-
cal (e.g., (2b)). These restrictions naturally ruled
out cases where the head verb takes a verbal com-
plement (which was erroneously parsed as the
object by the dependency parser; e.g., 2c); they
also excluded cases where the head verb has a PP
dependent occurring after the theme, but the se-
mantic role of the PP is purpose (e.g., (2d)) or
goal/direction (e.g., (2e)). That said, the annotation
criteria were to some extent relaxed for utterances
produced by children. For example, while the recip-
ient of the verb is preferred to be animate (Bresnan
et al., 2007), if based on preceding context of the
utterance, the recipient could be interpreted as be-
ing personified (e.g., 2f), we deemed those cases
as appropriate dative constructions as well.

(2) a. she brings lots of lego to me. 1

b. carry your dream for you.
c. *say thank you to your friend
d. *I took him for a walk.
e. *Daddy sent me to school.
f. I made some lunch for my teddy.

1Examples provided here are adapted from utterances ini-
tially extracted from CHILDES; * marks the types of instances
that we did not consider in this study.
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Our annotation process for identifying the dative
constructions is as follows. From the initial dataset
derived from Section 3.1, we constructed three
small practice sets for annotators to familiarize
themselves with the annotation criteria described
above; each practice set contained 50 utterances.
Two annotators with advanced training in linguis-
tics independently annotated one practice set first.
They were instructed to annotate an instance as yes,
if they considered the instance as having a dative
structure, no if they considered the opposite, and
unsure if they were uncertain about what decision
to make. They then cross-checked their own anno-
tations with each other and settled on the unsure
cases along with other questions encountered dur-
ing the annotation process. The annotation proce-
dures for the other two practice sets were the same.
Afterwards, the two annotators along with the se-
nior author of this paper each annotated a subset (of
different sizes) of the initial dataset, using the same
three annotation labels. We ensured that there was
overlap between each of these subsets such that a
total of 1,000 utterances were independently anno-
tated by two annotators (regardless of which two).
Agreement score for these 1,000 utterances, which
was measured as the percentage of times when the
two annotators agree, was 95.20%. Discrepancies
in annotations, including the unsure cases, were
eventually resolved through discussions. Given the
high agreement score, each annotator continued to
independently examine more instances.

In total, we annotated 10,709 utterances taken
from the initial dataset (Section 3.1), which we
refer to hereafter as the gold-standard. Among
these cases, 8,718 have an annotation label of yes
whereas the remainder have the label no.

3.3 Automatic identification of the dative
constructions

Using the gold-standard utterances, we explored au-
tomatic approaches in order to identify which of the
remaining utterances in the initial dataset contain
dative structures. Specifically, we treated this task
as a binary classification task. We randomly split
all the gold-standard data into training/test sets at a
4:1 ratio, 3 times. Our classifier was trained with
BERT (Devlin et al., 2019) using the default param-
eters from MaChamp v0.3beta (van der Goot et al.,
2021), an open-access multi-task learning toolkit.
The input to the classifier was the utterance con-
catenated with the speaker of the utterance (child or

parent) and the head verb. The performance of the
classifier was measured as its prediction accuracy
averaged across the three test sets.

Label Accuracy (%)
yes 98.43
no 84.05

Table 1: Classification accuracy for each label for the
gold-standard dative utterances.

Role Structure N
Child double object 5,645

prepositional object 2,401
Parent double object 21,865

prepositional object 8,793

Table 2: Descriptive statistics for the dative construc-
tions in child and parent production.

The classifier was able to perform reasonably
well (average accuracy = 94.36%; see also Table 1).
Hence we trained the same classifier using all the
gold-standard data, then applied it to the remaining
instances in the initial dataset. We excluded cases
in the original dataset with an annotation label of
no, whether manually or automatically identified,
eventually yielding a dataset of 38,704 utterances
(Table 2; see also Figure 3 in Appendix C). Com-
pared to previous work on constituent orderings
of the dative alternation in child language develop-
ment (De Marneffe et al., 2012), our dataset is of
much larger scale (including utterances produced
by over 900 children from 54 corpora).

3.4 Measures for DLM
Since we used children’s age as a proxy of develop-
mental stage, to avoid data sparsity, we set every 6
months as one age bin, then separated all the dative
constructions produced by children (and by parents
accordingly) into their corresponding age bins. As
illustration of our computations for the extent of
DLM, consider the examples below. Say the origi-
nal utterance appears in the double object structure
(e.g., (3a)). To check whether DLM is observable
in the utterance, we first measured its overall de-
pendency length (DL_observed). Then we auto-
matically constructed the syntactic alternative of
the utterance (e.g., (3b)). 2 and measured its overall
dependency length as well (DL_alternative); if
the value of DL_observed is smaller than that of

2See Appendix B for discussion about using sentences with
the heavy NP shift (Wasow, 1997) as syntactic alternatives for
the prepositional object structure.
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Figure 1: DLM in the dative constructions in child and parent production.

Figure 2: DLM in the double object structure (V-NP-NP) and the prepositional object structure (V-NP-PP) in child
and parent production.

DL_alternative, we consider the original utter-
ance to show DLM. For all the utterances produced
by children within a certain age bin, we measured
the proportion of instances where a preference for
shorter dependencies exists, the proportion of cases
where the opposite pattern holds, and the propor-
tion of sentences where the overall dependency
lengths of the syntacic alternatives are the same.
Significance testing was conducted using bootstrap-
ping (Efron and Tibshirani, 1994).

(3)
a. give [NP the girl] [NP the lunch box]

2

5

b. give [NP the lunch box] [PP to the girl]

3

6

4 Results

Here we used the production patterns in parent data
as benchmarks for analysis of the developmental
trajectory of DLM in child data; thus the subplots
in each figure often contrast child production pat-
terns with those of parent production. As illustrated
in Figure 1, there is consistently a pronounced pref-
erence for shorter dependencies across different
stages of children’s developmental trajectory. This
preference seems to emerge in child production
between the age range of 12 to 18 months; during
this range the proportion of utterances that demon-
strate a tendency for DLM is 100%, where all the
utterances (N=14) have the double object struc-
tures (Figure 3). The overall tendency for DLM is
also observable when looking at a few of the most
frequent head verbs in the dative dataset, such as
give and get (see Appendix D).

When comparing the extent of DLM in child
production across different age ranges, it appears
that the preference for shorter dependencies gradu-

4



ally gets weaker from 12 to 36 months, then grows
noticeably stronger afterwards. In fact, the pref-
erence for DLM is the weakest when children are
between 30-36 months old; that said, during that
age range, the proportion of cases that demonstrate
DLM is still 3.09 times that of the utterances that
show the opposite observations. When children
reach 42-48 months old, their production of DLM
becomes more stable and is approaching the pro-
duction levels in parent data.

When taking a closer look at DLM in the two
structural alternatives of the dative constructions,
respectively, we see different patterns (Figure 2).
In the double object structures, again, there appears
to be a strong tendency for shorter dependencies
across the developmental trajectory of children.
The preference for DLM in child production ap-
proximates that in parent production around the
age range of 24-30 months.

By contrast, we observe the opposite tendency
for the prepositional object structure, that is, across
children’s age ranges, there seems to be a signif-
icant preference against DLM instead. In other
words, the observed V-NP-PP utterances produced
by children actually have longer dependency length
compared to their syntactic alternatives. We con-
jectured several explanations for this discrepancy
and verified them with our data. First, the differ-
ence in the overall dependency length between the
V-NP-PP instances and their double object alter-
natives is mostly small. Indeed, in about 63.10%
of the prepositional object structures in child pro-
duction (N=2,401), the overall dependency length
difference between them and their structural al-
ternations is equal to one. Second, the direct ob-
ject/theme of the V-NP-PP utterances is relatively
short (De Marneffe et al., 2012); in approximately
67.43% of all these instances, the theme consists
of just one word. Third, in 77.14% of cases where
the theme is composed of one word, the word is
usually pronominal (Bresnan et al., 2007).

The patterns based on the prepositional object
structures in turn shed light on the overall devel-
opmental trajectory of the preference for DLM
in Figure 1: between the age range of 12 to 36
months, the proportion of the V-NP-PP structures
in children’s production gradually increases (from
20.44% to 39.61%), leading to overall weaker ex-
tents of shorter dependencies during this age range;
the proportion of the V-NP-PP instances then grad-
ually decreases after 36 months, thereby making

the age range of 30-36 months a “turning point" in
the development of DLM in child production.

5 Discussion

This study analyzed the developmental trajectory
of the preference for DLM in child production us-
ing the dative alternation in English as the test case.
Our findings illustrated that the tendency for shorter
dependencies emerges in child production during
the age range of 12-18 months. The extent of the
tendency decreases until 30-36 months, then grad-
ually increases and approximates the production
level in parent data around 42-48 months.

In this work, we used age as the index of chil-
dren’s developmental stages. For future experi-
ments, we plan to investigate how other alterna-
tives, such as the mean length of utterance, affect
observations of children’s developmental trajecto-
ries of DLM. We would also like to analyze the
development of children’s syntactic choices via
enriching the dataset with annotations for other
constraints such as verb semantics. These factors
could potentially provide additional explanations
for the varying extents of DLM in children’s early
development. Lastly, given that our dative dataset
is much larger than prior ones, we hope that it will
be useful to research topics related to acquisition
of syntactic alternations more broadly.
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A Notes on data preprocessing

After parsing data from the English sections of
the CHILDES database (Section 3.1), we searched
for VPs where the head verb takes either a double
object structure (V-NP-NP) or a prepositional ob-
ject structure (V-NP-PP). The part-of-speech (POS)
tag of the head verb was VERB, which only in-
cludes lexical verbs (as opposed to auxiliaries). For
double object structures, we selected VP instances
in which the head verb has one direct object and
one indirect object, which were identified based
on their dependency relations with the head verb
(obj and iobj, respectively). For the prepositional
object structure, we selected VP instances where
the head verb takes one direct object as well as
one PP oblique immediately following the direct
object; the dependency relation between the PP and
the head verb was oblique, and the nominal head
of the PP had one of four POS tags: NOUN (lexi-
cal noun), NUM (numeral), PRON (pronoun), and
PROPN (proper noun). For verbs that only belong
to the dative class, the adposition, or the function
head of the PP was restricted to to, and for the
benefactive verbs, the adposition was for; for verbs

that are included in both classes, the adposition was
either to or for.

Levin class verbs were taken from
http://www-personal.umich.edu/
~jlawler/levin.verbs; there are 23 verbs
overlapped in both classes. Note that in the final
dative dataset (Section 3.3), there were 67 dative
verbs, 52 benefactive verbs, and 15 verbs that
belong to both classes.

B Notes on syntactic alternatives for the
prepositional object structure

Based on literature related to the heavy NP shift in
English (Stallings et al., 1998; Arnold et al., 2000),
one might posit that the alternative of an observed
prepositional object structure can be constructed
another way. For example, if the original sentence
is give [NP the bread that she bought at the store
yesterday] [PP to her], one grammatical alterna-
tive, besides the direct object structure, can also be
give [PP to her] [NP the bread that she bought at
the store yesterday]. Nevertheless, structures with
(heavy) NP shift as such are rare in child produc-
tion. We searched for VP instances where the head
verb takes one direct object and one prepositional
oblique phrase dependent (PP); in addition, the PP
has to precede the direct object. This only yielded
128 utterances produced by 56 children. Therefore
we left these cases out from our analysis.

C Descriptive statistics for our dative
dataset

Visualizations of the frequency distribution of the
double object structure and the prepositional object
structure in child and parent speech are presented
in Figure 3.

D DLM for specific head verbs

We present the preferences for DLM in the dative
constructions headed by give (Figure 4) and get
(Figure 5) in child and parent production. Of all the
head verbs for the dative alternation in our dataset,
these two verbs are attested most frequently.
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Figure 3: Frequency distribution of the double object structure (V-NP-NP) and the prepositional object structure
(V-NP-PP) in child and parent production.

Figure 4: DLM in the dative constructions headed by give in child and parent production (Child: N=3,338; Parent:
N=12,246).

Figure 5: DLM in the dative constructions headed by get in child and parent production (Child: N=1,158; Parent:
N=3,414).
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Abstract

Text classification is a popular and well-studied
problem in Natural Language Processing. Most
previous work on text classification has focused
on deep neural networks such as LSTMs and
CNNs. However, text classification studies us-
ing syntactic and semantic information are very
limited in the literature. In this study, we pro-
pose a model using Graph Attention Network
(GAT) that incorporates semantic and syntactic
information as input for the text classification
task. The semantic representations of UCCA
and AMR are used as semantic information
and the dependency tree is used as syntactic in-
formation. Extensive experimental results and
in-depth analysis show that UCCA-GAT model,
which is a semantic-aware model outperforms
the AMR-GAT and DEP-GAT, which are se-
mantic and syntax-aware models respectively.
We also provide a comprehensive analysis of
the proposed model to understand the limita-
tions of the representations for the problem.

1 Introduction

The text classification problem has been widely
studied in the literature (Yao et al., 2019;
Malekzadeh et al., 2021) in the field of Natural
Language Processing (NLP).

The text classification problem has been recently
used as a downstream task in SentEval (Conneau
and Kiela, 2018), a toolkit for evaluating sentence
representations. In the literature, studies on Seman-
tic Textual Similarity (STS) (Reimers et al., 2019;
Gao et al., 2021) have used the text classification to
evaluate the sentence embeddings learned by their
proposed models using the datasets provided by the
SentEval toolkit (Conneau and Kiela, 2018).

For text classification, traditional deep learning
models such as Long Short-Term Memory (LSTM)
Networks (Hochreiter and Schmidhuber, 1997)
and Convolutional Neural Networks (CNN) (Kim,
2014) have been adopted. These deep learning
models capture the local semantic and syntactic

information by using the input as a sequence of
words but they ignore the semantic and syntactic
information of the input (Peng et al., 2018). Re-
cently, Graph Neural Networks (GNNs) (Battaglia
et al., 2018; Cai et al., 2018) have been used for
text classification (Yao et al., 2019; Malekzadeh
et al., 2021), sequence labeling (Marcheggiani and
Titov, 2017; Zhang et al., 2018a), and question
answering (Song et al., 2018; De Cao et al., 2019).

In dependency parsing the aim is to find a tree
that represents dependencies between words in a
sentence. On the contrary, semantic parsing maps
a text to its formal representation that provides an
abstraction of its meaning. There has been a recent
increase in the studies that propose various neural
network architectures such as tree-LSTM (Takase
et al., 2016), Heterogeneous Graph Transformer (Li
et al., 2020), and Transformer (Xie et al., 2021) that
integrate semantic and syntactic information. GNN
models that integrate external representations into
deep learning models referred to as semantic and
syntax-aware models, are the well-studied models
in the literature for various NLP problems such
as Neural Machine Translation (NMT) (Bastings
et al., 2017) and text classification (Elbasani and
Kim, 2022). These models have gained attention
because they are capable of capturing information
over long distances, especially between discontinu-
ous constituents (Wang and Li, 2022).

In this study, we analyzed the impact of semantic
and syntactic representations within Graph Atten-
tion Networks (GAT), particularly for the text clas-
sification problem. We used the dataset provided
by SentEval toolkit (Conneau and Kiela, 2018). We
constructed the GAT model by integrating Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013) and the Universal Conceptual Cognitive An-
notation (UCCA) (Abend and Rappoport, 2013)
as graph-based semantic representations and the
dependency tree as syntactic representation. Since
the size of the datasets in SentEval toolkit (Con-
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neau and Kiela, 2018) is different, we evaluated
the results of our proposed model with the studies
that use the SentEval toolkit (Conneau and Kiela,
2018). 1

The rest of the paper is organized as follows. Sec-
tion 2 reviews similar semantic and syntax-aware
models. Section 3 describes our methodology for
addressing the text classification problem using
semantic and syntactic parser models. Section 4
presents our experimental results along with a de-
tailed analysis of the proposed models. Finally,
Section 5 concludes the paper with insights on the
impact of the semantic and syntactic information
on the classification problem.

2 Related Work

In addition to the traditional neural networks that
simply rely on neural language models, semantic
and syntax-aware models have been recently used
effectively in NLP problems such as text classifica-
tion (Ahmed et al., 2018; Huang et al., 2020; Liang
et al., 2022; Elbasani and Kim, 2022), natural lan-
guage generation (Guo et al., 2021), question an-
swering (Schlichtkrull et al., 2020), semantic role
labeling (SRL) (Schlichtkrull et al., 2020; Moham-
madshahi and Henderson, 2021), reading compre-
hension (Sachan and Xing, 2016; Galitsky, 2020),
text summarization (Takase et al., 2016; Dohare
and Karnick, 2017), language modelling (Zhang
et al., 2020), and machine translation (Qin and
Liang, 2020; Slobodkin et al., 2021; Nguyen et al.,
2021; Li and Flanigan, 2022).

Dependency trees usually provide sufficient syn-
tactic information in various NLP tasks (Huang
et al., 2020; Liang et al., 2022; Guo et al., 2021)
and improve the performance of the models con-
siderably. As for the external resource of semantic
information, the most popular semantic represen-
tation is the AMR (Hardy and Vlachos, 2018; El-
basani and Kim, 2022; Kouris et al., 2022).

In particular, GNNs (Bastings et al., 2017;
Marcheggiani and Titov, 2019; Schlichtkrull et al.,
2020; Guo et al., 2021; Elbasani and Kim, 2022)
have been used as models into which syntac-
tic and semantic information are easily inte-
grated. In addition to GNNs, Transformers have
also been used to integrate such external re-
sources such as syntax-aware word representation
(SAWR) (Xie et al., 2021), syntax-aware local at-

1The code is publicly available at https://github.
com/adalin16/depling-GAT

tention (SLA) (Li et al., 2020), syntax-graph guided
self-attention (SGSA) (Gong et al., 2022), Scene-
Aware Self-Attention (SASA), and Scene-Aware
Cross-Attention (SACrA) head (Slobodkin et al.,
2021). Last but not least, the Heterogeneous Graph
Transformer (Hu et al., 2020), a customized ver-
sion of the Transformer (Vaswani et al., 2017), has
been recently introduced as a model with semantic
AMR information (Yao et al., 2020).

3 Methodology

In this section, we describe the proposed semantic-
and syntax-aware GAT models that integrate se-
mantic and syntactic information as external re-
sources into the model. First, we explain the pre-
processing step that is performed to convert the text
into the required form to be processed by the GAT
model.

3.1 Preprocessing

GAT models use adjacency and feature matrices
that are extracted from graphs as input. There are
several approaches to transform a text into a graph,
such as digitizing text (Hamid et al., 2020), sta-
tistical methods (PMI, TF-IDF) (Yao et al., 2019),
dependency trees (Zhang et al., 2018b) or semantic
graphs (AMR) (Elbasani and Kim, 2022).

In this study, we use dependency trees and se-
mantic graphs. Here we explain the preprocessing
step along with the parser model that is used to con-
vert datasets into dependency trees and semantic
graphs, as well as the details of extracting adja-
cency and feature matrices from graphs and trees.

Converting datasets into graphs/trees The
parser models that are employed to extract the
graphs and trees from the datasets are described
below:

• UCCA Semantic Parser We use the self-
attentive semantic parser model by Bölücü
and Can (2021) to extract the UCCA-based
semantic representations. The model is based
on a graph-based approach with an encoder-
decoder architecture, where the encoder is
a Transformer (Vaswani et al., 2017) with 2
MLP classifiers and the decoder corresponds
to the CYK algorithm (Chappelier and Raj-
man, 1998) that generates a constituency tree
with the maximum score using the per-span
scores obtained from the transformer encoder.

10

https://github.com/adalin16/depling-GAT
https://github.com/adalin16/depling-GAT


Figure 1: UCCA, AMR semantic graphs, and the dependency trees along with the feature and adjacency matrices
that are used as input to the GAT model are illustrated for the example phrase “a gentle compassionate drama about
grief and healing" from the MR dataset (Pang and Lee, 2005). The gray color in the matrix represents the value of 1
and the white color represents the value of 0. Each row in the feature matrix corresponds to the pre-trained word
embedding of a node in the graph/tree.

• AMR Semantic Parser As an AMR seman-
tic parser, we use the T5 parser (Roberts
et al., 2020). The model is based on a lan-
guage model that is fine-tuned on English.
The model is integrated into the spaCy li-
brary (Honnibal and Montani, 2017) and is
called AMRLib2.

• Dependency Parser We use the Deep Bi-
affine dependency parser model Dozat and
Manning (2016) to extract the dependency
trees. The model is based on a graph-based
approach where BiLSTM with biaffine clas-

2https://spacy.io/universe/project/
amrlib

sifiers is used as an encoder and MST is
used as a decoder that generates dependency
trees from predicted arcs and labels in the en-
coder. We use the model3 integrated within
the Stanza library (Qi et al., 2020).

Extracting adjacency and feature matrices from
graphs/trees Since the inputs of the proposed
model are adjacency and feature matrices, we ex-
tracted the matrices from graphs and trees. The
semantic representations of UCCA and AMR are
based on DAG, and the dependency trees are rep-
resented by trees. We followed the same proce-

3https://stanfordnlp.github.io/stanza/
depparse.html
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Figure 2: Overview of the GAT model along with its input in the form of a feature and adjacency matrix. The
matrices correspond to semantic and syntactic information in the form of a UCCA or an AMR graph, or a dependency
tree.

Dataset Train Dev Test
Movie Review (MR) (Pang and Lee, 2005) 10,662 train in k-fold test in k-fold
Customer Review (CR) (Hu and Liu, 2004) 3,770 train in k-fold test in k-fold
Subjectivity / Objectivity (SUBJ) (Pang and Lee, 2004) 10,000 train in k-fold test in k-fold
Multi-Perspective Question and Answering (MPQA) (Wiebe et al., 2005) 10,606 train in k-fold test in k-fold
Stanford Sentiment Analysis 2 (SST-2) (Socher et al., 2013) 67,349 872 1,821
Text Retrieval Conference (TREC) (Voorhees and Tice, 2000) 5,452 train in k-fold 500
The Microsoft Research Paraphrase Corpus (MRPC) (Dolan et al., 2004) 4,726 train in k-fold 1,725

Table 1: The details of the datasets given in the downstream tasks in SentEval toolkit.

dure for all of the representations considering all
as graphs.

For a given graph G = (V,E), V is the set of
nodes and E is the set of labeled edges (UCCA -
edges, AMR - relations between nodes, dependency
tree - dependency relations). We extracted:

• the feature matrix X (n × k, where n is the
number of nodes (UCCA - terminal and non-
terminal nodes, AMR - words, dependency
tree - words except the ROOT node) in the
graph and k is the embedding dimension),

• the adjacency matrix A (n×n, where n is the
number of nodes in the graph), which is not
trainable.

For the feature matrix, we used pre-trained
word embeddings (BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and XLNet (Yang
et al., 2019)) for nodes (UCCA - terminal nodes,

AMR - words, dependency tree - words) and a
randomly generated embedding with the same em-
bedding dimension of the pre-trained word embed-
dings for non-terminal nodes in UCCA.

UCCA, AMR, and dependency tree representa-
tions of the phrase “a gentle compassionate drama
about grief and healing" from the Movie Review
(MR) dataset (Pang and Lee, 2005) with extracted
adjacency and feature matrices are given in Fig-
ure 1.

3.2 Graph Attention Network

In order to incorporate external semantic infor-
mation, we adopted Graph Attention Networks
(GAT) (Veličković et al., 2017) that are based on
self-attention layers. We used GATs for the text
classification problem since they provide a straight-
forward method to utilise semantic information in
the form of a semantic graph (UCCA/AMR) or a
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dependency tree. The overview of the model is
given in Figure 2.

GNN models have different types of updating
mechanisms for nodes. The basic version of updat-
ing, as applied in this study, updates each node i in
the l-th layer, H l+1 as follows:

H l+1 = σ(AH lW l) (1)

where σ(·) refers to ReLU non-linear activation
function, A is the adjacency matrix, W l is the at-
tention weights in the l-th layer. H l is the feature
matrix of the l-th layer (H0 = X , where X is the
feature matrix extracted from a semantic graph or a
dependency tree) where l is a hyperparameter that
needs to be finetuned for the graph.

We fed the output of the node in the final layer
into the output layer that applies the softmax func-
tion to generate the output class of a given text
either as a binary or a multi-class classification:

Z = softmax(Ho) (2)

where Ho is the feature matrix of the final GAT
layer.

4 Experiments and Results

4.1 Datasets
We evaluated the model on 7 downstream tasks
given in the SentEval toolkit (Conneau and Kiela,
2018). The details of the datasets are given in
Table 1.

4.2 Experimental Setting
We used PyTorch 3.7 to implement the model. We
used cross-entropy loss for both binary and multi-
class classification. The Adam (Kingma and Ba,
2014) was used as the optimizer in all models with
ϵ = 1e − 8, and the default max grad norm for
gradient clipping.

We used the monolingual (BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2019)) and multilingual pre-trained lan-
guage models (M-BERT (Devlin et al., 2019),
XLM-R (Conneau and Lample, 2019), XLM-R-
large (Conneau et al., 2020)) in order to build the
feature matrices as described in Section 3.1. All
hyperparameters along with their values are given
in Appendix A.

We evaluated the models applied to binary and
multi-class classification problems using the SentE-
val toolkit (Conneau and Kiela, 2018). We used ac-
curacy metric in all downstream tasks and reported

Precision, Recall, and F1 for a detailed analysis of
the class-wise results for TREC.

4.3 Results

The results obtained from the semantic and syntax-
aware GAT models (UCCA-GAT, AMR-GAT, and
Dep-GAT) on 7 datasets in SentEval toolkit (Con-
neau and Kiela, 2018) along with the state-of-the-
art results are given in Table 2. The results show
that the performance of the GAT models is slightly
behind the state-of-the-art results (Cer et al., 2018;
Gao et al., 2021; Reimers et al., 2019). The main
reason is that these models learn sentence embed-
dings and then apply the learned sentence embed-
dings to the downstream tasks (Reimers et al., 2019;
Gao et al., 2021). Here, the main aim is to inves-
tigate the external usage of semantic and syntac-
tic information without performing separate learn-
ing for sentence embeddings but solely relying on
the existing semantic and syntactic information.
Therefore, we only compare the performance of
the semantic- and syntax-aware GAT models with
each other for 7 downstream tasks. The results
show that the UCCA-GAT model performs better
than the AMR-GAT and the Dep-GAT models. The
analysis of the adjacency matrices extracted from
the AMR semantic parser and the UCCA seman-
tic parser shows that the relations such as “about",
“like", “of", etc. are defined as concepts and used as
edge labels instead of nodes in the AMR representa-
tion. Since our models use the nodes without edge
labels, the model misses the concepts that might
give a clue about the target class. This also leads
to sparse adjacency matrices for AMR graphs com-
pared to other adjacency matrices extracted from
UCCA graphs and dependency trees.

We analyse the class-wise results obtained from
the three models using the TREC dataset (Voorhees
and Tice, 2000) (multi-class classification prob-
lem). The results are given in Table 3. It can be
clearly seen that UCCA-GAT is particularly good
at predicting the classes “num" and “loc", since
the number of relations in the UCCA graphs is
higher in these classes than in other classes. The
performance of AMR-GAT is worse than the other
models (UCCA-GAT, Dep-GAT) because we lose
the relations represented as labels in the AMR se-
mantic representation and we used only the nodes
in the semantic and syntactic representations in the
preprocessing step during the extraction of the adja-
cency matrices for the AMR-GAT model. The Dep-
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Our proposed models
MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

UCCA-GAT 82.04 83.37 90.38 87.29 89.35 81.92 73.50 83.98
AMR-GAT 81.55 81.11 88.98 83.94 85.83 79.65 72.87 83.42
Dep-GAT 80.66 81.62 89.10 85.76 88.03 81.06 75.25 83.07

State-of-the-art
BERT-CLS embedding ♡ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
BiLSTM ♢ 81.1 86.3 92.4 90.2 - - - -
Universal Sentence Encoder ♣ 80.09 85.19 93.98 86.70 86.38 93.2 70.14 85.10
SimCSE-BERTbase ♠ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SBERT-NLI-large ♡ 84.88 90.07 94.52 90.33 90.66 87.4 75.94 87.69

Table 2: Accuracy results of the downstream tasks using the proposed models and the other state-of-the-art models.
The highest scores are given in bold. (♣ results from (Cer et al., 2018); ♠ results from (Gao et al., 2021); ♡ results
from (Reimers et al., 2019); ♢ results from (Conneau et al., 2017))

UCCA-GAT AMR-GAT Dep-GAT
Class Precision Recall F1 Precision Recall F1 Precision Recall F1
num 0.97 0.89 0.93 0.90 0.84 0.87 0.91 0.82 0.87
loc 0.86 0.79 0.83 0.86 0.78 0.82 0.82 0.80 0.81
hum 0.80 0.80 0.80 0.74 0.80 0.77 0.77 0.85 0.81
desc 0.85 0.83 0.84 0.82 0.83 0.82 0.87 0.87 0.87
enty 0.70 0.85 0.77 0.77 0.83 0.80 0.81 0.87 0.84
abbr 0.86 0.67 0.75 0.64 0.78 0.70 0.67 0.67 0.67
avg. 0.84 0.81 0.82 0.79 0.81 0.80 0.81 0.81 0.81

Table 3: Class-wise results on the TREC dataset (Voorhees and Tice, 2000)

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 78.33 79.15 87.80 82.78 85.01 80.40 69.68
RoBERTa 80.16 79.89 89.11 87.29 89.35 79.11 72.52
XLNet 74.62 75.99 83.15 77.46 80.56 76.82 67.71

Multilingual Embeddings
M-BERT 79.27 81.94 88.15 83.11 83.14 81.00 72.35
XLM-R 82.04 82.23 89.48 84.76 85.01 81.92 72.93
XLM-R-large 78.78 83.37 90.38 85.82 87.59 81.42 73.50

Table 4: Accuracy results obtained with monolingual and multilingual embeddings in UCCA-GAT model. The best
values are in bold.

GAT model achieves better overall results since the
dependency trees can capture long-distance infor-
mation. The only class that Dep-GAT cannot cap-
ture is “abbr", compared to the success achieved
with other classes in the TREC dataset (Voorhees
and Tice, 2000).

Figure 3 illustrates the confusion matrices of the
semantic and syntax-aware GAT models for the
TREC dataset. The results show that the UCCA-
GAT model predicts the class “num" better than

other models. In addition, the Dep-GAT model is
better at predicting the class “desc". For all models,
there is a general confusion between the classes
“desc" and “ent".

We also analyse the models deeply in terms of
the impact of the layers and embeddings.

• Embeddings We present an analysis of
the pre-trained language models used
in the extraction of feature matrix X
from UCCA, AMR, and dependency
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(a) UCCA-GAT (b) AMR-GAT (c) Dep-GAT

Figure 3: Confusion matrices of the semantic and syntax-aware GAT models on TREC dataset (Voorhees and Tice,
2000)

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 77.68 81.11 83.98 83.11 82.48 75.61 70.43
RoBERTa 81.55 79.44 85.44 83.44 85.83 79.65 70.78
XLNet 72.64 72.12 82.56 78.15 79.68 71.95 68.87

Multilingual Embeddings
M-BERT 78.77 79.71 87.45 82.17 83.91 76.42 71.19
XLM-R 79.49 79.28 88.98 83.56 84.46 78.20 72.87
XLM-R-large 80.10 80.08 87.95 83.94 85.01 78.62 72.35

Table 5: Accuracy results obtained with monolingual and multilingual embeddings in AMR-GAT model. The best
values are in bold.

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 77.30 79.50 86.43 82.99 83.64 78.80 70.78
RoBERTa 78.95 80.11 89.10 83.14 88.03 79.62 71.59
XLNet 72.45 74.40 82.47 78.04 81.38 75.27 69.51

Multilingual Embeddings
M-BERT 79.39 79.55 84.69 82.64 84.51 79.89 73.51
XLM-R 80.19 81.62 87.59 83.84 85.78 81.06 74.09
XLM-R-large 80.66 81.14 88.11 85.76 86.49 79.49 75.25

Table 6: Accuracy results obtained with monolingual and multilingual embeddings in Dep-GAT model. The best
values are in bold.

tree. We used BERT (Devlin et al., 2019)
(bert-base-cased), RoBERTa (Liu
et al., 2019) (roberta-base),
and XLNet (Yang et al., 2019)
(xlnet-base-cased) monolingual
embeddings with base variants consisting
of 768 hidden dimensions, whereas we
used multilingual version of BERT (M-

BERT) (Devlin et al., 2019), and RoBERTa
(XLM-R) (Conneau and Lample, 2019) and
its large version (XLM-R-large) (Conneau
and Lample, 2019).

The results obtained using monolingual and
multilingual pre-trained embeddings are given
in Table 4, 5 and 6 for UCCA-GAT, AMR-
GAT, and Dep-GAT respectively. The re-
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(a) MR Dataset (b) CR Dataset

(c) SUBJ Dataset (d) MPQA Dataset

(e) SST-2 Dataset (f) TREC Dataset

(g) MRPC Dataset

Figure 4: Accuracy scores based on the number of layers in the proposed models.

sults show that multilingual embeddings are
more effective for both proposed semantic and
syntax-aware models. In monolingual embed-
dings, the results obtained from the models
RoBERTa pre-trained word embeddings are
higher than that of the others (BERT, XLNet).

• Impact of the layers We also analyse the im-
pact of the number of layers in the proposed
models (UCCA-GAT, AMR-GAT, Dep-GAT)
on the performance of the models. We per-
form the experiments with embeddings with
which we obtained the best results. We vary
the number of the layers from 1 to 7 and re-
port the results in Figure 4 for all datasets
with UCCA-GAT, AMR-GAT, and Dep-GAT

models. The results show that the syntax-
aware model (Dep-GAT) learns in deeper lay-
ers, and semantic-aware models (UCCA-GAT
and AMR-GAT) tend to learn in shallow lay-
ers or in the middle layers. The previous
studies already show that syntactic features
are encoded in the shallow layers and seman-
tic features are encoded in the deeper layers
of the pre-trained language models (Conneau
et al., 2018; Jawahar et al., 2019), and here we
also obtained better results with deeper layers
in the syntax-aware model and with shallow
layers in the semantic-aware models (UCCA-
GAT and AMR-GAT).
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5 Conclusion

Semantic and syntax-aware models have recently
been proposed for various NLP problems, that espe-
cially require long-distance information, especially
between discontinuous constituents, in addition to
the local information captured by sequential mod-
els. In this paper, we propose a graph neural net-
work model that incorporates semantic and syntac-
tic information for the text classification task. To
the best of our knowledge, this is the first study that
compares semantic and syntactic information used
in a graph neural network, specifically for the task
of text classification. We present a detailed analy-
sis of the results, showing that the UCCA semantic
information improves the performance of the clas-
sification model compared to syntactic information
(i.e. dependency tree). However, we were not able
to obtain similar results with the model using the
AMR semantic representation. This shows that the
preprocessing step to convert the graph into adja-
cency and feature matrices is a very important step
in GNN models.

As future work, we plan to improve the prepro-
cessing step to obtain more informative adjacency
and feature matrices.
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A Hyperparameter Values

Table 7, 8, and 9 list the hyperparameter values
used in the UCCA-GAT, AMR-GAT and Dep-GAT
models, respectively, for downstream tasks.
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Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.2 0.1 0.2 0.2 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout rate 0.1 0.1 0.1 0.2 0.1 0.1 0.1
number of hidden 800 800 800 800 400 800 800
number of head 2 1 2 2 4 1 1

Table 7: Hyperparameters used for the UCCA-GAT for downstream tasks in experiments

Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.1 0.1 0.2 0.1 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout rate 0.2 0.1 0.2 0.1 0.2 0.1 0.1
number of hidden 800 400 800 800 800 400 800
number of head 2 1 2 2 4 1 1

Table 8: Hyperparameters used for the AMR-GAT for downstream tasks in experiments

Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.1 0.1 0.2 0.1 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
dropout rate 0.1 0.1 0.2 0.1 0.2 0.1 0.1
number of hidden 800 400 800 800 800 400 800
number of head 2 1 2 2 4 1 1

Table 9: Hyperparameters used for the Dep-GAT for downstream tasks in experiments
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Abstract

In this paper, we provide an explicit interface
to formal semantics for Dependency Grammar,
based on Glue Semantics. Glue Semantics has
mostly been developed in the context of Lex-
ical Functional Grammar, which shares two
crucial assumptions with Dependency Gram-
mar: lexical integrity and allowance of non-
binary-branching syntactic structure. We show
how Glue can be adapted to the Dependency
Grammar setting and provide sample semantic
analyses of quantifier scope, control infinitives
and relative clauses.

1 Introduction

Although the name Dependency Grammar suggests
a theory covering everything that could reason-
ably be understood as grammar (often, these days,
phonology, morphology, syntax and semantics),
it is fair to say that the focus has to a large ex-
tent been on syntax. Nevertheless, there have been
some attempts to extend the idea to phonology (e.g.
Dresher and van der Hulst 1998) and semantics
(e.g. the tectogrammatical layer of Functional Gen-
erative Description: Sgall et al. 1986). In Section 2,
we argue that such frameworks lack some impor-
tant desiderata of semantic theories and suggest
that it is reasonable for Dependency Grammar to re-
main agnostic about semantics and instead attempt
to build an interface between dependency syntax
and established semantic theories. The main contri-
bution of the paper is to provide such an interface
to one influential semantic theory, compositional
(also known as formal or logical) semantics in the
tradition going back to Frege. We take inspiration
from the implementation described in Gotham and
Haug (2018), but the focus here is on how Glue
Semantics can provide a general interface to seman-
tics for Dependency Grammar, irrespective of this
concrete implementation that is tied to a particu-
lar meaning language (partial CDRT, Haug 2014)
and a particular version of Dependency Grammar

(Universal Dependencies, de Marneffe et al. 2021),
which deviates from most theoretical versions of
Dependency Grammar in various respects.

In Section 3 we briefly introduce compositional
semantics and the constraints it puts on the inter-
face to syntax. Then we introduce Glue Semantics
as a way of satisfying those constraints in Section 4.
Finally, in Section 5 we show how Glue Semantics
can be applied to dependency syntax. Section 6
concludes.

2 Previous work

The fundamental concept of Dependency Gram-
mar is of course dependencies. But these are in
themselves nothing but asymmetric, binary rela-
tions as we find them in many domains. For exam-
ple, a phrase structure tree can be defined in terms
of two such relations, dominance and precedence.
The characteristic feature of dependency syntax is
therefore not just that it is based on dependencies,
but that those dependencies are taken to hold be-
tween words.1 This can be seen as a strong version
of the Lexical Integrity Hypothesis (Bresnan and
Mchombo, 1995): not only are words atomic with
respect to syntax, but they are the only atoms of
syntax.

One intuitive way to extend dependency syntax
to semantics, therefore, is to find an analogue to
words on which to build semantic graphs. Indeed,
Koller et al. (2019) provide a useful classification
of graph-based semantic representations by the de-
gree to which the nodes of the graph are anchored
in the words of the sentence: some representations,
such as CCG word-word dependencies (Hocken-
maier and Steedman, 2007), just use the words
as nodes; others, such as Prague Tectogrammati-
cal Graphs (Zeman and Hajic, 2020) allow for a
looser correspondence where nodes can also rep-

1Obviously we can also define notions derived from word-
word dependencies, such as the transitive closure of the domi-
nance relation, yielding something similar to constituents.
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resent elided material (e.g. pro-drop, ellipsis), or
copied material (e.g. words that are interpreted
twice in a coordination structure); and yet others,
most prominently Abstract Meaning Representa-
tions (Banarescu et al., 2013) are fully unanchored:
there is no explicit correspondence between words
and nodes.

While such frameworks have shown themselves
useful for various computational tasks, including
natural language inference, we argue that they cur-
rently lack two features that a semantic theory
should have: compositionality and an explicit proof
theory.

By compositionality we mean that, given a repre-
sentation of the syntax (in our case, a dependency
graph) and of the lexical items in the sentence, it
should be possible to enumerate the possible se-
mantic representations of the sentence. This is a
weak notion of compositionality: we do not require
that there are interpretations of parts of the depen-
dency graph, nor that syntax and lexicon determine
a unique meaning, only that there is some form
of systematicity in the mapping between complete
syntactic and semantic representations. Notice that
this is a theoretical desideratum rather than a prac-
tical one: given a large dataset of hand-annotated
semantic representations, it might make more sense
to train a semantic parser directly rather than going
via syntax, and this is in fact a common approach
in natural language inference these days. Never-
theless it is clear that if we want to construct a
semantic theory for Dependency Grammar, the se-
mantic representations must be constrained by the
syntactic representations we assume if the theory
is to have any empirical bite. And yet not all graph-
based semantic theories have this: Abstract Mean-
ing Representation, for example, is hand-annotated
without regard to any particular syntactic repre-
sentation. While this does not make it less useful,
it does make it hard to use as a semantic theory
for Dependency Grammar. The Prague tectogram-
matical layer, on the other hand, is a graph-based
semantic representation that is explicitly linked to
a surface dependency syntax representation, the
analytical layer. Similarly, Meaning-Text Theory
develops an interface between syntax and a graph-
based semantic representation (see Kahane 2003
for an introduction).

By explicit proof theory, we mean that the se-
mantic representations must be able to answer ques-
tions like “if a set of sentences P is true, does it

follow that sentence h is true?”. We take the abil-
ity to answer such questions to be a core property
of human reasoning. Again, this is a theoretical
desideratum: in natural language inference tasks,
we are typically only given a few explicit sentences
p1, p2 from P , whereas an inference to h relies on
implicit propositions p3, . . . , pn, which could be
either just world knowledge or somehow be made
salient/likely by the explicit premises p1, p2. In this
situation, rather than trying to enumerate the possi-
ble background knowledge on which an inference
may draw, it may easier to predict directly whether
p1 and p2 make h likely. But this cannot be the
basis for a semantic theory.

We are not aware of any graph-based semantic
frameworks that provide a sound and complete in-
ference system for computing entailments, though
some come close. Graphical Knowledge Repre-
sentation (Kalouli and Crouch, 2018; Crouch and
Kalouli, 2018) explicitly views "graphs as first-
class semantic objects that should be directly ma-
nipulated in reasoning and other forms of semantic
processing". The semantic graphs of Meaning-Text
theory are more directed towards tasks like para-
phrasing rather than logical deduction, but Kahane
(2005) explores the connection to logic.

Indeed, basing semantic representations on logic
is one straightforward way to provide a proof the-
ory. This is a long tradition reflected in many theo-
ries such as Montague’s intensional logic (Mon-
tague, 1973), Discourse Representation Theory
(Kamp and Reyle, 1993) and Minimal Recursion
Semantics (Copestake et al., 2005). Linking depen-
dency syntax to this line of work therefore provides
the advantage of being able to connect to a large
body of semantic work. But to do this, we must
solve the compositionality problem: how do we sys-
tematically build formulae in some logic-based for-
malism from a dependency graph? To our knowl-
edge, Dependency Tree Semantics (Robaldo, 2006)
was the first attempt to provide such an interface
between dependency syntax and formal semantics.
However, Robaldo only deals with quantifiers and
quantifier scope ambiguity, and it is not obvious
how to generalize his work to other phenomena.
The aim of this paper, then, is to provide a general
solution to the compositionality problem which
would allow dependency syntacticians to connect
their syntactic analyses to existing work in formal
semantics, or indeed to develop their own semantic
analyses in parallel with syntax.
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3 Formal semantics and the
syntax-semantics interface

As we pointed out above, basing semantic theory
on logic provides an immediate proof theory. In-
deed, the very development of formal logic from
Aristotle onwards can be seen as a way to provide
a proof theory for natural language. The real prob-
lem, then, is compositionality: how do we system-
atically constrain the logical formulae that are licit
translations of a given natural language sentence?
One influential way to achieve this is to provide
meanings for lexical items and let the syntactic
structure of the sentence guide how we assemble
them into a meaning for the whole. This is known
as Frege’s principle of compositionality (although
it is not clear that Frege endorsed it in this form):
the meaning of a (syntactically complex) whole is
a function only of the meanings of its (syntactic)
parts together with the manner in which these parts
were combined. This is a much stronger notion of
compositionality than what we saw in Section 2,
but it has guided much previous work in formal
semantics.

One immediate problem is that it is not always
clear what the meanings of the parts should be.
For example, it seems intuitive that the mean-
ing of Every man loves Chris is something like
∀x.man(x) → love(x, c). Here it seems obvious
that the verb loves contributes the predicate love,
the word man contributes the predicate man , and
the name Chris provides the constant c; but that
then leaves the determiner every to contribute the
rest of the meaning, i.e. the quantifier ∀x and the
ocurrences of x that it binds, as well as the implica-
tion →, although these parts are scattered around
in the sentence in a way which makes it unclear
how we can provide a systematic procedure for
combining the meanings.

Yet Montague’s (1973) insight was that the
lambda calculus can provide such a systematic
procedure. Intuitively, the scattered meaning of
every can be represented as ∀x.? →?, where the
two question marks represent predicates containing
x. In the lambda calculus we can represent this as
λP.λQ.∀x.P (x) → Q(x). This means that every
is a function that takes two predicates and says that
for any x, if the first predicate (the noun P that
every combines with) applies, then the second pred-
icate (the verb that every P is an argument of) also
applies.

Montague’s system based on the lambda calcu-

lus achieves compositionality, but it imposes strong
constraints on the syntax-semantics interface that
are problematic from the point of view of Depen-
dency Grammar.

First, the homomorphism problem: composition-
ality in the strict sense requires that syntax and
lexicon jointly determine meaning: meaning dif-
ferences between two sentences must be attributed
either to the parts of the sentences (i.e. the lexicon),
or the manner in which they are combined (i.e., the
syntax). Therefore, if a sentence with no ambigu-
ous words is semantically ambiguous, that differ-
ence must necessarily be reflected in the syntax.
This is the case, for example, with different quan-
tifier scopings. More generally, homomorphism
requires that the syntactic tree is strictly binary
branching, which is typically not the case in depen-
dency structures. For example, the lambda calculus
requires that a verb combine with its subject and
object in a particular order (it must combine with
one before the other), whereas Dependency Gram-
mars typically assume no hierarchical difference
between subject and object, with both being sister
nodes under the verb.

One way to go would be to use the syntactic
function to distinguish the two, for example by
replicating the view of most phrase structure gram-
mars that the object bears a closer relation to the
verb than the subject. This is the approach taken
in UDepLambda (Reddy et al., 2017), where a syn-
tactic function hierarchy is used to binarize the
dependency tree before it is fed to the composition
process. But given that many languages exhibit
subject-object scope ambiguities, it makes more
sense to interpret the flat dependency tree as an
underspecified representation, which entails giving
up on the view that syntax and lexicon determine
meaning.

Second, lexical integrity is another problem. It
is often natural that single lexical items provide
two or more different meanings that do not directly
combine with each other, but interact with other
elements of the sentence in complex ways. For
example, the verb introduces the basic predicate-
argument structure, but in many languages also
temporal and modal meanings, and we cannot nec-
essarily just combine these first: modal meanings,
for example, may need to take scope over the argu-
ments of the verb. If these composition patterns are
to be directly determined by the syntax, we need to
assume abstract syntactic heads for modality, tense
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etc. This is indeed often done in Chomskyan ap-
proaches, but is alien to dependency syntax, which
normally assumes lexical integrity, i.e. that words
are the atoms of the syntactic structure.

In sum, “standard” formal semantics in the tradi-
tion after Montague relies on strictly binary syntax
and syntactic decomposition of lexical items. This
makes it hard to adapt to Dependency Grammar.
But fortunately these problems have been tackled
within the tradition of another lexicalist theory of
syntax that also does not enforce binary syntax,
namely Lexical Functional Grammar (Kaplan and
Bresnan, 1982; Dalrymple et al., 2019), via the the-
ory of the syntax-semantics interface called Glue
Semantics (Glue: Dalrymple et al., 1993; Asudeh,
2022).

4 Basic Glue Semantics

The semantic building blocks in Glue are called
meaning constructors; these are expressions con-
sisting of two parts: a meaning, given in the lambda
calculus over some formal language; and a for-
mula of another logic, so-called linear logic (Girard,
1987), which constrains but does not necessarily
uniquely determine the valid patterns of combina-
tion between meaning constructors. Semantic com-
position is logical deduction, driven by the linear
logic parts of meaning constructors.

Before we get into the technical details of how
this works, let us consider how it helps with the
problems just described. Treating semantic com-
position as logical deduction helps to loosen the
conection between meaning composition and syn-
tax: provided the logic we use has the property of
commutativity, then the order in which we com-
bine meanings is driven wholly by the types of
the meanings themselves, and not by the order the
words they correspond to happen to occur in the
string. Since we therefore no longer require the
syntax itself to impose a strict order of combina-
tion, it also frees us from the obligation to limit our
syntactic trees to binary branching ones. Finally,
it means that semantic ambiguities, such as scope
ambiguities, need not correspond to syntactic am-
biguities: since the order of combination in syntax
and semantics can vary independently, there can
be semantic ambiguities which have no syntactic
correlate. We will present an explicit example of
how this works shortly.

Linear logic is chosen as the logic of semantic
combination because it has the property of resource

sensitivity: premises cannot be reused or discarded
in linear logic, unlike in classical logic. This is
because linear logic lacks the structural rules of
Weakening and Contraction (Restall, 2000). If a
logic contains the rule of Weakening, then premises
can be freely added; this is shown schematically be-
low, where A and B represent individual premises,
and Γ represents a set of premises:

Γ ⊢ B
Γ, A ⊢ B

That is, if we can prove B from the set of premises
in Γ, we can also prove it from Γ and some other
premise A. If a logic contains the rule of Contrac-
tion, extra occurences of a premise can be freely
discarded:

Γ, A,A ⊢ B

Γ, A ⊢ B

That is, if we can prove B from Γ and two instances
of A, we can also prove it from Γ and just one
instance of A.

By removing these rules, a logic becomes re-
source sensitive in the sense that premises are re-
sources that must be kept track of and accounted
for: they can be “used up” in a way that is not
the case in classical logic. This is evident in the
behaviour of implication, for example. If we ap-
ply the rule of modus ponens in classical logic, we
can prove not only the consequent of the condi-
tional, but also retain both of the premises in the
conclusion if we so wish:

A,A → B ⊢ B
⊢ A ∧ (A → B) ∧B

By contrast, in linear logic, modus ponens uses
up both premises in proving the consequent, so
that the consequent alone is left over (⊸ is linear
implication, and ⊗ is multiplicative conjunction,
which for present purposes can be thought of as the
linear logic equivalent of ∧):

A,A ⊸ B ⊢ B
̸⊢ A⊗ (A ⊸ B)⊗B

All of this means that, as Dalrymple et al. (1999,
15) put it, premises in linear logic “are not context-
independent assertions that may be used or not”, as
in classical logic, but rather “occurrences of infor-
mation which are generated and used exactly once”
(emphasis in original). This seems to be a good
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Application : implication elimination

f : A ⊸ B a : A ⊸E
f(a) : B

Abstraction : implication introduction

[x1 : A]1

f : B ⊸I,1
λx.f : A ⊸ B

Figure 1: Correspondences between operations in the
lambda calculus and proof rules in linear logic

fit with how linguistic meaning contributions be-
have, since they too are resource sensitive (Asudeh,
2012, ch. 5). For example, the sentence Naomi
loves James cannot have the meaning love(n,n)
(i.e. ‘Naomi loves herself’), where we ignore the
meaning of James and use the meaning of Naomi
twice.

Returning to Glue Semantics, the linear logic
formulae of the meaning constructors contributed
by the words of a sentence (and sometimes also by
structural properties of the sentence) are premises
which must all be used up in constructing a proof
of the linear logic formula corresponding to the
sentence as a whole. Thanks to the correspondence
between rules of logical deduction and operations
in the lambda calculus known as the Curry-Howard
isomorphism (Curry and Feys, 1958; Howard,
1980), each step in this proof also provides instruc-
tions for what to do with the meaning expression
that forms the other part of a meaning constructor,
thus providing us with the compositional semantics
we are looking for.

The two most important rules of linear logic
which we make use of are those of implication
elimination (i.e. modus ponens) and implication
introduction (i.e. hypothetical reasoning). In the
lambda calculus, these correspond to the opera-
tions of function application and lambda abstrac-
tion, respectively, as shown in Figure 1. In these
proofs, meaning constructors are written with a
colon separating the meaning expression on the
left-hand side and the linear logic formula on the
right-hand side. As mentioned above, the symbol
⊸ represents linear implication. Figure 2 gives
a more linguistic example, combining a transitive
verb with its two arguments. We use the follow-
ing conventions when writing proofs: unannotated

λx.λy.love(x , y) : A ⊸ B ⊸ C n : A

λy.love(n, y) : B ⊸ C j : B

love(n, j) : C

Figure 2: Glue proof for Naomi loves James

proof steps correspond to implication elimination,
and β-reduction is performed silently. For now, we
continue to use arbitrary labels for the atoms in the
linear logic formulae; in Section 5 we will see how
these can be connected (or ‘glued’) to the syntax.

As mentioned, one of the strengths of the logical
deduction approach to semantic composition is that
scope ambiguities need not correspond to syntactic
ambiguities. Instead, they emerge from the fact
that distinct proofs can (sometimes) be obtained
from the same set of premises. Figure 3 shows an
example of this phenomenon for the scopally am-
biguous sentence Someone loves everyone. From
the same three lexical premises (shown in labelled
boxes), we can obtain two distinct proofs, via hy-
pothetical reasoning, where the quantifiers scope
in different orders: on top, we see the proof of
the surface scope reading (‘there is a person who
loves everyone’), where everyone is applied before
someone, so that the latter scopes over the former;
below, we see the inverse scope reading (‘everyone
is loved by someone’), where the quantifiers are
applied in the opposite order. Both possibilities are
afforded by the linear logic, without requiring dif-
ferent premises to begin with, which means that the
same syntactic analysis can serve for both readings.

5 Application to Dependency Grammar

The next question that arises is: how do we connect
the linear logic formulae in meaning constructors
to such a syntactic analysis, specifically in a Depen-
dency Grammar setting? In the previous section,
we simply used atomic formulae like A and B, but
we cannot assume that the lexical entries of e.g. a
verb and its subject know each other’s types abso-
lutely. Instead, the formulae must be made relative,
and based on the syntactic structure.

There are several ways this can be done: here
we adopt so-called “first-order Glue” (Kokkonidis,
2007). As the name says, this is a first-order logic,
where the predicates are type-constructors and the
terms are nodes of the syntactic trees. By conven-
tion, we use type constructors that are mnemonic
for the corresponding Montagovian type on the
lambda calculus side, so that e.g. E takes a tree

26



loves
λx.λy.love(x , y) :
A ⊸ B ⊸ C

[x1 : A]1

λy.love(x1, y) :
B ⊸ C

everyone
λP.∀z.person(z) → P (z) :
(B ⊸ C) ⊸ C

∀z.person(z) → love(x1, z) :
C ⊸I,1
λx.∀z.person(z) → love(x, z) :
A ⊸ C

someone
λP.∃x.person(x) ∧ P (x) :
(A ⊸ C) ⊸ C

∃x.person(x) ∧ (∀z.person(z) → love(z, x)) :
C

loves
λx.λy.love(x , y) :
A ⊸ B ⊸ C

[x1 : A]1

λy.love(a, y) :
B ⊸ C

[x2 : B]2

love(x1,x2) :
C ⊸I,1
λx.love(x,x2) :
A ⊸ C

someone
λP.∃x.person(x) ∧ P (x) :
(A ⊸ C) ⊸ C

∃x.person(x) ∧ love(x,x2) :
C ⊸I,2
λy.∃x.person(x) ∧ love(x, y) :
B ⊸ C

everyone
λP.∀z.person(z) → P (z) :
(B ⊸ C) ⊸ C

∀z.person(z) → (∃x.person(x) ∧ love(x, z)) :
C

Figure 3: Glue proofs for the two readings of Someone loves everyone

node and constructs a linear logic type that cor-
responds to something of type e on the meaning
side. The type of a noun, then, can be given as
E(∗̂) ⊸ T (∗̂), where ∗̂ refers to the node that the
noun occupies.

In order to make this work, it is not enough to
be able to refer to the word’s own node with ∗̂; we
must also be able to refer to the syntactic context
to make sure that entries “fit together”. Here we
exploit the fact that sets of paths through the depen-
dency tree can be expressed through regular expres-
sions over the alphabet L ∪ {↑}, where L is the set
of syntactic labels and ↑ refers to the mother node.
For convenience we also use ∗̂ as a start symbol.
For example, assuming standard labels, ∗̂ SUBJ in
a lexical entry refers to that node’s subject daugh-
ter, ∗̂ OBJ to the object daughter, ∗̂ (SUBJ|OBJ)
to the set of the subject and object daughter, and
∗̂ COMP∗ SUBJ to the set of SUBJ daughters embed-
ded under zero or more COMP daughters.

For the case of the transitive sentence involving
quantifiers that we saw in Section 4, we can use
the full lexical entries in Figure 4. The terms of the
linear logic (i.e. the arguments to the type construc-

tors E and T ) are paths through the tree. Given a
syntactic tree with numbered nodes, they can be in-
stantiated to numbers. Assume that someone, loves
and everyone are numbered 1, 2, 3 and that 1 and 3
are SUBJ and OBJ daughters of 2 respectively. Then
the type of someone becomes (E(1) ⊸ T (2)) ⊸
T (2), loves gets the type E(1) ⊸ E(2) ⊸ T (2)
and everyone (E(3) ⊸ T (2)) ⊸ T (2). It is easily
seen that these types are isomorphic to the atomic
types we used in Figure 3 and so the same proofs
go through.

This technique can be extended to deal with ele-
ments that are semantically active but not present
in the syntactic structure. First, consider the case
of pro-drop. Many dependency grammarians take
the view that pro-dropped subjects should not be
represented in the syntax, but they are obviously se-
mantically active. To deal with this, we allow paths
in lexical entries to be constructive, i.e. if a path
does not lead to a node in the tree, we construct
the path, making sure we pick unused numbers for
the implicit nodes we need. If a second path refer-
ences the same node that did not exist in the syntax,
we use this number to reference it. To avoid infi-
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someone λP.∃x.person(x) ∧ P (x) : (E(∗̂) ⊸ T (↑)) ⊸ T (↑)
loves λx.λy.love(x, y) : E(∗̂ SUBJ) ⊸ E(∗̂ OBJ) ⊸ T (∗̂)
everyone λP.∀x.person(x) → P (x) : (E(∗̂) ⊸ T (↑)) ⊸ T (↑)

Figure 4: Lexical entries for Someone loves everyone

I1 persuaded2 him3 to4 leave5

ROOT

SUBJ OBJ

XCOMP

MARK

Figure 5: Control infinitive

nite trees, path parts under the Kleene star are not
interpreted constructively.

When we allow constructive paths, we can deal
with pro-dropped subjects by assuming that all
verbs that require a subject also introduce a mean-
ing constructor of type E(∗̂ SUBJ) or its Montague
lift (E(∗̂ SUBJ) ⊸ T (∗̂ ↑)) ⊸ T (∗̂ ↑).2 The
meaning side will depend on the semantics for
anaphora that is adopted (if the pro-drop subject is
anaphoric, as is usually the case).

Let us now look at the slightly more complicated
example of control infinitives. These too have an
implicit subject position which must be represented
in the syntax, but which is often not made explicit
in a dependency syntax tree. We will see how Glue
Semantics makes it possible to nevertheless give a
semantic analysis.

A sample syntactic structure is given in Figure 5,
with lexical entries and the linear logic proof in
Figures 6–7. The fact that the object of persuade
is also interpreted as the subject of the infinitive is
encoded in the meaning of persuade by the fact that
the variable y occurs in both positions. Crucially,
the constructive interpretation of paths allows us to
identify E(∗̂ SUBJ) in the meaning constructor of
leave and (E(∗̂ XCOMP SUBJ) in the constructor
of persuade, even if leave has no subject in the
syntactic representation.

Finally, let us look at the more complicated ex-
ample of relative clauses. We first consider En-
glish relative clauses of the type the dog that they
thought we admired. Figure 8 show two ways of
analyzing such sentences that are found in the De-
pendency Grammar literature, differing in how that

2This meaning constructor can be optional, since it will
not be possible to construct a proof with it when there is also
an overt subject. Alternatively, the meaning constructor can
be introduced only when there is no overt subject.

is attached. The two dashed lines show the main
options: either it is attached as an object of admire,
or it is attached to think as a subordinator.

The first type of annotation makes explicit where
the gap inside the relative clause is. The second
does not; and if that is left out, there is in any case
no way of indicating where the gap is in a surface-
oriented dependency analysis. In settings such as
Gotham and Haug (2018), where no lexical infor-
mation is assumed, it is crucial to know where the
gap is, but in the present, theoretical Dependendcy
Grammar setting, we can assume we have access
to valency information telling us that admire takes
an object and think does not; therefore there is no
ambiguity in where the gap is.3

From a semantic point of view, the ordinary anal-
ysis of relative clauses in formal semantics, which
we follow here, is that they denote properties or,
extensionally speaking, sets. That is dog denotes
the set of dogs, that they thought we admired de-
notes the set of things that they thought we admired,
and dog that they thought we admired denotes the
intersection of these sets, i.e. the entities that are
dogs and that they thought we admired. The pre-
cise semantic analysis is not our agenda here, but
a reasonable interpretation of that they thought we
admired (simplifying away from tense and inten-
sionality) would be λx.think(a1, admire(s+, x))
where a1 is a free variable representing the anaphor
they and s+ is a constant referring to a group in-
cluding the speaker.

The lexical entries are given in Figure 9. Notice
that that is semantically vacuous (whether anal-
ysed as a subordinator or an object). When these
meanings are instantiated with the node numbers
from Figure 8, we can construct the proof in Fig-
ure 10. To save space we do not show how admire
and think combine with their subjects. Notice how
node 9 is introduced, since the dependency tree
has no object daughter of admire. This does not
imply any commitment to an empty category in the
syntax: the only role of this element is to provide
abstraction over the gap in the relative clause. This

3Although there can be ambiguity even with valency infor-
mation in case of verbs with several frames.
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I s : E(∗̂)
persuaded λx.λy.λP.persuade(x, y, P (y)) : E(∗̂ SUBJ) ⊸ E(∗̂ OBJ) ⊸

(E(∗̂ XCOMP SUBJ) ⊸ T (∗̂ XCOMP)) ⊸ T (∗̂)
him a1 : E(∗̂)
leave λx.admire(x) : E(∗̂ SUBJ) ⊸ T (∗̂)

Figure 6: Lexical entries for control infinitive

s : E(1) a1 : E(3)
λx.λy.λP.persuade(x, y, P (y)) :

E(1) ⊸ E(3) ⊸ (E(6) ⊸ T (5)) ⊸ T (2)

λP.persuade(s, a1, P (a1)) :
(E(6) ⊸ T (5)) ⊸ T (2)

λx.leave(x) :
E(6) ⊸ T (5)

persuade(s, a1, P (y)) : T (2)

Figure 7: Proof for control infinitive structure

The1 dog2 that3 they4 thought5 we6 admired7 barks8

ROOT

SUBJ

DET

RELCL

SUBJ SUBJ

COMP

OBJ

SUBORD

Figure 8: Two styles of relative clause annotation

they a1 : E(∗̂)
thought λx.λP.think(x, P ) : E(∗̂ SUBJ) ⊸ T (∗̂ COMP) ⊸ T (∗̂)
we s+ : E(∗̂)
admired λx.λy.admire(x, y) : E(∗̂ SUBJ) ⊸ E(∗̂ OBJ) ⊸ T (∗̂)
thought-RELCL λP.λQ.λx.P (x) ∧Q(x) : ∀ξ.(E(ξ) ⊸ T (∗̂)) ⊸ (E(↑) ⊸ T (↑)) ⊸ E(↑) ⊸ T (↑)

Figure 9: Lexical entries for sample relative clause

λy.admire(s+, y) : E(9) ⊸ T (7) [x1 : E(9)]1

admire(s+,x1) : T (7) λP.think(a1, P ) : T (7) ⊸ T (5)

think(a1, admire(s+,x1)) : T (5) ⊸I,1
λx.think(a1, admire(s+, x)) : E(9) ⊸ T (5)

Figure 10: Proof structure for the relative clause

is the crucial part of the proof in Figure 10: abstrac-
tion over the object of admire gives us the set of x
such that they think we admire x as the meaning of
the relative clause. The next step is to intersect this
meaning with the meaning of dog which has the
meaning constructor λx.dog(x) : E(2) ⊸ T (2).
The meaning constructor thought-RELCL from
Figure 9 will do this, though we do not show it in
the proof.

What we call thought-RELCL is different from
other meaning constructors in several ways. First,
it is a constructional meaning, i.e. it is not asso-
ciated with a lexical item alone, but triggered by
a syntactic configuration, in this case a verb that

bears the RELCL relation. To interpret the paths cor-
rectly, it must still be associated with a node in the
tree, in this case naturally the verb of the relative
clause. However, we cannot simply precombine
thought-RELCL and the meaning of thought be-
cause the verb must combine with its arguments
first. Thus, Glue Semantics allows us to split the
meaning contributions at the interface to semantics
without giving up on lexical integrity in the syntax.

Second, we see that this meaning constructor
uses quantification over possible gaps, i.e. it re-
quires some type E resource to be missing in the
relative clause: of course, we only get a success-
ful proof if this is instantiated to the introduced
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index 9 of the actually missing element, the object
of admire. In this way, we can construct a proper
meaning for relative clauses without a commitment
to empty categories in the syntax. Another virtue
of this approach is that we can restrict relativization
sites if needed. In Figure 9 we use universal quan-
tification, which allows all kinds of gaps, but as we
mentioned above, it is also possible to use regular
expressions to express non-deterministic paths. For
example, if the language we analyze only allows
e.g. relativization on local subjects and objects, we
can use E(∗̂ (SUBJ|OBJ)), and if the language al-
lows non-local relativization, but only on subjects
and objects, we can use E(∗̂ COMP∗ (SUBJ|OBJ)).
Whether such an interface restriction on relativiza-
tion is preferrable to a purely syntactic one is an
empirical question, but given the widespread avoid-
ance of empty syntactic categories in Dependency
Grammar, this approach at least offers an alterna-
tive.

6 Conclusion

We have seen how Glue Semantics lets us connect
dependency syntax analyses to formal semantics by
drawing on a framework that is quite close in spirit
to Dependency Grammar, namely Lexical Func-
tional Grammar. In particular, both frameworks
reject the adoption of abstract syntactic analysis
merely for the purpose of syntax-semantics homo-
morphism; and both frameworks assume lexical
integrity and therefore reject decomposing lexical
items in the syntax. Glue Semantics gives us fine-
grained control over the syntax-semantics inter-
face, allowing us to achieve the effects of empty
categories and lexical decomposition there while
preserving the surface-oriented syntactic analyses
characteristic of both frameworks.

The most immediate advantage for Dependency
Grammar is that this opens the door to the large lit-
erature in formal semantics. We have seen how
we can analyse quantifier scope, control infini-
tives, and constructions with gaps, such as relative
clauses. This is valuable in itself and can of course
be extended to numerous other constructions.

But there is a reason why the interface to seman-
tics is particularly important to Dependency Gram-
mar. One way of motivating the surface-oriented
structures that are often adopted in Dependency
Grammar is by delegating to semantics the work
that abstract syntax does in other frameworks. But
if this is to go beyond mere hand-waving, it is im-

portant to accompany such claims with explicit
analysis. We hope this paper has shown one way
this can be done.
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Abstract

Nodes in Abstract Meaning Representation
(AMR) are generally thought of as neo-
Davidsonian entities. We review existing trans-
lation into neo-Davidsonian representations
and show that these translations inconsistently
handle copula sentences. We link the problem
to an asymmetry arising from a problematic
handling of words with no associated Prop-
Bank frames for the underlying predicate. We
introduce a method to automatically and uni-
formly decompose AMR nodes into an entity-
part and a predicative part, which offers a con-
sistent treatment of copula sentences and quasi-
predicates such as brother or client.

1 Introduction

Over the past decade, graph-based semantic repre-
sentation formalisms have gained a lot of attention,
with Abstract Meaning Representation (AMR) ar-
guably leading the trend (Banarescu et al., 2013;
Knight et al., 2021). AMR takes a dependency ap-
proach to meaning representation, using labeled di-
rected acyclic graphs (incidentally called Abstract
Meaning Representations). Labeled graph nodes
represent concepts, while labeled directed edges
represent the roles that concepts play in relation to
others. For instance, in the sentence A girl likes her-
self, the entity concepts denoted by the noun girl
plays two roles (agent and theme, Parsons, 1990)
in the eventuality concept denoted by the verb likes,
which is represented by the AMR in figure 1, both
as (a) a graph and (b) a tree in PENMAN notation
(Mann, 1983). The root of the graph is indicated by
double boundaries. Note the use of co-indexed vari-
ables in the tree to express graph reentrance. AMR
relies whenever possible on PropBank’s frames
(Palmer et al., 2005) for thematic role labeling (in
this case, the frame likes-01), hence the use of arg0
and arg1 rather than agent and theme.

The root of an AMR serves as “a rudimentary
representation of overall focus” (Banarescu et al.,

like-01

girl

arg0 arg1

(a) Graph

( l / l i k e −01
: arg0 ( x / g i r l )
: arg1 x

)

(b) Tree

Figure 1: AMR for A girl likes herself

2019). Following AMR guidelines, an existential
sentence like There is a girl who likes herself or a
phrase like a girl who likes herself would be asso-
ciated the same representation, shown in figure 2,
which differs from the one in figure 1 only by its
root. Figure 2 also illustrates how inverse roles like
arg0-of are used to unfold a directed graph as a tree
from a designated root.

like-01

girl

arg0 arg1

(a) Graph

( x / g i r l
: arg0 −of

( l / l i k e −01
: arg1 x

)
)

(b) Tree

Figure 2: AMR for There is a girl who likes herself

AMR, like other formalisms historically linked
to natural language generation (e.g., Meaning-Text
Theory, Mel’čuk, 1973, 2016), departs from logical
meaning representations insofar as it comes with
no notion of bound variable or scope. The seman-
tic treatment of determiners and adverbs closely
mirrors their treatment in dependency syntax, as
they simply introduce a polarity or quantity role
in the concept denoted by the word they modify.
Overall, AMR aims at a transparent representation
of predicate-argument structure independent from
syntactic contingencies1 and leaves aside other as-

1For instance, referring to an event with a verb or a noun
(possibly combined with a light verb).
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pects of logical structure, most notably scoping
phenomena induced by quantification, negation or
modality. As a result, AMR offers a simplified for-
mal apparatus for meaning representation, yielding
better consistency among annotators, and effective
comparison metrics for comparing semantic anno-
tations.2 These operational and computational ben-
efits however come at the cost of lacking a model-
theory (or a proof-theory, for that matter). This
might be unsatisfying empirically or theoretically:
empirically, because a formalisation of entailment
or equivalence between different AMRs might help
downstream tasks or resolve annotation conflicts,
and theoretically, because one might want semantic
descriptions to describe the recursive relationship
between semantic components and the world to
count as more than paraphrases of the original sen-
tences (Davidson, 1967). For these reasons, trans-
lations of large fragments of AMR into logic have
been proposed (Bos, 2016; Lai et al., 2020).

While discussions of AMR’s relationship to log-
ical or model-theoretic approaches mostly revolve
around questions of quantifier scope, in this paper,
we are instead concerned with the type of object
that AMR nodes denote. Our aim is to answer the
following: do AMR nodes always denote entities
(objects, events, or states), or do they sometimes
denote properties or propositions? Do they denote
several of these things at once? Can one consis-
tently assign a denotation of a fixed type to a node?

We will argue that the answer to these questions
is less clear-cut than AMR’s general framing as a
“simplified, standard neo-Davidsonian semantics”
(Banarescu et al., 2019) or existing translations
into logic might suggest. There is a potential diffi-
culty which might prevent us from systematically
thinking of AMR nodes as objects, events or states.
AMR merges two distinct terms of classical logic
into a single node (or rather, a single attachment
point): predicate and variable symbols. The logical
counterpart to a node labeled ‘cat’ involves intu-
itively a formula like cat(x), combining a predicate
symbol cat and a variable x. By merging, we do
not mean that AMR does not display these two
components separately (in fact, it does, since the
entity arguably corresponds to the node itself, and
the predicate to its label).3 What we mean, is that

2Importantly, metrics such as SMATCH approximating
graph homomorphism through comparison of ⟨start node, la-
bel, end node⟩ triples.

3AMR authors also introduce an alternative logical nota-
tion ∃x instance(x,cat) employing an instance relation, which

AMR merges the possibilities to further refer to
the predicate, or the variable. In other words, a
node features only one attachment point for two
distinct components of meaning.4 The situation is
different in, say, Church’s theory of simple types
(commonly used in semantics, in conjunction with
the neo-Davidsonian approach), where a term like
cat(x) results from the combination of two differ-
ent terms in the lexicon, which nothing refrains
from occurring separately as arguments of other
terms. One is of type ⟨e,t⟩ (λxcat(x), generally
modeled as originating from the noun), and one of
type e (x, generally modeled as originating from
the determiner, jointly with a binding quantifier).
We will assess whether this difference challenges
a denotational semantics for AMR. We will base
our investigation on two types of evidence: the log-
ical translation proposed by Lai et al. (2020) and
intuitions based on annotated sentences in AMR
corpora and guidelines (Knight et al., 2021; Ba-
narescu et al., 2019).

2 Graph nodes as entities

As mentioned above, AMR claims to implement a
simplified neo-Davidsonian semantics, which nat-
urally suggests interpreting nodes as individuals
or eventualities: “We do not point to an element
in an AMR and say ‘that is a noun’ or ‘that is a
verb’. Rather, we say ‘that is an object’ or ‘that
is an event”’ (Banarescu et al., 2019). Bos (2016)
and Lai et al. (2020) formalize the connection with
systematic translations from AMR into symbolic
logic. We will take the latter (which in many ways
constitutes a refinement of the former) as a starting
point to examine the denotation of AMR elements.

By definition, a compositional semantics for
AMR needs syntactic composition rules to oper-
ate. Since the treatment of universal quantification
or negation has no incidence on our discussion, we
restrict ourselves to what Bos (2016) calls “basic”
AMRs, the syntax of which is described by the
BNF grammar below.

A ∶∶= c ∣ x ∣ (N)
N ∶∶= x/P ∣N ∶rA ∣N ∶r−1 A

Non-terminals are in bold sans. x, c, P and
r are meta-variables. x ranges over variable

they claim to be equivalent to the graph.
4This seems true even under the instance-based represen-

tations because no other role than instance ever attach to the
target node of an instance edge, to our knowledge.
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symbols {x,y, . . .}, c over constant sequences{"M. Krupps", "Obama", . . .}, P over node labels{like-01, girl, . . .}, and r over (non-inverse) roles{arg0, arg1, domain, . . .}. r−1 describes the inverse
of role r (arg0−1 = arg0-of, domain−1 = mod, . . . ).
Finally, ε denotes the empty sequence. Both Bos
(2016) and Lai et al. (2020) syntactically distin-
guish “projective” and “assertive” nodes to provide
a sound treatment of reentrance. We simplify this
by systematically interpreting arguments to an in-
verse role as assertive and arguments to a standard
role as projective without additional syntax.5

Lai et al. (2020) provide a continuation-style
compositional semantics for AMR. The semantic
composition rules are given below.

JcK = λ f f (c)
JxK = λ f f (x)
J(N)K = JNK
Jx/PK = λ f ∃xP(x)∧ f (x)
JN ∶rAK = λ f JAK(λmJNK(λnr(n,m)∧ f (n)))
JN ∶r−1 AK = λ f JNK(λnJAK(λmr(m,n)∧ f (n)))

Figure 4 illustrates the syntax of the AMR of
figure 2 (There is a girl who likes herself ). Figure 3
shows how the semantics of this example unpacks.

JxK = λ f f (x)
Ja/like-01K = λ f ∃a like-01(a)∧ f (a)
Jx/girlK = λ f ∃xgirl(x)∧ f (x)
Ja/like-01]N :arg1 [x]AK= λ f JxK(λmJa/like-01K(λnarg1(n,m)∧ f (n)))= λ f ∃a like-01(a)∧arg1(a,x)∧ f (a)
J[x/girl]N :arg0-of [(a/like-01 :arg1 x)]AK

= λ f Jx/girlK(
λnJ(a/like-01 :arg1 x)K(λmarg0(m,n)∧ f (n)))
= λ f ∃xgirl(x)∧∃a like-01(a)∧arg1(a,x)∧arg0(a,x)∧ f (x)

Figure 3: Logical interpretation of (x/girl :arg0-of (a/like-
01 :arg1 x))

The above rules interpret AMR as trees rather
5It offers less control over the relative scoping of quanti-

fiers, but it is sufficient to handle reentrance. Also, it yields
semantically equivalent interpretations for all examples dis-
cussed by Lai et al. (2020), including donkey sentences.

A

( N

N

x/girl

∶arg0-of A

( N

N

a/like-01

:arg1 A

x

)

)

Figure 4: Syntax of (x/girl :arg0-of (a/like-01 :arg1 x))

than graphs. Two AMRs differing only by their
root will generally receive distinct denotations. For
instance the AMRs from figures 1 and 2 contribute
equivalent propositions, but they would pass on
different entities as argument to incoming roles (re-
spectively, the girl and the liking). This also means
that graph nodes have a dual denotation, because
they generally assume two different forms in the
corresponding tree. For each node x in the graph,
the tree must contain exactly once an instance de-
scription x/P, and it can additionally contain an
arbitrary number of additional references to x as a
standalone variable (as many times as the node is
argument to a re-entrant role). While both cases
have distinct denotations, these denotations are all
of the same type, namely that of a generalized quan-
tifier ⟨⟨e,t⟩,t⟩.6 We can thus safely say that a node
denotes a set of properties. While this obviously
differs from denoting objects or events, it comes
very close given that logical representations bear
the extra burden of explicitly binding entities to
some quantifier and domain of restriction. In the
above translation, this binding is built into the de-
notation of the instance description x/P, which is
why x/P does not denote an entity. In contrast,
any other reference to the node as a variable x de-
notes λ f f (x), which is exactly the standard lifting
of an entity x to the type ⟨⟨e,t⟩,t⟩. Hence, nodes
are seen as plain entity when used as argument to
re-entrant roles. In the same order of ideas, note
that AMR does not express any distinction between
indefinite and definite entities. Thus the AMR in
figure 2 is also associated with the phrase “It’s the
girl who likes herself”. To make this reading avail-
able, one could for instance non-deterministically
switch to a rule like Jx/PK = λ f f (ιxP(x)), which,

6Assuming that type e is a supertype of all entities, includ-
ing objects, events and states.
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again, makes (x/P) denote a type-lifted entity.7

Bos (2016) and Lai et al. (2020) thus clarify
the relationship between AMR nodes and entities.
Their translations show that, while labeled nodes
systematically introduce three distinct components
of meaning from a logical perspective (a variable
entity, a predicate restricting the domain of this en-
tity, and a binding quantifier), nodes can be thought
of as entities, in the sense that the AMR roles link-
ing nodes to one another logically express relations
between entities.

3 Copula sentences

Some copula sentences represent a challenge for
the view developed in the previous section. AMR
guidelines (section Main verb “be”), state that cop-
ula sentences are represented using the :domain role
most of the time. They associate the sentence The
man is a lawyer with the AMR below:

AMR 1: The man is a lawyer
( l / lawyer : domain (m/man) )

Accordingly, we should have the following
sentence-AMR association:

AMR 2: The man who sings is a lawyer
( l / lawyer : domain

(m/man : arg0 −of ( s / sing −01) ) )

Applying the translation from section 2 yields the
following term:

λ f ∃mman(m)∧∃ssing-01(s)∧arg0(s,m)∧∃l lawyer(l)∧domain(l,m)∧ f (l). (φ )

One of the motivations for relating AMR to logic
is to model entailment.8 Another is to specify
the denotation of AMR elements. However, as
it stands, φ fails at both of these tasks. To see why,
consider the sentence A lawyer sings, which is en-
tailed by The man who sings is a lawyer, and its
AMR:

AMR 3: A lawyer sings
( s / s ings : arg0 ( l / lawyer ) )

The latter logically translates as:

λ f ∃l lawyer(l)∧∃ssing-01(s)∧arg0(s, l)∧ f (s) (ψ)

7Moreover, an equivalent treatment of indefinite is likely
achievable using Hilbert’s epsilon calculus.

8Provided of course that we uniformly resolve parts left
underspecified by AMR in the putative premise and conse-
quent.

In order to discuss actual propositions rather
than sets of continuations, let us define cls(Γ) as
Γ(λn⊺) (the closure of Γ under a continuation triv-
ially true of anything). The problem is that cls(ψ)
is not entailed by cls(φ), because lawyer(m) is not
entailed by lawyer(l)∧ domain(l,m). Hence, we
fail to capture even simple entailments. Comparing
φ and ψ also leaves us unsure about the denotation
of l (and, consequently, lawyer) in these examples.
Does it denote a person in both, or a person in the
first and a state/property in the second?

Importantly, we are not trying to decide whether
copula constructions (or other kinds of predica-
tions) systematically introduce states (on this mat-
ter, see for instance Asher, 1993; Maienborn, 2005),
only whether we can interpret an element like
(l/lawyer) consistently accross different AMRs as-
suming either option. If Lai et al. (2020)’s seman-
tics is to achieve this, then we should be able to
explain the link between φ and ψ without making
distinct assumptions about the domain of quantifi-
cation for l, or the denotation of lawyer in interpret-
ing one or the other.

One way to satisfy this requirement, and solve
the entailment issue, is to assume that l denotes
a person in both AMRs and interpret the :domain
as equating two entities. This makes lawyer(l)∧
domain(l,m) equivalent to lawyer(l)∧ l =m which
entails lawyer(m). Unfortunately, this solution is in-
consistent with cases of copula constructions with
adjectives, because the latter are also handled with
:domain. Let us illustrate this with another sentence
from the guidelines: The marble is small. The anno-
tated AMR is (s/small :domain (m/marble)). If :domain
expresses equality of entities, then the logical trans-
lation (after closure) of this AMR is equivalent to:

∃mmarble(m)∧∃ssmall(s)∧ s =m

which we can informally paraphrase as: The mar-
ble = a small thing. This analysis seems dubious.
If the sentence hid quantification over the domain
of the adjective, one should expect semantic ambi-
guities, which are not observed for adjective copula
constructions. For instance, Lila believes that the
marble is small does not have the de re reading
There is a small thing which Lila believes to be
= to the marble. But crucially, we can also reject
it from more AMR-centered considerations. For
instance, the AMR for The marble is very small is:

( s / smal l : domain (m/ marble )
: degree ( v / very ) ) .
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Interpreting :domain as equality between entities
in the latter is nonsensical, since it would let very
modify an object, and would therefore amount to
reading the sentence as The marble = a small thing
which is very.

We thus reject an interpretation of :domain as
equality on the basis that its two arguments are gen-
erally of incompatible types. In the example above,
(m/marble) denotes an object, but (s/small) must
denote something of a more abstract nature, which
supports degree modification. Potential candidates
for the denotation of (s/small) are the property of
being small, or a neo-Davidsonian entity repre-
senting a “state” of having this property. This is
backed up by cases of copula sentences which are
not handled with :domain in AMR. We provide two
examples below, respectively taken from the guide-
lines and proxy files of the AMR corpus (Knight
et al., 2021), and suitably truncated for the sake of
space ([...] indicates truncated roles):

AMR 4: The boy is a hard worker (isi_0001.25)
(w/ work−01 : arg0 ( b / boy )

: manner ( h / hard −02) )

AMR 5: Iftikhar Ahmed is a Pakistani interior ministry
official (PROXY_AFP_ENG_20020115_0320.13)
( p2 / person [ . . . ]

: arg0 −of ( h / have−org −ro le −91
: arg1 (m/ m i n i s t r y [ . . . ] )
: arg2 ( o / o f f i c i a l ) ) )

There is arguably no reason to think that these
two sentences would relate different types of ob-
jects from the “:domain” kind of copula sentences
above. AMR 4 relates a person to a work that he
performs, and AMR 5 relates a person to an institu-
tional position that he occupies.9 In both cases, a
concrete object is related to a more abstract object
akin to a property that the former can have, or a
state that it can be in. We take this as evidence
that :domain should behave similarly and relate an
entity to some property or state.

If these conclusions are correct, then Lai
et al. (2020)’s proposal cannot consistently han-
dle AMR representations of copula constructions
like AMR 2, because they switch the denotation
of an element like (l/lawyer) to a type of object
(a property or a state) different from their “stan-
dard” denotation in other AMRs like AMR 3. We
will now show how to amend the compositional
interpretation rules to resolve this inconsistency.

9We think that the focus on p2 is an annotation mistake
and should rather be on h, but this does not change our point.

4 Default entity decomposition

In the previous section, we have discussed a prob-
lem with the denotation of (l/lawyer) in sentences
with the noun lawyer. This problem only general-
izes to nouns giving rise to :domain edges in copula
constructions. It does not occur with nouns that
invoke Propbank frames, such as worker, or AMR
role frames such as president. Consider the two
AMRs below:

AMR 6: The man who sings is a worker
( work−01

: arg0 (m/man : arg0 −of ( sing −01) ) )

AMR 7: The worker sings
( s / sing −01

: arg0 ( p / person
: arg0 −of ( work −01) ) )

The (closure) of their logical interpretation is given
below, respective of the order:

∃mman(m)∧∃ssing-01(s)∧arg0(s,m)∧∃wwork-01(w)∧arg0(w,m)
∃pperson(p)∧∃wwork-01(w) ∧arg0(w, p)∧∃ssing-01(s)∧arg0(s, p)

Assuming ⊧ ∀xman(x)→ person(x) as a meaning
postulate, we predict the entailment from AMR 6
to AMR 7 without further difficulties.

Surely, the difference between worker and
lawyer does not stem from a difference between
:arg0 and :domain. Rather, it stems from a differ-
ence of focus (in the AMR sense). In the worker
case, the focus of AMR 6 ((w/work-01)) is not an
instance of the same concept as the focus of the
arg0 role of (s/sing-01) in AMR 7. In contrast, in
the lawyer case, the focus of AMR 2 and the fo-
cus of the arg0 role of (s/sing-01) in AMR 3 are
instances of the same concept. The ability of the
word worker to invoke two concepts, a person and a
“working”, solves the issue because both concepts
can claim the focus depending on the use of worker
in a sentence. In its “standard” use, the focus is
on the person, but when used as object of a copula,
the focus switches to the “working”. This is not
possible for lawyer basically because there is no
PropBank frame corresponding to the activity of
“lawing”, simply because there is no such word in
English.

In order to offer a consistent treatment for all
copula sentences, we should therefore try to unify
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the treatment of “lucky” words which decompose
along some PropBank frame, and “unlucky” ones
which do not. An appealing idea to this effect
is to provide a default decomposition for every
node, e.g., consider (x/P) as syntactic sugar for (x/E

:mod (xp/P)), where E is a vacuous “entity” predicate.
However, two obstacles are in the way: 1) with-
out further restrictions, node decomposition would
yield infinite AMRs through recursive rewriting.
For instance (x/P) would be understood as syntactic
sugar for (x/E :mod (xp/P)), which itself would rewrite
as (x/E :mod (xp/E :mod (xp p/P))) and so forth and so on.
2) applying the decomposition rule to both oc-
curences of ( l / lawyer), in 3 and 2 respectively, would
leave us with the very same problem regarding the
type of ( l p/lawyer) instead of ( l p/lawyer).

Essentially, the solution to both problems is to
forbid decomposing the origin of a :domain role (or
the target of a :mod role), in order to implement the
focus-switching mechanism described above. The
idea is to let ’normal’ nodes decompose into an
AMR (x/E :mod (xp/P)) focusing the fresh entity node,
while leaving nodes with a domain role unaltered
and thus keep focus on the original node in the
latter case. We let τ denote the resulting “default
decomposition” transformation. τ decomposes ev-
ery node of an AMR tree into an entity modified
by a predicate, except when it has a :domain role.
It is informally schematized below:

(x/P)

X (q/Q)

Y
(r/R)

Z

T

(x/E)

τ(X) (qp/Q)

(r/E)

τ(Y) (rq/R)

τ(Z)
τ(T) (xp/P)

rX rq

rY dom

rZ

rT rX rq

dom

rY mod

rZ

rT mod

τ⇒

For instance, in AMR 2 both (m/man) and(s/sing − 01) receive a default decomposition
into an entity (m for man, s for sing-01) and
a state (mp for being a man, sp for being a
singing), but (l/lawyer) does not, because it has
a domain edge. The result is the AMR below:
( l p / lawyer

: domain (m/E :mod (mp /man)
: arg0 −of ( s /E :mod

( sp / s ing −01) ) ) )

In fact, altering the original AMR is not even nec-
essary, since we can directly implement the default
decomposition into the denotational semantics. To
this extent, let us assume that Vp = {xp,yp, . . .} is a

set of variable symbols disjoint from the one used
in AMR trees, such that each AMR variable x can
be injectively mapped to a variable xp in Vp. We in-
troduce a second interpretation function J⋅KD which
is triggered for nodes with an outgoing :domain
edge. In all of the following, r ranges over all roles
except domain and mod. We abbreviate domain as
dom. The “standard” interpretation rules are:

JcK = λ f f (c)
JxK = λ f f (x)
J(N)K = JNK
Jx/PK = λ f ∃x∃xP P(xP)∧dom(xp,x)∧ f (x)
JN ∶rAK = λ f JAK(λmJNK(λnr(n,m)∧ f (n)))
JN ∶r−1 AK = λ f JNK(λnJAK(λmr(m,n)∧ f (n)))
JN :domAK

= λ f JAK(λmJNKD(m)(λndom(n,m)∧ f (n)))
JN :modAK

= λ f JNK(λnJAKD(n)(λmdom(m,n)∧ f (n)))
and for nodes with a :domain role:

JcKD = λeλ f f (c)
JxKD = λeλ f f (xp)
J(N)KD = JNKD

Jx/PKD = λeλ f ∃xp P(xp)∧ f (xp)
JN ∶rAKD

= λeλ f JAK(λmJNKD(e)(λnr(e,m)∧ f (n)))
JN ∶r−1 AKD

= λeλ f JNKD(e)(λnJAK(λmr(m,e)∧ f (n)))
JN :domAKD

= λeλ f JAK(λmJNKD(e)(λndom(e,m)∧ f (n)))
JN :modAKD

= λeλ f JNKD(e)(λnJADK(e)(λmdom(m,e)∧ f (n)))
Figure 5 shows how the semantics unpacks

for AMR 2. One easily verifies that the re-
sult entails AMR 3: the latter interprets as∃l∃lp lawyer(lp)∧ dom(lp, l)∧∃s∃sp sing-01(sp)∧
dom(sp,s)∧arg0(s, l) (since 3 does not have any
:domain role, each of its nodes is decomposed). To
check the entailment, notice that, up to renaming
of the quantified variable l to m, every conjunct in
the formula above also appears as a conjuct of the
interpretation of AMR 2 in figure 5.

To conclude this section, let us discuss some
of the properties, benefits and limitations of the
proposed default entity decomposition approach.
While the target logical interpretations are undoubt-
edly less readable, they are obtained from the (unal-
tered) original AMR. So what we have achieved is
an improved notion of entailment between AMRs,
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J(m/man :arg0-of (s/sing-01))K

= λ f∃m∃mp man(mp)∧dom(mp,m)∧∃s∃spsing-01(sp)∧dom(sp,s)∧arg0(s,m)∧ f (m)
Jl/lawyerKD = λeλ f ∃lp lawyer(lp)∧ f (lp)
J(l/lawyer :domain (m/ man :arg0-of (s/sing-01)))K

= λ f J(m/man :arg0-of (s/sing-01))K(
λmJl/lawyerKD(m)(λndom(n,m)∧ f (n)))

= λ f∃m∃mp man(mp)∧dom(mp,m)∧∃s∃spsing-01(sp)∧dom(sp,s)∧arg0(s,m)∧∃lp lawyer(lp)∧dom(lp,m)∧ f (lp)
Figure 5: Interpretation of AMR 2 with default entity
decomposition

and a better understanding on the denotation of
AMR nodes in copula sentences, at no cost for the
annotation capabilities of the formalism.

The attentive reader might have noticed that
nodes with a :domain role have an interpretation
of type ⟨e,⟨e,t⟩,t⟩ differing from “regular” nodes
whose interpretation is of type ⟨⟨e,t⟩,t⟩. While the
additional entity-type argument might seem vacu-
ous at first, it is in fact essential to handle (rather
frequent) cases of nominal copula constructions
where the noun following the copula is itself mod-
ified. Consider, as an exemple, the following sen-
tence from the AMR corpus: Teikovo is a small
town in the Ivanovo region about 250 kilometers
or 155 miles northeast of Moscow. The full AMR
is given in annex. For our present purpose, we
only need to consider the following partial AMR:
( t / town :mod (s/small) :domain (c2/city) ). Our semantics,
ensures that in this context the subtree ( t / town :mod

(s/small)) denotes the complex property of being a
town which is small, and that, as a result, Teikovo
(the city) is attributed both properties of being a
town and being small. Importantly, the property
of being small is not attributed to the predicate
town, but to the same entity that the latter ends up
attributed to, whichever it might be.

Put another way, our semantics implements an in-
tersective treatment of chains of modifiers. Hence,
(c/cat :mod (r/grey :mod (f/ fierce ) ) ) denotes a cat which
is both grey and fierce. Of course, adjectival modi-
fication is not always intersective, and roles such

as degree or time will require a separate treatment.
However, the intersective semantics appears nec-
essary to reconciliate some observed variations in
annotations, as displayed by the examples below.

The revised interpretation can help us assess
some difficult annotation choices. Consider the
two sentences Only if Ron Paul doesn’t become
president then there will be war and And, that is
something needed to become President. Both sen-
tences are from the AMR corpus, and their AMRs
are provided in annex. Annotators have made dif-
ferent choices for these two sentences: the first
involves (b/become−01 :arg2 (p2/president)) whereas the
second involves (b/become−01 :arg2 (p2/person :arg1−of

(h/have−org−role−91 :arg2 (p3/president)))). Are these two
treatments of become president equivalent or in-
compatible? We can answer this question, at least
if we admit that becomes is akin to a kind of
copula construction10 and that have-org-role-91 is
also akin to :domain in that respect; it is the (rei-
fied) relation used to express e.g., Ron Paul is
president.11 Under these assumptions, the ques-
tion amounts to spotting the difference (if any)
between (p/president :domain (r/Ron_Paul)) and (x/person

:mod (p/president) :domain (r/Ron_Paul)) (ignoring AMR
decomposition of named entity, for simplic-
ity). Our semantics associates the former with
the proposition ∃r∃rp Ron_Paul(rp)∧dom(rp,r)∧∃pp president(pp)∧dom(pp,r) and the latter with
the proposition ∃r∃rp Ron_Paul(rp)∧dom(rp,r)∧∃xpperson(xp)∧∃pp president(pp)∧ dom(pp,r)∧
dom(xp,r). If a president must always be a person,
then the two are clearly logically equivalent.

The approach, however, yields arguably puzzling
scoping when e.g. attitude verbs have copula sen-
tences as objects. While the two AMRs discussed
in the previous paragraph have equivalent closures,
their different focus yield different propositions
when embedded. Consider, under the same mod-
eling hypotheses, the sentence I believe that Ron
Paul is president. The AMR
( be l ieve −01 : arg0 ( i / I )

: arg1 ( p / p res iden t : domain
( r / Ron_Paul ) ) )

10X becomes Y is commonly seen as asserting that X is
Y and presupposing that X was not Y before. In this view,
XbecomesY can be thought of as a paraphrase of X starts to
be Y .

11become-01 and have-org-role-91 are similar to domain at
least regarding the type of objects that they relate, and dealing
with them as such would require that we extends our semantics
to account for this fact.
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could arguably be paraphrased as I believe that a
state of being president obtains which has Ron Paul
as theme, whereas
( be l ieve −01 : arg0 ( i / I )

: arg1 ( x / person
:mod ( p / p res iden t )
: domain ( r / Ron_Paul ) ) )

would rather be paraphrased as Ron Paul is pres-
ident, and I believe that a state obtains of being
a person which has Ron Paul as theme. We do
not commit on whether this is a bug or a feature
of the approach. However, we note that we have
voluntarily stuck with an approach producing pure
first-order target Davidsonian propositions. To ren-
der the the two AMRs above fully equivalent (if
deemed desirable), one probably needs to allow
roles’ participants to be higher-order objects like
propositions, because as things stand, we are able
to express states of ‘being a person’ or ‘being presi-
dent’, but not of ‘being a person who is president’.

5 Quasi-predicates

We now turn to a different problem, which origi-
nates from the same discrepancy between the words
of english which invoke PropBank frames, and
those which do not.

The phenomenon at stake is the treatment of
what Meaning-Text Theory (MTT) calls quasi-
predicates. Mel’čuk and Polguère (2008); Polguère
(2012) define predicates as those lexical meanings
that have two properties: 1) they denote situations
(in a broad sense including events and facts), and
2) they involve a number of semantic participants
whose value is contingent, but whose participation
is necessary. Polguère notes that predicate are com-
monly put in opposition to semantic names, like
the meanings ‘rock’ or ‘star’. Semantic names de-
note entities rather than situations and they can be
defined without reference to participants. Yet, Pol-
guère observes that there is a vast class of meanings,
like those of brother, consumer or therapist which
denote entities (like semantic names), but cannot
denote without accounting for a certain number of
participants, due to the presence of a predicate with
unbound arguments in their semantic decomposi-
tion. These meanings are called quasi-predicates
(henceforth, QP).

In essence, a QP can be assimilated to a pair
made of an entity and a defining predicate, with
focus generally put on the entity (though Polguère
(2012) remarks that this is challenged in some
constructions, typically copula). For instance, the

meaning of brother is an entity X (a man), com-
bined with a predicate (X having a common parent
with Y ). Sometimes, the structure of a QP is dis-
played explicitly in AMR, i.e., the entity and the
defining predicate give rise to different nodes. Con-
sider for instance the example below:

AMR 8: My brother
( p / person

: arg0 −of ( h / have− re l − ro le −91
: arg1 ( i / I )
: arg2 ( b / b ro the r ) ) ) ) )

But this is not always the case:

AMR 9: Our clients
( c / c l i e n t : poss (w/we) )

In this case, the entity client itself is linked to the
other participant, there is no separation between
entity and defining predicate.

While in and of itself these differences are not a
problem, they have no other basis than the peculiar-
ities of the English lexicon. The verb to client does
not exist, and consequently, there is no PropBank
frame to decompose the meaning of client. The
asymmetry between client and brother is therefore
the same as noted in the previous section between
worker and lawyer. What is new however, is that
AMR suffers expressive limitations when represent-
ing QPs because of this. For instance, we cannot
represent the meaning of The therapist thanks his
client in a way that makes explicit both the fact that
the client is the client of the therapist, and that the
therapist is the therapist of the client, for we would
end up with the cyclic AMR below.
( t / thanks −01 : arg0 ( t2 / t h e r a p i s t : poss

( c / c l i e n t : poss t2 ) ) : arg1 c )

Interestingly however, reifying (Banarescu et al.,
2019) :poss with own-01 removes the cycle:

AMR 10: Reified :poss

( t / thank −01
: arg0 ( t2 / t h e r a p i s t

: arg0 −of ( o1 / own−01
: arg1 ( c / c l i e n t

: arg0 −of ( o2 / own−01 : arg1 t2 ) ) ) )
: arg1 c )

Reification is introduced in AMR as a mecha-
nism needed to focus a role. But in this case, it
is not what it achieves. Rather, reification “bor-
rows” the frame own-01 and uses it as a default to
decompose therapist and client. Indeed, the prob-
lem disappears for words which invoke PropBank
frames, for instance The seller thanks the buyer has
an AMR isomorphic to AMR 10.
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The default decomposition approach from previ-
ous section generalizes this solution, by systemat-
ically providing an additional abstract attachment
point (the predicate) for any outgoing role of the
defining predicate of a QP:

AMR 11: Default decomposition
( t /E :mod ( t p / thank −01)

: arg0 ( t2 /E
:mod ( t2 p / t h e r a p i s t

: arg1 ( c /E
:mod ( cp/client :arg1 t2)))):arg1 c)

Importantly, the approach allows to handle any
kind of QP, even if the relationship to their partici-
pants is not expressible as a reifiable non-core role
like :poss.

6 Conclusion

Whereas seeing AMR nodes as Davidsonian enti-
ties seems overall very sound from a logical per-
spective, we have shown that copula sentences pose
an important challenge to this view. The challenge
arises because they require to isolate the predica-
tive part of a node from the entity it denotes. We
have proposed a unifying mechanism of default
decomposition, which systematically entangles the
two notions. We have implemented it in a denota-
tional semantics for AMR which does not require
any addition to the original AMR annotation. We
have shown that this approach generally resolves
linguistically unjustified asymmetries depending
on the existence of PropBank frames, in particular
regarding the representation of quasi-predicates.
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7 Annex

We reproduce below the annotations for sentences
Only if Ron Paul doesn’t become president then
there will be war and And, that is something needed
to become President discussed in section 4.
# : : i d DF−200−192451−579_6417 .3
# : : tok Only i f Ron Paul doesnt become

pres iden t then there w i l l be war .
(w / war−01∼e.11

: c on d i t i on∼e .1 ( b / become−01∼e .5
: p o l a r i t y −
:ARG1 ( p / person : w i k i " Ron_Paul "

: name ( n / name
: op1 "Ron"∼e .2
: op2 " Paul "∼e . 3 ) )

:ARG2 ( p2 / p res iden t∼e . 6 )
:mod ( o / on ly∼e . 0 ) )

: t ime ( t / then∼e . 7 ) )

# : : i d bo l t −eng−DF−170−181103−8886306_0011 .6
# : : tok And , t h a t i s something needed to

become Pres ident .
( a / and∼e .0

: op2 ( n / need−01∼e .5
:ARG0 ( b / become−01∼e .7

:ARG2 ( p2 / person
:ARG1−of ( h / have−org −ro le −91
:ARG2 ( p3 / p res iden t∼e . 8 ) ) ) )

:ARG1 ( s / something∼e . 4 ) ) )

# : : i d PROXY_APW_ENG_20080515_0931.17
# : : sn t Teikovo i s a smal l town i n the Ivanovo

reg ion about 250 k i l ome te rs or 155 mi les
nor theas t o f Moscow .

( t / town
:mod ( s / smal l )
: l o c a t i o n ( p / prov ince : w i k i " Ivanovo "

: name ( n / name : op1 " Ivanovo " ) )
: l o c a t i o n ( r / r e l a t i v e − p o s i t i o n

: op1 ( c / c i t y : w i k i "Moscow"
: name ( n2 / name : op1 "Moscow " ) )

: d i r e c t i o n ( n3 / nor theas t )
: quant ( a / about

: op1 ( d / d is tance − q u a n t i t y
: quant 250
: u n i t ( k / k i l ome te r ) ) ) )

: domain ( c2 / c i t y : w i k i " Teykovo "
: name ( n4 / name : op1 " Teikovo " ) ) )
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Abstract

In this paper, we propose a new model for
annotating dependency relations at the
Mandarin character level with the aim of
building treebanks to cope with the
unsatisfactory performance of existing
word segmentation and syntactic analysis
models in specific scientific domains,
such as Chinese patent texts. The result is
a treebank of 100 sentences annotated
according to our scheme, which also
serves as a training corpus that facilitates
the subsequent development of a joint
word segmenter and dependency analyzer
that enables downstream tasks in Chinese
to be separated from the non-standardized
pre-processing step of word segmentation.

1 Introduction

Word segmentation has long been a chicken-
and-egg problem in Chinese. The notion of
distinct words with spaces as natural boundaries
in languages using the Latin alphabet has never
been widely agreed upon in Chinese. In the
absence of both natural delimiters and inflection
marks, two main indicators of wordhood
(Magistry et al., 2012), the distinction between
words and larger lexical units in Chinese has been
an unfamiliar and confusing concept since it was
introduced by Zhang Shizhao in 1907. This has
resulted in a low agreement rate of 76% on
lexicality among native Chinese speakers (Sproat
et al., 1997).
All existing Mandarin treebanks and syntactic

annotation schemes for Mandarin Chinese
employ word segmentation as the first step in the
annotation. However, their segmentation criteria
are far different without a clear unified standard.
At the same time, dependency analyzers trained
on these treebanks end up with inconsistent
results with each other, especially on corpora

containing a large number of domain-specific
new terms, such as patent texts (Li et al.)
It is in this context that we decided to explore

the idea of developing a character-based Chinese
annotation schema. A treebank annotated with
additional internal relations of words can be used
as a resource to train a joint segmenter-parser,
combining the two steps into one. Moreover, (Li
et al., 2019) also showed that character-level
annotations, even coarse ones, can help improve
the results of dependency analysis for Chinese of
different text types.
In the most widely accepted morphological

theory of Chinese (Feng, 1997; Zhang, 2003;
Dong, 2011), complex words are derivative words
or compound words. The second group includes
five types: modifier-head type, coordinative type,
predicate-object type, predicate-complement type,
and subject-predicate type. He (He et al., 2012)
and Chi (Chi et al., 2019) suggest in their work
that there is a parallelism between compound
word structure and syntactic structure in Chinese,
from which from which it is feasible to build a
new dependency model that unifies the character
level with the current word level relationship.
Some previous works have also discussed the
possibility of the joint dependency parsing and
multi-word expression recognition on other
languages (Candito et al., 2014; Nasr et al., 2015).
From this perspective, it is important to

integrate the new word internal relations of the
new words into dependency trees built on the
basis of similar distributional criteria. This is why
this work chose to base itself on a variant of UD
(Gerdes et al., 2018), Surface-Syntactic Universal
Dependencies (SUD), which is a near-isomorphic
but more surface syntactic alternative schema of
UD with a more classical word distribution-based
dependency structure that favors functional heads.
And to obtain the relationships between these
roles, we applied syntactic tests that allowed us to

Character-level Dependency Annotation of Chinese

Li Yixuan
Université Paris3 - Sorbonne Nouvelle

LPP (CNRS)
yixuan.li@sorbonne-nouvelle.fr
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identify the head and internal structure of the
composite based on distributional criteria.

After discussing Chinese morphology and
syntactic theory, the parallelism between Chinese
compound word structure and syntactic structure
is discussed especially in sections 2 and 3. The
next two sections explain the complete annotation
process, including two sub-steps. (1) automatic
tokenization, POS tagging and dependency
parsing using existing NLP pipelines (Section
4.1); and (2) manual correction and annotation
follo-wing our SUD-based character-level
annotation schema (Section 4.2). Then, Section
4.3 describes the conversion of the character-level
treebank to a standard word-level UD treebank
and the evaluation of the automatically converted
treebank.

2 The Annotation Schema for Chinese
Word Internal Relations

Instead of the conventional first step of word
segmentation in Chinese treebank annotation, the
annotation of character-based treebanks starts
with the analysis of the relations between

individual characters. Such relations can be
typical syntactic relations, internal relations of
words that do not conform to any syntactic
relations in modern Chinese, or the third between
the two kinds of relations mentioned above,
which are more frozen than independent syntactic
constituents but still largely corresponds to certain
syntactic structures
In this section, we explain the criteria for

wordhood and parts-of-speech. Our model
annotates these relations between characters at all
three levels of granularity simultaneously.
Without the word segmentation process, all
characters of a sentence are separated. Moreover,
the word level is distinguished from the syntactic
level by the sub-relation ":m", instead of the
blank. The criteria for this distinction are
described in Section 2.1, and the next Section 2.2
explains the choice of part-of-speech labels,
especially at the character level.

2.1 Wordhood and word boundaries

One of the most widely used Chinese word
segmentation standards is the Penn Chinese

Word internal structure Examples SUD
Coordination compounds 价值

国家
查封
始终
明亮
高矮

jià zhí
guó jiā
chá fēng
shǐ zhōng
míng liàng
gāo ǎi

‘price_N’ + ‘value_N’ = ‘value_N/V’
‘country_N’ + ‘family_N’ = ‘country_N’
‘examine_V’ + ‘close_V’ = ‘seize_V’
‘begin_V’ + ‘finish_V’ = ‘all along_ADV’
‘bright_ADJ’ + ‘bright_ADJ’ = ‘bright_ADJ’
‘tall_ADJ’ + ‘short_ADJ’ = ‘height_N’

conj

Modifier compounds 蜂巢
汉字
飞机
火红
深蓝
滚烫
迟到
鼠窜
夜游

fēng cháo
hàn zì
fēi jī
huǒ hóng
shēn lán
gǔn tàng
chí dào
shǔ cuàn
yè yóu

‘bee_N’ + ‘nest_N’ = ‘beehive_N’
‘Chinese_ADJ’ + ‘character_N’ = ‘Chinese character_N’
‘fly_V’ + ‘machine_N’ = ‘plane_N’
‘fire_N’ + ‘red_ADJ’ = ‘red as fire_ADJ’
‘dark_ADJ’ + ‘blue_ADJ’ = ‘dark blue_ADJ’
‘roll(ing)_V’ + ‘hot_ADJ’ = ‘boiling hot_ADJ’
‘late_ADJ’ + ‘arrive_V’ = ‘be late_V’
‘rat_N’ + ‘flee_V’ = ‘scamper off like a rat_V’
‘night_N’ +’ tour_V’ = ‘noctivagation_N/V’

mod

Subject-predicate compounds 目睹
性急
海啸

mù dǔ
xìng jí
hǎi xiào

‘eye_N’ + ‘see_V’ = ‘witness_V’
‘temper_N’ + ‘impatient_ADJ’ = ‘impatient_ADJ’
‘sea_N’ + ‘howl_V’ = ‘tsunami_N/V’

subj

Predicate-object compounds 结果
睡觉
喝水

jié guǒ
shuì jiào
hē shuǐ

‘bear_V’ + ‘fruit_N’ = ‘bear fruit_V’/ ‘result_N’
‘sleep_V’ + ‘sleep_N’ = ‘sleep_V’
‘drink_V’ + ‘water_N’ = ‘drink water_V’

comp:obj

Predicate-complement
compounds

请教
推动
说明
来自
可变
书本
雪花

qǐng jiào
tuī dòng
shuō míng
lái zì
kě biàn
shū běn
xuě huā

‘ask_V’ + ‘teach_V’ = ‘ask (obj) to teach/consult_V’
‘push_V’ + ‘move_V’ = ‘push (obj) to move_V’
‘speak_V’ + ‘clear_ADJ’ = ‘explain_V’
‘come_V’ + ‘from_ADJ’ = ‘come from_V’
‘can_AUX’ + ‘change_V’ = ‘changeable_ADJ’
‘book_N’ + “Classifier” = ‘book_N’
‘snow_N’ + ‘flower_N’ = ‘snowflakes_N’

comp:obl,
comp:pred,
comp:aux

Simple words
- transliterated words
- onomatopoeia
- reduplicated words

车
咖啡
叮咚
侃侃

chē
kā fēi
dīng dōng
kǎn kǎn

‘car_N’
‘coffee_N’
‘ding-dong_Onomatopoeia’
‘eloquently_ADV’

flat

Table 1: List of Chinese word internal structures with examples and English translation.
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Treebank (3.0) Segmentation Guidelines (Xia,
2000a). The guidelines introduced the concept of
"word" based on the smallest syntactic unit,
which was largely followed by the later UD
Chinese Hong Kong Treebank (Poiret et al.,
2021). The guidelines provided for Bakeoff 2005
is another applicable standard and includes a table
summarizing decisions for a range of difficult
cases. Magistry (2017) summarizes all the
different segmentation guidelines to discuss
wordhood in Chinese and defines a word as “the
smallest sequence of autonomous characters to
which we can attribute at least one word class”.
Kratochvíl (1967) first proposed a more syntactic
definition-based approach, which was later
developed by (Huang, 1984; Duanmu, 1998;
Packard, 2000; Nguyen, 2006). This approach
proposes a set of widely applicable linguistic
criteria to test whether a sequence of characters
can be considered as a word: (1) Conjunction
Reduction, (2) Freedom of Parts (3) Semantic
Composition, (4) Exocentric Structure, (5)
Adverbial Modification, (6) XP Substitution, (7)
Productivity Criterion, (8) Syllable Count and (9)
Insertion.
In this work, we mainly follow the provided

test set, focusing on the independence criterion,
the productivity criterion, and the presence of
part-of-speech variation when the expression is
used as a word (see Section 4.2 for a detailed
analysis).

(1) 喝了。 给我水。
hē le gěi wǒ shuǐ
‘(I) drank.’ ‘Give me water.’

Taking the three predicate-object compounds
in Table 1 as an example, both 结果 (jié guǒ
‘result’) and 睡 觉 (shuì jiào ‘sleep’) are
considered as words, while 喝水 (hē shuǐ ‘drink’)
is a syntactic unit, since all characters in the
latter can be used independently as a word, as
follows. Therefore, in our work, structures
considered as words are annotated as purely
syntactic relations, such as A-not-A (e.g., 来不来
lái bù lái ‘come or not come’).

2.2 Choices for parts-of-speech tags

Whether the parts-of-speech are based on
meaning or syntactic distribution has long been a

central issue in POS tagging (Xia, 2000b). Since
almost all Chinese characters have multiple parts
of speech and have neither delimiters nor
inflection marks, which are the two main
indicators of languages using the Latin alphabet
(Magistry et al., 2012), the distinction between
different parts-of-speech is mainly indicated by
the distribution position. Therefore, instead of
considering semantics, we placed the choice of
part-of-speech labels on distributional position in
both word-level and character-level annotations.

Based on an automatic POS tagging described
in Section 3.1, we manually correct the results
referring to the Part-Of-Speech Tagging
Guidelines for the Penn Chinese Treebank (3.0)
(Xia, 2000b) for the word-level and to Xinhua
Dictionary for the character-level. Especially, as
the choices for POS tags and for the word internal
relation labels on characters are being made
simultaneously, the relation type has a heavy
influence on the POS choice, which is discussed
in Section 3.
Based on the automatic POS tagging described

in Section 3.1, we manually corrected the results
on word-level by referring to the Part-Of-Speech
Tagging Guidelines for the Penn Chinese
Treebank (3.0) (Xia, 2000b) and the character-
level by referring to the Xinhua Dictionary. In
particular, since the selection of POS tags and
internal relation labels of words is going to be
done simultaneously, the type of relationship has
a great influence on the selection of POS, which
will be discussed in Section 3.
And one method often used to identify its POS

during annotation is to test whether a character
can be combined with a functional character
specifically reserved for a particular POS (see
Table 2 for details).

Open class
words

Closed class
words

Other

ADJ ADP PUNCT

ADV AUX SYM

INTJ CCONJ X

NOUN DET

PROPN NUM

VERB PART

PRON

SCONJ

Table 3: List of UD POS tags.
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This schema retains all 17 part-of-speech
(UDPOS) tags of UD1 (Nivre et al., 2016) in
Table 3.

3 Correspondence between Chinese
word internal structures and
dependency relations in SUD

The annotation of syntactic relations is based
on the Surface-Syntactic Universal Dependency
(SUD) model proposed by (Gerdes et al., 2018).
And based on this, we added our own character-
level annotation labels by analogy with the
surface-syntactic relations of SUD.
In this section, we introduce six categories of

character-level relations in modern Chinese
vocabulary. For each category, we describe the
definition of a category, and its correspondence
with the syntactic relations in SUD, and give
some criteria to test whether a compound belongs
to a certain category (see the full decision tree in
Appendix A).

3.1 Coordination compounds

Coordinated compounds are composed of two
or more morphemes that are usually
synonymous, antonymic, or semantically related.
The meaning of a compound can be a
combination of its morphemes, completely
independent of the meaning of its components,
or inclined to one of its characters.

In terms of POS, a coordinating complex can
consist of the following components:

(1) Two nouns characters: N1 + N2
In Table 1, 价值 (jià zhí ‘value’) and 国家 (guó
jiā ‘country’) are two examples of this
subcategory. In 价值 the two characters are
synonyms and the meaning of the compound
is the their synthesis, while in 国家 (guó jiā
‘country’) the meaning is inclined to 国 (guó
‘country’).
(2) Two verbs characters: V1 + V2

Among examples of this subcategory, 查 封
(chá fēng ‘to seize’), which consists of a
sequence of two verbs is itself a verb and 始终
(shǐ zhōng ‘all along’), which consists of a
pair of antonyms is usually used as an adverb.

1 In regard to the specificity of the patent writing style,
INTJ dose not actually appear in the final treebank.

(3) Two adjectives characters: A1 + A2
Similar to subcategories (1) and (2), the
external POS of the compound can be the
same as (e.g. 明亮 míng liàng ‘bright’ is an
adjective) or different to (e.g. 高 矮 gāo ǎi
‘height’, the external POS of the word as a
whole is a noun while both characters are
adjectives).

All coordination structures are considered as
“conj” relations in SUD, with the edges oriented
from left to right. Which means the first
character of a coordination compound is always
the head in its internal relation.

We proposed a set of tests to decide whether a
compound word “AB” can be assigned to each
of the three subcategories of coordination:
whether “AB” can be extended2 into a “先 A后 B
(xiān A hòu B ‘first A and then B’)” structure or
“边 A边 B (biān A biān B ‘A while B’)” structure
for subcategory (2), and into a “A而不 B (A ér bù
B ‘is A but not B’)” structure or “又 A又 B (yòu
A yòu B ‘not only A but also B’)” structure for
subcategory (3). As for subcategory (1), the two
noun characters can usually be extended into “A
和 B (A hé B ‘A and B’)”.

3.2 Modifier compounds

A common modifier compound may consist
of two or three characters. In the first case, a
term AB, where A (or the modifier) modifies B
(the head, which can be a noun, an adjective or a
verb). In the example of Table 1:

- 蜂巢 (fēng cháo ‘beehive’), 汉字 (hàn zì
‘Chinese character’) and 飞机 (fēi jī ‘plane’)
all have a nominative center character.
However, the modifier can also be a noun (as
in the first word 蜂巢), an adjective (as in the
second word 汉字 ) or a verb (as in the third
word飞机).

- Modifier compounds with an adjective
center like the noun-centered compounds
above. The modifier can be a noun (e.g. 火红
huǒ hóng ‘red as fire’), an adjective (e.g. 深蓝

2 The notion “expend” here allows to add extra characters if
necessary (examples are given in following subsections) ,
considering the disyllabification in modern Chinese. In this
case, the single character can be seen as a shortened form of
the disyllabic term.
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shēn lán ‘dark blue’) or a verb (e.g. 滚烫 gǔn
tàng ‘boiling hot’).

- 迟到 (chí dào ‘be late’) is an example
with a verbal center character and an adject-
ive/adverb modifier, while noun characters
can also be used as a modifier of a verbal
character as shortened forms of oblique
structures such as “V as N”, “V with N”, “V
towards N”, etc.

And in the second case, a term ABC, where
AB together modifies C (the center character). In
contrast to the variety of POS of bisyllabic
modifier compounds, most trisyllabic modifier
compounds are nouns, where the central
character is also considered as a suffix in some
works, according to its productivity.

The syntactic head (center character) of a
modifier compound is always its last character,
and the external POS of the entire term is always
the same as the POS of its head character.
Compound words in this group are annotated
with a “mod” label and the direction of the edge
runs from right to left..

For modifier compounds, the tests set
includes a check for presence or absence of the
following deformations (example (2)):

1. Possible expansion with 的/地/得 de 3,
e.g. 蜂巢 (fēng cháo ‘beehive’) can be
extend-ed into 蜜蜂的巢 (mì fēng de
cháo ‘hive of bee’), where 蜂 (fēng
‘bee’) stands for 蜜 蜂 (mì fēng
“honeybee”, which is itself a
modifier-head compound with 蜂 fēng
‘bee’ as its head).

2. Paradigm of the head character, such
as the productive character 巢 (cháo
‘nest’) can combine with 蜂 and 鸟
(niǎo ‘bird’).

3. Possible expansion into a
corresponding phrase for those with a
verbal center character, e.g. 鼠窜 (shǔ
cuàn ‘scamper off like a rat’) is
expended into 像鼠一样窜 (xiàng shǔ yī
yàng cuàn ‘scamper off like a rat’); 夜

3 的 / 地 / 得 DE are noun modifier particle, adjective
modifier particle and verb modifier particle in Chinese.

游 (yè yóu ‘noctivagation’) is
expended into 在夜里游 (zài yè lǐ yóu
‘tour in the night’).

(2) 蜂巢 鸟巢
fēng cháo niǎo cháo
‘beehive’ ‘bird nest’

3.3 Subject-predicate compounds

In subject-predicate compounds, similar to
modifier compounds, the head character is always
the last character, which is either a verb (e.g. 目睹
mù dǔ ‘wittiness’, 海啸 hǎi xiào ‘tsunami’) or an
adjective (e.g. 性急 xìng jí ‘impatient’), while the
first character is a noun, which serves as the
subject of the head character. Unlike modifier
compounds, the external POS of a subject-
predicate compound does not always correspond
to the POS of the head character.
The subject-predicate structure is annotated as

“subj”, with the marginal direction running from
right to left.
Together with the predicate-object compounds

and predicate-complement compounds, the test
for the latter three types is that at least one
character in the compound can have one of the
aspect markers 了 (le) /着 (zhe) /过 (guo) without
changing the meaning. This means that the
character can only be a verbal character. The
subject-predicate compounds differ from the
other two in that they have only one verbal
character in the second position, and their first
character can be modified by the noun modifying
particle ‘的 (de)’ without a change of meaning,
which means that this first character is a nominal
character. In the example of 海 啸 (hǎi xiào
‘tsunami’), it is possible to say 啸着 (xiào zhe ‘is
howling’) and ADJ的海 (ADJ de hǎi ‘ADJ sea’).

3.4 Predicate-object compounds

In contrast to the subject-predicate structure,
the first character in a predicate-object compound
is the head character and the second character is
the direct object of the verbal head character on
the first position. This second character is usually
a noun character (e.g. 结果 jié guǒ ‘result’, 睡觉
shuì jiào ‘sleep’,喝水 hē shuǐ ‘drink water’).
The predicate-object structure is considered

equivalent to the “comp:obj” relationship in SUD
with a left-to-right edge.
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Unlike the subject-predicate compounds, the
predicate-object and predicate-complement
compounds have a verbal head character in the
first position. Although they are both annotated as
"comp", the predicate-object compounds always
have a noun character on the second position,
while there is usually no nominal character in the
second position of the predicate-complement
compounds.

3.5 Predicate-complement compounds

There are two types of predicate-complement
compounds. The first type can be compared to
predicate-complement structure at the syntactic
level: the first character of predicate-complement
compounds is a verbal head character, which is
similar to the predicate-complement structure,
and its second character is a verbal or adjective
character that acts as a resultative or directional
complement of the head character in the first
position.
A predicate-complement compound is always a

verb and has a “comp”-like internal relationship
marked as different types of sub-relations in SUD,
such as “comp:obl” (for oblique arguments of
verbs, adjectives, adverbs, nouns or pronouns, e.g.
来 自 lái zì ‘come from’), “comp:pred” (for
predicative arguments of verbs, e.g. 请教 qǐng
jiào ‘consult’, 推动 tuī dòng ‘push (obj) to move’)
and “comp:aux” (for the argument of auxiliaries,
e.g. 可变 (kě biàn ‘variable’), and corresponds to
the “aux” relationship defined by UD). In this
version of annotation, all sub-relations of
predicate-complement are simply annotated as
“comp”.
The second type has a noun head character in

its first position and in its second position a
classifier (e.g. 书本 shū běn ‘books’) or a second
noun character indicating the category or form of
the first noun character (e.g. 雪 花 xuě huā
‘snowflakes’). The external POS of a compound
of this type is always noun. This type can be
easily identified by the presence of a classifier as
the character in the second position.

3.6 Non-compound words and terms with
unclear internal structures

In addition to the compound words in modern
Chinese, there are also words that contain
multiple characters but whose internal structure
does not directly correspond to the syntactic
relationships in modern Chinese, such as

polysyllabic monograms, transliterated words,
and onomatopoeic words. We borrowed the tag
“flat”4 from the UD/SUD schema, and
established the corresponding character-level
relationship “flat:m” for them.
Note that the subclass “:m” is specifically

designed for relationships between Chinese
characters. Thus, transliterated words using
Chinese characters are marked as “flat:m”, but
foreign words are always marked as “flat”.
Another point is that our annotation schema no

longer contains the confusing label “compound”.
In the original UD schema, “compound” relations
contained noun-noun compounds, verb and verb-
object compounds (subdivided into “compound:
dir”, “compound:ext”, “compound:vo” and “com-
pound:vv”), and their boundaries with “nmod”,
“scomp”, “xcomp” and their word segmentation
boundaries are not very clear.

4 Construction and annotation of the
Character-based Chinese Patent
Tree-bank

To apply this annotation schema in a real
corpus, we chose patents, one of the most chal-
lenging genres for syntactic parsing tasks due to
their syntactic complexity and frequent use of
uncommon domain-specific terms.

4.1 Collection of the data and automatic
an-notation

We built the Chinese patent treebank by
randomly selecting 100 sentences of patent claims
from November 2017 to September 20185, which
have been segmented to reduce the length of the
sentences6 In addition to line breaks, the “;” and
“:” are also segmented. The shortened sentences
were then split on individual characters as shown
in Figure 1.
The obtained character-level treebanks were

first automatically annotated with (1) word
segmentation7, (2) POS tags and (3) dependency
analysis, based on votes from three state-of-the-

4 The label “flat” is used to link names without internal
structure in UD and SUD annotation.
5 All patents are collected from the official site of CNIPA
(China National Intellectual Property Administration,
former SIPO): http://patdata1.cnipa.gov.cn/
6 A Chinese patent claim sentence contain between 50 and
70 characters in average, which is extremely long compared
to general texts, and even harder to parse.
7 The results of word segmentation are present by “:m” on
the relation labels.
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art language processing pipelines. spaCy8, Stanza9
and Trankit10.
Like the automatic annotation method for

characters, the automatic POS tagging at the
word level is based on a poll of three language
processing pipelines. Unlike character-level
annotation, the one single label we reserve for
word-level annotation is the part of speech for
each single character, which is saved as an
external POS (“ExtPos”) for the character
combination.
These automatically annotated sub-relations

“:m” and POS tags are later manually corrected
according to the criteria described in Section 2.

4.2 Problematic cases

Cases of disagreement among annotators in
annotated patent claim sentences can be divided
into three main types: (1) compounds containing
functional characters, (2) compounds involving
resultative complements, and (3) compounds with
obscure internal relation.

 Functional characters

Compound words containing functional
characters or classic Chinese structures are
usually highly frozen terms. However, many
of them have a large paradigm.

(3) 之前 之后
zhī qián zhī hòu
‘before’ ’after’

之间 之内
zhī jiān zhī nèi
‘between’ ‘within’

(4) 以前 以后
yǐ qián yǐ hòu
‘before’ ‘after’

以来 以内
yǐ lái yǐ nèi
‘since’ ‘within’

As a literal replacement for 的 (de ‘PART
indicating pre-modification’) in Chinese, 之
(zhī ‘PART’) is usually combined with a
positional word, such as in the example (3)
below. These words containing 之 (zhī

8 https://spacy.io/

9 https://stanfordnlp.github.io/stanza/

10 https://trankit.readthedocs.io/en/latest/

‘PART’) are considered as a single word in
the Penn Segmentation guidelines. Taking
the change of part-of-speech we also
annotated the relations in the terms 之 前
(zhī qián ‘before’) and 之后 (zhī hòu ‘after’)
as internal relations of words labeled as
“mod:m”, although each character is
independent,. While 之间 (zhī jiān ‘between’)
and 之内 (zhī nèi ‘within’) are annotated as
the syntactic relation “mod”.

(5) 其中 其间
qí zhōng qí jiān
‘among (them)’ ‘between (them)’

其实
qí shí
‘in fact’

The other two problematic function words
以 (yǐ ‘ADP’) and 其 (qí ‘PRON’) can also
be combined with positional words such as
之 (zhī ‘PART’). Under the same criteria, all
four expressions in example (4) are anno-
tated as word internal relations “comp:m”,
in which 以 is the head. And 其中 (qí zhōng
‘among (them)’), 其 间 (qí jiān ‘between
(them)’) and 其 实 (qí shí ‘in fact’) in
example (5) are labeled as “det:m”, in
which 其 (qí ‘PRON’) as the dependent
character.

所 (suo3 ‘PART’) is a extremely productive
character used in the “所 +VERB” structure
and often found in patent claims, can 所
(suo3 ‘PART’) can be seen as a function
word capable of converting VERB into an
ADJ-liked unit. Evolving from the ancient
所 structure, 所 (suo3 ‘PART’) is sometimes
omitted in modern Chinese (especially in

Figure 1: An example of character-based SUD
Chinese Patent treebank.
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spoken language). In our schema, 所 (suo3
‘PART’) is considered as the head
character of the structure and the relation is
systematically annotated as “comp:m”
relation in the Chinese patent treebank.

(6) 所述 所以
suǒ shù suǒ yǐ
‘said’ ‘because’

第一 章 中 (所) 描述 的 方法
dì yī zhāng zhōng ( suǒ ) miáo shù de

fāng fǎ
‘The method described in chapter 1’

The last remarkable problematic function
word is 自 (zi4 ‘self’). As with 所 (suo3
‘PART’),自 (zi4 ‘self’) is always combined
with VERB to form a self-reflexive verbal
expression, in which the pronoun 自 (zi4
‘self’) acts as the subject and the object at
the same time, e.g. 自 测 (zì cè ‘self-
evaluate’) in example (7) is equivalent to 自
己测试自己 (zì jǐ cè shì zì jǐ ‘one evaluate
himself’). This structure is annotated as
“subj:m” with 自 as the dependent. A
special case is the word 自由 (zì yóu ‘free;
freedom’), which is too frozen that it is
difficult to observe the syntactic-liked
structure, and is thus annotated as “flat:m”
like compounds with obscure internal
relation.

(7) 自测 自由
zì cè zì yóu
‘self-evaluate’ ‘free; freedom’

 Resultative complements

The resultative complements can be seen as a
single word by itself or as part of a VERB-
complement compound (Xia, 2000a),
depending on the segmentation criteria.

We adopt the test proposed by Xia based on
syllable count in and segment it only if the
verb or the complement have more than 2
syllables or the complement is the finished
aspect mark 完 (wán ‘finish’). In (8) only浸没
(jìn mò ‘submerged’) is remained

unsegmented and is annotated as “comp:m”
structure, while 连接至 (lián jiē zhì ‘connected
to’) is segmented into 连接 (lián jiē ‘connect’)
and the adposition 至 (zhì ‘ADP’), 配置有 (pèi
zhì yǒu ‘configured with’) is segmented into
配置 (pèi zhì ‘configure; configuration’) and
有 (yǒu ‘have’) and 清干净 (qīng gān jìng
‘clean up’) into 清 (qīng ‘clean_V’) and 干净
(gān jìng ‘clean_ADJ’) with the syntactic
label “comp”.

(8) 浸没 连接至
jìn mò lián jiē zhì
‘submerged’ ‘connected to’

配置有 清干净
pèi zhì yǒu qīng gān jìng
‘configured with’ ‘clean up’

 Obscure internal relation

This type involves those compounds
usually highly frozen and whose internal
structure is not obvious anymore, just like
the example of自由 discussed above.

Other examples in (9) are 根据 (gēn jù
‘according to; proof’) and 作用 (zuò yòng
‘effect; function’). 根据 is hard to label due
to the ambiguity: the structure can be
interpreted as “root proof” or “root
occupies”. According to the preference to
distributional standards of the annotation
schema, the first structure is chosen so that
the external POS is same to that of the head
character 据 (ju4 ‘occupy; proof ’). As for
作 用 (zuo4 yong4 ‘effect; function’), the
choice of relation label is between
“comp:m” and “conj:m” as it dose not
correspond to any of the tests of them. It is
simply annotated “flat:m” instead to avoid
a tedious study on the etymology.

(9) 根 据 作 用
gēn jù zuò yòng
root occupy; proof compose use
‘according to; proof’ ‘effect; function’
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4.3 Convertibility

The character-based Chinese treebank can be
easily converted to a standard word-based
treebank by simply combining all relations with
the sub-relation ":m". The part-of-speech of the
merged words is used as the external POS
annotated on the head characters of the compound
words.
The conversion from the SUD schema to the

original UD schema is performed by Grew Match
following the method proposed in (Gerdes et al.,
2018).

The UD version of the treebank is released on
https://github.com/UniversalDependencies/UD_C
hinese-PatentChar.

5 Conclusion and Future Works

In this paper, we propose a new character-
based Chinese annotation model. Instead of
starting with non-standardized, information-
wasting word segmentation, we analyze the word
internal structures and distribute syntactic-liked
labels based on the parallelism between
compound word structure and syntactic structure
in Chinese. Finally, we annotated the first
character-level tree database consisting of 100
patent claim sentences.
Based on this character-level treebank, we

have the possibility to train a character-based
dependency analyzer by bootstrapping that can
handle both word segmentation and syntactic
analysis simultaneously.
In future work, we are also interested in

developing a premoderne Chinese treebank
containing a richer character-level structure11.
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A Decision Tree for Word Internal
Rela-tion Labeling

Figure 2 shows the complete decision tree for
word internal relation annotation. The criteria are
mostly distributional with some semantic test in
addition, such as whether the two character are
synonym/antonyms. The synonym/antonyms here
are strictly limited to polar antonyms (大 da4
‘big’ and 小 xiao3 ‘small’) and coordinated
structure like 春夏秋冬 (shun1 xia4 qiu1 dong1
“four seasons”).

B Comparison of the character-level
Chinese treebank to the SUD and UD
word-level treebank

And here is a comparison between the character-
based treebank (Figure 3), the SUD word-based
treebank (Figure 4) and the UD word-based tree-
bank (Figure 5) of the same sentence in Chinese.

Figure 2: Decision tree for word internal relation annotation.
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Figure 3: SUD character-based treebank.

Figure 4: SUD word-based treebank.

Figure 5: UD word-based treebank.
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Abstract

Building upon existing work on word order
freedom and syntactic annotation, this paper
investigates whether we can differentiate be-
tween findings that reveal inherent properties
of natural languages and their syntax, and fea-
tures dependent on annotations used in comput-
ing the measures. An existing quantifiable and
linguistically interpretable measure of word or-
der freedom in language is applied to take a
closer look at the robustness of the basic mea-
sure (word order entropy) to variations in de-
pendency corpora used in the analysis. Mea-
sures are compared at three levels of generality,
applied to corpora annotated according to the
Universal Dependencies v1 and v2 annotation
guidelines, selecting 31 languages for analysis.
Preliminary results show that certain measures,
such as subject-object relation order freedom,
are sensitive to slight changes in annotation
guidelines, while simpler measures are more
robust, highlighting aspects of these metrics
that should be taken into consideration when
using dependency corpora for linguistic analy-
sis and generalisation.

1 Introduction

With the breadth of existing resources and re-
search into developing dependency treebanks,
cross-linguistic research has expanded to large-
scale comparative work, formalising and comput-
ing quantifiable properties of natural language. The
use of morphological and syntactic annotations,
to name a few, has enabled typological research
to move from type-based—treating languages as
individual data points with a categorical value—
to token-based—making generalisations and com-
parative analyses by using corpora to observe lin-
guistic units in language use and express their
behaviour using aggregate measures (Levshina,
2019).

In this work, the focus is on word order freedom,
a property of natural language syntax, extensively

covered in previous work that makes use of depen-
dency treebanks (Liu, 2010; Futrell et al., 2015;
Naranjo and Becker, 2018). The main point of in-
terest is word order freedom expressed by the mea-
sure of Word Order Entropy (WOE), as defined by
Futrell et al. (2015).

The cited work expands on methodological is-
sues, aiming to find a balance between linguistic
interpretability, robustness independent of corpus
size, and cross-lingual applicability. The defined
measure also enables quantitative verification of
hypotheses on the relation between case marking
and word order freedom (Kiparsky, 1997); word
order freedom and patterns across languages with
respect to head direction; and the positions of sub-
ject and object in the main clause (Greenberg et al.,
1963).

However, in applying this measure to different
corpus domains and sources, several issues arise
and require further addressing—mainly, when ex-
pressing word order freedom with measures based
on dependency annotations, does the measure re-
veal more about the language itself, or the anno-
tation used as a layer between the raw text and
the computable data? Further, and in line with the
question raised in the original study, is this measure
consistent across corpus sizes, and different text
samples?

These questions are investigated through a repli-
cation of the methodology on the same set of lan-
guages covered by the original study (with minor
exceptions). The aim is to compare two generations
of Universal Dependency annotation styles (Nivre
et al., 2016b, 2020), using the latest releases of Uni-
versal Dependencies v1 (Nivre et al., 2016a) and
v2 (Zeman et al., 2021). The analysis is focused on
three levels—(1) comparing scores obtained over
the full corpus with multiple random samples, to
verify whether the measure is robust to sample size;
(2) comparing scores across two versions of anno-
tation guidelines in the same style, to test whether
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the measure remains consistent through alterations
in annotation guidelines and treebank development;
and (3) comparing this replication study to the orig-
inal findings, partially overlapping in corpora, to
further verify consistency.

Section 2 gives a brief summary of the key
methodological points of Futrell et al. (2015) (fur-
ther also referred to as “the original study”). Sec-
tion 3 highlights the specifics of the experimental
setup. Results and findings are presented in Section
4, and Section 5 concludes the paper.

2 Background

Futrell et al. (2015) define word order freedom as
“the extent to which the same word or constituent
in the same form can appear in multiple positions
while retaining the same propositional meaning and
preserving grammaticality.” The cited study aims
to employ dependency treebanks in computing
quantitative properties of natural language syntax—
specifically, word order freedom—and develop lin-
guistically interpretable measures.

The degree of word order freedom is quantified
through the unordered dependency graph of a sen-
tence, using conditional entropy:

H(X|C) =
∑

c∈C
pC(c)

∑

x∈X
px|c(x|c) log pX|C(x|c)

(1)

where X is the dependent variable, conditioned
on C, the conditioning variable. Since directly
measuring the conditional entropy of sequences of
words is intractable, the authors decide on three
entropy measures over partial information about
dependency trees, considering three parameters: (1)
estimating H from joint counts of X and C (further
discussed in 3.2); (2) information contained in X;
and (3) information contained in C. The goal is to
balance the need to avoid data sparsity against the
preference to retain linguistic interpretability.

To avoid the issue of sparsity, entropy is com-
puted only on local subtrees—consisting of a head
and its immediate dependents. To avoid issues with
misrepresented variability in certain word order
phenomena, this means preferring annotation styles
with content-head dependency. This requirement
is satisfied in Universal Dependencies annotations.

Futrell et al. (2015) introduce three measures of
word order entropy (WOE):

Relation Order Entropy (ROE) Conditioning
on the unordered local subtree structure (C being
the set of dependency relations and part-of-speech
(POS) tags of constituents), the dependent variable
X is the linear order of relation types expressed in
the local subtree.

Subject-Object Relation Order Entropy (SOE)
Assuming that ROE will result in some data spar-
sity issues despite limiting the search to local sub-
trees, SOE narrows the criteria to local subtrees
containing relations of type nsubj and dobj (UDv1)
or obj (UDv2), conditioned on the POS of these
dependents.

Head Direction Entropy (HDE) The most nar-
rowly defined of these measures, HDE is condi-
tioned only on a dependent and its head, for all rela-
tion types; the dependent variable denotes whether
the head is to the left or right of the dependent.

3 Experimental setup

This study follows the methodology of Futrell et al.
(2015) as closely as possible, with three excep-
tions: omitting three languages from the original
study due to data limitations, adjusting entropy es-
timation due to technical limitations, and perform-
ing computations over multiple random subcorpora
samples to perform a more robust evaluation of
the effects of sampling and data sparsity. The ex-
perimental setup is further detailed in subsequent
paragraphs.

3.1 Treebank matching

In order to compare WOE scores between UDv1
and UDv2 annotations of the same text, it is first
necessary to consolidate the available treebanks
across the 34 languages of the original study. The
aim is to retain the maximum number of sentences
with both UDv1- and UDv2-style annotations.

The last release of UDv1 is used: version 1.4
(Nivre et al., 2016a); and the latest release of UDv2
at the time when the experiments were carried out:
version 2.8 (Zeman et al., 2021).

Two of the languages featured in the original
study—Bengali and Telugu—do not have a UDv1
release; the original study used HamleDT annota-
tions (Zeman et al., 2012). For this reason, they
cannot be featured in the analysis, so the total num-
ber of languages is reduced to 32, with a total of
52 available treebanks.
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UD1 vs. UD2
< = >

no. of treebanks 17 24 11

Table 1: Breakdown of available treebanks and their
UD1 vs. UD2 coverage, by treebank count, for 32 lan-
guages featured in the original study.

Despite the continuous growth of both the num-
ber of languages featured in UD, as well as the
respective treebanks (Nivre et al., 2020), the data is
limited to the intersection of treebanks (or, in cer-
tain cases, individual sentences) between UDv1.4
and UDv2.8. Table 1 breaks down the treebank
coverage between releases for the 32 languages
group. The majority of treebanks either have an
exact match between the two releases, or UDv2
expands the treebanks featured in UDv1, in terms
of sentence count. For a fifth of the cases, there is
a reduction in the number of sentences going from
the UDv1 to the UDv2 version of the treebank.

To ensure a truly “parallel” corpus of UDv1 and
UDv2 annotations, those treebank sentences that do
not feature in either of the two latest releases need
to be removed. Given that the releases followed no
set sentence identifier standard before UDv2.0, this
means resorting to heuristic matching methods.

The heuristic matching raised unexpected chal-
lenges in equating sentences that a human reader
would consider superficially identical. Most of
these challenges stemmed from increased annota-
tor experience and refined annotation guidelines—
resulting in, e.g., altered dependency relations be-
tween constituents, and different annotation con-
ventions for multi-word expressions and complex
names—or were the result of updated tokenisation,
lemmatisation, and treatment of abbreviations. Due
to this, the features taken into consideration in the
matching process were wordform and lemma com-
parisons, POS tags and dependency relations, and
the Levensthein distance of sentence surface forms.

During the matching process, Japanese was also
removed from the pool of languages, due to a neg-
ligibly small (roughly 200) number of sentences
identified as matches in the only treebank featured
both in the UDv1.4 and UDv2.8 release.

Finally, Figure 1 visualises the total size of the
annotated corpora1 per language, from the small-
est treebank (Tamil, 600 sentences) to the largest

1Detailed statistics are given in Appendix A.

Figure 1: Total corpus size in number of sentences.

collection of treebanks (Czech, 113 682 sentences).
Due to the large variation in corpus sizes, and

in line with Futrell et al. (2015), the experiments
are performed both on the full corpora for each lan-
guage, and on 10 randomly sampled subcorpora of
1000 sentences for each language. Note that, while
the 1000 sentences are picked randomly, the sam-
ples are matched between the UDv1 and the UDv2
versions of the corpus—maintaining the “same sen-
tence, two annotations” setup.

3.2 Entropy estimation

Apart from the equally sized subcorpora, Futrell
et al. (2015) address the issue of sample size by
applying the bootstrap entropy estimator of DeDeo
et al. (2013), arguing that entropy is otherwise
underestimated. However, due to backward com-
patibility issues with the implementation of the
bootstrap estimator in the original study, this study
resorts to using the naive estimator (Cover et al.,
1991), assuming that the analysis performed is not
sensitive to the order of magnitude of absolute
entropy scores, as its internal consistency allows
for forming and comparing rankings between lan-
guages. This is further discussed in Section 4.3.

3.3 Variables

In line with the approach of Futrell et al. (2015),
conditional entropy is computed on local subtrees:
a head and its immediate dependents. The condi-
tioning variable is the unordered set of dependency
relations between the head and its dependent(s),
and the POS tags of all constituents.

In the case of relation order entropy, the depen-
dent variable is the linear order of relation types in
the subtree. For subject-object entropy, the depen-
dent variable is the linear order of the subject and
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object in subtrees whose predicate head has both
a subject and an object in its dependents. Finally,
head direction entropy is computed over all head-
and-dependent pairs, where the dependent variable
notes whether the head is to the left or right of its
dependent.

4 Analysis

The aim of the analysis is threefold: (1) comparing
the scores obtained on the full corpora against the
random samples, to evaluate the effects of sampling
and data sparsity, as well as comparing the random
samples to estimate variance; (2) comparing UDv1
scores to UDv2 scores, to evaluate the effect of
annotation; and (3) comparing the results of the
original study to the rankings obtained on UDv1
and UDv2.

4.1 Full corpus vs. random sample

Figures 2 through 4 present the entropy estimates
over the full corpora2 and randomly sampled sub-
corpora, for UDv1 and UDv2, over the three met-
rics described in Section 2.

In the case of Relation Order Entropy (Figure 2),
there is a clear difference between the full-corpus
entropy estimates and the random-sample scores,
which would also affect the rankings of the featured
languages on a scale from “least-” to “most word
order freedom”, if the WOE score was used as the
main quantifying metric. As mentioned in Section
3.2, Futrell et al. (2015) argue that the entropy es-
timator plays a role in under- or overestimating
the entropy score, considering data sparsity and
the long-tailed frequency distribution of words in
natural language. However, with the naive estima-
tor, this difference between the full corpus and the
1000-sentence samples is not nearly as striking for
the other two metrics, SOE (Figure 3) and HDE
(Figure 4); nor do the full-corpus rankings correlate,
at a glance, with the corpus sizes shown in Figure 1.
An observed explanation for this discrepancy is the
fact that ROE—the least narrowly defined metric—
allows for an explosion in the number of possible
values for the conditioning variable when comput-
ing over the full corpus, compared to the relatively
limited set of values available in the subcorpora.

Subject-Object Relation Order Entropy (Figure
3) shows less of a discrepancy between full-corpus

2Note that, for all metrics, entropy estimates for the full
Tamil corpus match all random samples—as the full corpus
comprises 600 sentences in total.

entropy and that of subcorpora, in line with the
SOE metric being more limited in the number and
type of constituents forming the values for the con-
ditioning variable. However, there is more of a vari-
ance between the entropy scores of different sub-
corpora (represented with red dots in the figures)
than seen with the other two metrics. Furthermore,
the different subcorpora scores again have the po-
tential to dramatically alter the rankings. In the
case of a relatively narrow definition of word-order
metric, where the dependent variable values are
permutations of (subject, object, predicate) paired
with POS tags, this brings into question the relia-
bility of random samples to give an accurate WOE
score according to which languages may consis-
tently be compared as more or less rigid in word
order freedom.

Finally, Head Direction Entropy (Figure 4)
demonstrates the highest (visual) match between
full-corpus and subcorpora scores. Intuitively, this
is in line with expectations, considering the nar-
row definition of HDE and the binary value of the
dependent variable—a small random sample will
likely have a similar distribution to the full corpus.

The figures alone imply that random samples
may be less reliable than full-corpus scores if the
WOE metric is less narrowly defined. However, in
an attempt to not rely on visualisations alone, these
differences are also quantified by calculating the
Kendall rank correlation coefficient between rank-
ings obtained from the full-corpus entropy scores,
and those based on random-sample scores. Table
2 presents these coefficients, comparing the UDv1
and UDv2 computations, as well as the rankings
from the original study for comparison.

The correlation between random samples and
full-corpus scores expressed in Kendall τ (Table 2,
top) is rather low—and in most cases not signifi-
cant. The only metric that shows a weak correlation
is HDE. Table 3 presents the correlation score be-
tween WOE rankings and rankings according to
corpus size. No correlation is found between cor-
pus size and WOE ranking, which seems to support
the decision to use naive entropy estimations to for-
mulate rankings.

4.2 UDv1 vs. UDv2

Figures 2 through 4 also allow for comparison be-
tween scores and rankings computed over the UDv1
and UDv2 annotations.

Figure 2, ROE, apart from a shift in rankings,
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Figure 2: ROE; UDv1 (left) vs. UDv2 (right). The bar represents the relation order entropy estimated from the
full corpora; the red dots represent entropies estimated from ten random samples of 1000-sentence subcorpora.
Languages are ranked according to the full-corpus ROE estimate.

Figure 3: SOE; UDv1 (left) vs. UDv2 (right). The bar represents the relation order entropy estimated from the
full corpora; the red dots represent entropies estimated from ten random samples of 1000-sentence subcorpora.
Languages are ranked according to the full-corpus SOE estimate. Bars are coloured in line with Futrell et al. (2015),
denoting the nominative-accusative case marking system type: “full” means fully present case marking; “DOM”
means Differential Object Marking (Aissen, 2003).

Figure 4: HDE; UDv1 (left) vs. UDv2 (right). The bar represents the relation order entropy estimated from the
full corpora; the red dots represent entropies estimated from ten random samples of 1000-sentence subcorpora.
Languages are ranked according to the full-corpus HDE estimate.
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ori UDv1 UDv2

ROE .161 p=0.210 .165 p=0.259 .098 p=0.484

SOE .449 p=0.001 .068 p=0.584 .187 p=0.215

HDE .372 p=0.003 .297 p=0.071 .200 p=0.176

Table 2: Kendall τ entropy estimate rank correlation
(averaged in the case of UDv1 and UDv2), comparing
full corpus vs. random sample rankings. “ori” denotes
rank correlation between full corpus and random sam-
ple rankings for data from the original study—note that
these scores are based on rankings obtained from vi-
sualisations (as absolute entropy estimates were not
available), and using only a single data point for each
language’s random samples.

full sample

ROE .027 p=0.839 .027 p=0.839 UDv1

-0.07 p=0.566 .006 p=0.973 UDv2

SOE .002 p=1.0 .088 p=0.499 UDv1

.062 p=0.636 .118 p=0.361 UDv2

HDE -0.17 p=0.164 -0.16 p=0.198 UDv1

-0.01 p=0.919 -0.18 p=0.144 UDv2

Table 3: Kendall τ scores for WOE vs. corpus size
rankings.

also shows different discrepancies between full-
corpus scores and random-sample scores for par-
ticular languages, as well as different “outliers” in
this sense.

The differences are even more notable in the
case of SOE (Figure 3). Futrell et al. (2015) make
observations on word order freedom implying the
presence of case marking, as in the highest-scoring
third of languages according to Figure 3. However,
certain outliers demonstrate different behaviour
between annotation versions. While superficial
changes in labelling, e.g., direct objects and pas-
sive subjects from UDv1 to UDv2 are accounted
for in the computing process, these results imply
a non-negligible effect of annotation guidelines or
annotator choices on results quantifying word order
freedom. In fact, looking into differences between
the “parallel” UD corpora reveals nearly universal
discrepancies in the number of annotated nsubj and
(d)obj relations, resulting in the more severely af-
fected languages changing their relative positions
in the rankings.

As in the previous section, HDE (Figure 4) is the
most consistent between annotation versions, with
the same group of head-initial languages ranking
most- and least-rigid with respect to word order,
and variations in rank mostly being pairwise switch-
ing. This again confirms the most narrowly-defined

full sample

ROE .105 p=0.417 .273 p=0.089

SOE .088 p=0.499 .110 p=0.465

HDE .397 p=0.001 .380 p=0.013

Table 4: Kendall τ entropy estimate rank correlation,
comparing UDv1 vs. UDv2 rankings, for full corpus
scores and random samples.

full sample

ROE .225 p=0.076 .051 p=0.525

SOE .075 p=0.566 .052 p=0.612

HDE .075 p=0.566 .025 p=0.555

Table 5: Kendall τ entropy estimate rank correlation,
original study vs. newly obtained rankings; UDv1 only.

measure to be the most robust.
Again, Table 4, top shows an attempt to quantify

the differences between UDv1 and UDv2 scores
through the Kendall τ of rankings. Again, the
scores are mostly insignificant, with HDE being the
least unstable measure across annotation versions.

4.3 Comparing across studies
Finally, WOE rankings obtained on UDv1 data are
compared3 with those retrieved from the Futrell
et al. (2015) study. Rank correlations, again ex-
pressed in Kendall τ only, are given in Table 5.

No correlation is found between the rankings
obtained on random samples for any of the metrics.
Further work is needed to determine how much this
is influenced by differences in the corpus content
and annotations, or possibly different methods of
entropy estimation—especially in the case of ROE,
the only notable outlier in this case.

5 Conclusion

This paper has taken a deeper look into an existing
methodology of quantifying word order freedom
in dependency corpora. The study attempted to
determine whether this methodology and measure
allows for draw reliable conclusions about word
order freedom, or whether it depends to a relevant
extent on the underlying dependency annotations—
both in terms of annotation guidelines, and in the
quality of annotation depending on annotator expe-
rience and consistency. The study identified diffi-

3In the interest of space, visual comparisons between
the scores provided in the original study and those obtained
through these computations are not included in the main body
of this work; however, they are available in Appendix C.

59



culties in finding a definition of measure that would
be robust enough to avoid noise and misrepresen-
tation, yet fine-grained enough to give meaningful
linguistic insight. The analysis shows that changes
in annotation styles can alter the results of esti-
mates and change the comparative presentation of
word order freedom across languages. Furthermore,
it has shown that the observed measures may be
susceptible to differences between samples, and
that random sampling as defined by this method-
ology is selectively unreliable, depending on mea-
sure complexity. In conclusion, there is merit in
cross-testing treebank-based metrics on different
versions of treebanks, considering changes in an-
notation guidelines or even annotator teams, as
well as on random subsamples of treebanks. Future
work may also investigate the optimal size for these
samples—currently fixed on an arbitrary count.

Building on existing work on Universal Depen-
dencies, the question that next arises concerns
what potential levels of complexity using Enhanced
Universal Dependencies would introduce to this
method of quantifying word order freedom. Fu-
ture work may also focus on similar comparisons
between manually annotated (gold-standard) and
automatically generated dependency annotations,
as well as possible differences between domains
(e.g., newswire vs. literary text; written vs. spo-
ken corpora), as well as across different annotation
styles.
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Alessandro Lenci, Nikola Ljubešić, Olga Lya-
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Agić, Amir Ahmadi, Lars Ahrenberg, Chika Kennedy
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lid, Şaziye Betül Özateş, Merve Özçelik, Arzu-
can Özgür, Balkız Öztürk Başaran, Hyunji Hay-
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A Corpus statistics

Table 6: Comprehensive list of corpus statistics; sen-
tence count, subtree count, number of subtrees with
noun subject and direct object, total count of noun sub-
jects, nsubj of which passive, total count of direct ob-
jects; per language, and per annotation guidelines ver-
sion, sorted by total corpus size (ascending).

TBs UDv sen st has(ns,do) mult(ns) nsubj (o. w. passive) (d)obj

Tamil 1 600 3901 205 1 665 1 12705
2 600 3937 167 0 664 1 10492

Irish 1 1010 8762 298 1 1600 0 35252
2 1010 9052 307 1 1562 0 34987

Hungarian 1 1800 16213 849 0 2614 0 44215
2 1800 16252 850 1 2621 0 44298

Greek 1 2302 20713 1139 6 3299 0 68570
2 2302 20106 1011 0 2499 711 62047

Hebrew 1 4198 36479 896 8 5447 0 67334
2 4198 37177 896 8 5447 0 67371

Danish 1 5509 33106 3257 129 8402 683 110374
2 5509 33943 3282 95 9085 0 110304

Turkish 1 5619 23750 1027 14 3588 0 58166
2 5619 23440 976 14 3730 0 54963

Persian 1 5997 62226 1786 22 8861 149 128609
2 5997 63611 1786 22 8861 149 128609

Croatian 1 6283 51595 2500 2 7798 818 128826
2 6283 52995 3194 20 9944 0 137521

Arabic 1 7651 123462 7865 35 15732 562 1101114
2 7651 128242 5246 448 17815 774 494711

Basque 1 8993 45923 2473 4 8716 0 102881
2 8993 46946 2473 4 8716 0 102881

Romanian 1 9519 83019 3180 7 10178 1857 182848
2 9519 84178 3183 0 10090 1928 177917

Swedish 1 10589 59962 5564 16 28792 3756 180440
2 10589 61477 5871 4 29880 3888 182691

Slovak 1 10601 36869 2884 0 7120 220 80395
2 10601 37791 2003 0 7121 220 57701

Bulgarian 1 11137 56582 3721 1 10209 1240 109351
2 11137 57622 3354 0 10066 1434 99099

Slovenian 1 11168 56792 2745 0 17496 0 160994
2 11168 58212 2747 0 17494 0 160187

Italian 1 13779 100170 4458 1 12401 2280 297825
2 13779 101065 4478 2 12425 2275 296198

Portuguese 1 14400 106352 6431 8 33456 1416 305249
2 14400 108011 6270 1 31196 3230 338361

German 1 15590 95538 6699 9 17346 3191 176865
2 15590 97725 6468 10 17412 3192 171913

French 1 16334 136590 9666 24 21005 2716 423183
2 16334 141126 7232 0 19689 3114 359869

Hindi 1 16611 134715 9020 8 21023 562 410484
2 16611 128192 9021 8 21023 562 410484

Catalan 1 16677 187178 16818 223 27523 0 1405814
2 16677 192623 16500 74 27431 25 1408426

(cont. on next page)
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TBs UDv sen st has(ns,do) mult(ns) nsubj (o. w. passive) (d)obj

Estonian 1 18009 81927 5277 0 20099 0 181768
2 18009 83159 5226 0 20201 0 181212

Dutch 1 20906 104414 6809 20 40866 0 309076
2 20906 101450 6838 11 41118 5802 170403

AncientGreek 1 24929 126503 7193 27 42958 4578 428714
2 24929 125374 6646 15 42610 3788 402153

English 1 26298 142986 12266 37 111537 7005 475591
2 26298 145774 12320 26 111255 7245 482468

Finnish 1 32302 122859 7206 11 60748 0 256977
2 32302 125952 7237 12 61190 0 257568

Latin 1 33309 172925 11014 30 96978 29253 503707
2 33309 176146 7583 29 101202 24639 359377

Spanish 1 33693 346221 20607 205 45537 1182 1803269
2 33693 355407 17591 30 45460 1234 1604446

Russian 1 65378 438671 14965 4 166572 11406 699931
2 65378 451072 15224 2 150972 16170 709338

Czech 1 113682 761586 48833 8 334719 34563 2278743
2 113682 780840 33216 3 334953 34563 1482098
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B Corpus statistics, visualised

Figure 5: Number of subtrees, per language, across
annotation gudeline versions.

Figure 6: Number of (D)OBJ relation heads, per lan-
guage, across annotation guideline versions.

Figure 7: Number of NSUBJ relation heads, per lan-
guage, across annotation guideline versions.

Figure 8: Number of NSUBJ relation heads, incl. varia-
tions of PASS, per language, across annotation guideline
versions.

C Additional comparisons
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Figure 9: ROE; original study vs. UD1 rerun (random sample vs. full treebank)

Figure 10: ROE; original study vs. UD1 rerun (random sample vs. full treebank)
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Figure 11: ROE; original study vs. UD1 rerun (random sample vs. full treebank)
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Abstract

This paper introduces a typometric measure
of  flexibility,  which  quantifies  the  varia-
bility of head-dependent word order on the
whole set of treebanks of a language or on
specific constructions. The measure is based
on the notion of head-initiality and we show
that it can be computed for all of languages
of the Universal  Dependency treebank set,
that it does not require ad-hoc thresholds to
categorize  languages  or  constructions,  and
that it can be applied with any granularity of
constructions  and  languages.  We  compare
our results with Bakker’s (1998) categorical
flexibility  index.  Typometric  flexibility  is
shown  to  be  a  good  measure  for
characterizing the language distribution with
respect  to  word  order  for  a  given
construction,  and  for  estimating  whether  a
construction predicts the global word order
behavior of a language.

1 Introduction

For  half  a  century,  research  in  typology
centers  on  the  discussion  of  word  order
parameters,  pioneered  by  Greenberg  (1963,
1966),  and  elaborated  by  such  authors  as
Hawkins  (1983),  Dryer  (1992)  and  Nichols
(1992).  Bakker  (1998)  proposes  a  seminal
study  on  word  order  flexibility,  which  we
pursue here. First off, it is clear that languages
differ in the flexibility of word order: Greek or
Russian  are  more  flexible  than  English  or
Chinese. Secondly, constructions differ in their
flexibility  across  the  diversity  of  languages:
The  relation  between  an  adposition  and  its
complement  is  less  flexible  than  the  relation
between a verb and its direct object. 

To give a first idea how this can be seen on
a typometric scatter plot, consider Fig. 1 where
each point corresponds to a language, with its
x-value  indicating  the  percentage  of  nominal
dependents of adpositions on the right  of  the

adposition  and  its  y-value  indicating  the
percentage  of  nominal  object  dependents  of
verbs to the right of the verb.

Figure 1: Two-dimensional scatter plot with ADP-
comp:obj-NOUN/PROPN in the x-axis and VERB-
comp:obj-NOUN/PROPN in the y-axis.

As  a  first  observation,  note  that  a  large
majority  of  languages  have  x=0  or  x=100,
leaving a rather empty space in the middle of
the  scatter  plot.  This  shows  that  most
languages  have  almost  only  prepositions  or
almost only postpositions; languages that mix
prepositions  and  postpositions  equally  are
rare.1 However,  many more languages accept
both pre-verbal and post-verbal direct objects
(Guzmán Naranjo & Becker  2018,  Gerdes  et

1The scatter plot view understates the fact that many
languages cluster around the bottom left (0,0) and
the top right  (100,100) of  the  plot:  Many strictly
postpositional  languages  also  have  their  nominal
objects  on  the  left,  and,  inversely,  many  strictly
prepositional  languages  also  have  their  nominal
objects to the right of their verbal governor. This is
a  well-established  observation  in  typology  since
Greenberg (1963), and is at the base of our choice
of SUD treebanks (see Section 2 for details).
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al.  2021).  Nonetheless,  the  postpositional
languages on the left appear to be less strictly
postpositional than the prepositional languages
on the right  are prepositional.  This motivates
the definition of  flexibility  in  Section 4.  See
Section 3 for more details on how to compute
and understand these plots.

How  can  we  measure  the  flexibility  of
languages  and  constructions?  What  are  the
properties  of  flexibility  across  languages  and
constructions? We will try to give answers to
these questions in Section 6.

Most  classical  approaches  to  typology,
including Bakker (1998) and previous works,
are categorical in the sense that languages are
grouped  into  categories  based  on  their  order
constraints,  and  often  only  one  basic  word
order  is  assumed  per  language  from  which
other  word orders  are  derived by movement,
dislocation, or similar operations.

We  propose  a  typometric approach  (also
called  token-based  typology by  Levshina
2019): With the availability of a wide range of
uniformly  annotated  treebanks  in  the
Universal  Dependencies  (UD)  project,  it  has
become possible  to  approach these  questions
empirically.  Syntactic  typology  outgrows  the
need  for  ad  hoc  categories  and  measures  of
distribution  of  languages  across  empirical
observations  become  the  center  of  interest
(Futtrell et al. 2020, Levshina 2022). In Gerdes
et  al.  (2021),  quantitative universals  describe
empty  or  sparsely  populated  spaces  in
unidimensional  or  multidimensional  spaces
instead  of  qualitative  universals  that  are
claiming  rare  or  impossible  combinations  of
language features based on categories.

Tesnière (1959) proposed a classification of
languages based on the dependency direction
referring  to  Steinthal  (1850)  and  Schmidt
(1926).  He  opposes  strict  word  order,  when
head-daughter  relations  mostly  go  in  one
direction, to mitigated when the head is amidst
its  dependents  going  out  in  both  directions.
Among languages with mitigated word order,
there are languages with free order, as well as
languages with mixed word order, where word
order is quite strict in most constructions but
inconsistent  between  constructions.  This  is
what flexibility measures.

In  this  paper  we  propose  measures  of
flexibility  that  can be applied to  dependency
treebanks and discuss the distributions of these
measures  compared  to  other  observations  on
dependency treebanks. Similar measures have
been first  introduced by Futrell  (2015) under

the name of word-order entropy and have been
studied by Levshina (2019).

In  this  paper,  we  try  to  characterize  the
distribution of all languages of our sample in
terms  of  word  order  direction  for  each
construction C: We compute for each language
L, the number of head-initial realization of the
construction  C in  L,  what  we  call  the  head-
initiality  of  language L under  C (Section 3).
We  deduce  from  head-initiality  a  second
measure  we  call  flexibility  and  study  the
relation between head-initiality and flexibility
for all languages in our sample, distinguishing
flexible  languages  from  mixed  word  order
languages (Section 4). The typometric measure
of  flexibility  we  introduce  is  compared  with
Bakker’s  (1998)  categorical  measure  of
flexibility,  as  well  as  a  more  typometric
measure à la Bakker (Section 5). We show that
the  distribution  of  head-initiality  for  every
construction  C  can  be  characterized  by  the
average head-initiality of C and the flexibility
of C (Section 6). In Section 7, we explore the
question  of  the  predictability  of  word  order
distribution from one construction to another.

2  Dependency syntax and word order

Dependency  syntax  encodes  constructions
by  relations  between  words  representing
combinations  between  larger  units  (Tesnière
1959,  Hudson  1984).  A  dependency  relation
goes from one word to another, from governor
to dependent. There is no a priori assumption
on locality of a relation,  and a long distance
dependency,  for  example,  does  not  need any
special encoding in a dependency tree, which
makes  dependency  treebanks  the  obvious
choice when attempting to measure tendencies
in word order across languages (Liu 2008).

A  syntactic  relation  is  a  class  of  combi-
nations of the same type, having similar pro-
perties. Dependency syntax makes the assump-
tion  that  most  constructions  are  asymmetric,
with a head element controlling the distribution
of  the  combination.  In  some  languages,
constructions are very rigid and combinations
of a certain type tend to always have the same
word  order  between  the  governor  and  the
dependent.  Examples  of  such  rigid  relations
are  the  subject and  the  object relation  in
English.2 Subject  and  Object  are  different

2Widely  discussed  exceptions  to  the  rigidity  of
subject  and object  in English include the relative
pronoun (a person who I never met) and marginal
cases of dislocation such as Chocolate I adore! As
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constructions  and  therefore  are  annotated  as
different relations.

Although the main criteria of distinguishing
one  relation  from  another  is  valency  and
morphology (for  example  an  accusative  case
can  be  the  main  criterion  for  delimiting  the
direct  object  relation),  in  some  cases  the
definition  of  a  dependency relation  relies  on
the  word  order  itself  and  thus  the  relations
have by definition a strict word order.3 

Just  as  in  the  initial  typometrics  paper
Gerdes et al. (2021), we rely for our measures
on the  Surface  Syntactic  Dependency (SUD)
version of UD (Gerdes et al. 2018), in order to
make our work comparable with previous work
on  word  order  typology,  thus  preserving
“cross-category  harmony”  (Hawkings  1983)
and  avoiding  complications  in  particular
concerning adpositions and auxiliary verbs that
are  analyzed  in  an  unusual  manner  in  the
original UD annotation scheme.4 

Choosing  SUD  rather  than  UD  has  very
little  impact  on  the  computation  of  the
flexibility measures introduced in this paper.5 

in other typological studies, we restrict our object
measures  to  nominal  objects,  thus  excluding  the
first  case.  Clearly,  the measures  we end up with
will  always  depend on the annotation choices  of
each treebank.

3As an example, consider the annotation choices for
Cantonese and  Mandarin  reported  in  Wong et  al.
(2017):  Any  element  to  the  left  of  the  verb  is
considered as “dislocated” even if it fills the verb’s
object slot. 
4Guzmán Naranjo and Becker (2018), for example,
find  that  UD’s  case relation  stands  out  in  their
directional correlation measures.
5As  SUD  is  obtained  by  a  conversion  of  UD
without any addition of information, the granularity
remains  similar,  see  Section  4.  It  only  impacts
locally some relations such as the subject, which, in
SUD,  is  attached  to  the  auxiliary  rather  than  the
content  verb  and  whose  direction  can  change  in
some  cases  (for  instance,  in  German,  where  the
subject can be between the auxiliary and the verb).

SUD’s  comp relation corresponds to  UD’s
aux,  ccomp,  iobj,  obj,  obl:arg,  xcomp,  cop,

mark,  and  case;  mod corresponds  to  UD’s
advcl,  acl,  advmod,  amod,  nmod,  nummod,
and  obl:mod.  SUD’s  subj combines  UD’s
csubj and  nsubj. The relations  dislocated,  det,
and  clf remain unchanged between SUD and
UD. 

We base our work on the latest SUD version
2.11  which  includes  243  treebanks  in  138
languages in total. For our study, treebanks of
the same language are combined and taken as
one data point. 65 UD languages cover Indo-
European languages. Afro-Asiatic, Uralic, and
Tupian  languages  have  11  languages  each.
Turkic  covers  another  6  languages.  Of  the
remaining  languages  only  Basque,  Chinese,
Classical  Chinese,  Indonesian,  Japanese,
Korean,  and  Naija  have  more  than  100k
tokens. 21 of the UD languages are very small
(less  than  1000  tokens),  which  falls  beneath
our threshold for most of our measures. 

3 Typometrics and scatter plots

A typometric analysis does not assume a basic
word order  or  any threshold for  categorizing
languages  or  construction.  Our  basic
observation is  the measure of  head-  initiality
defined for a language L and a construction C
involving a unique dependency as follows:6

head_initiality(L, C) =
% of  occurrences  of  C  in  L that  are  head-initial
(governor < dependent)

In most cases the construction C limited to a
dependency is defined as a  gov-rel-dep triple
(governor’s  POS,  dependency  relation,
dependent’s  POS).  In  some  cases  the
construction is defined as the sum of a series of
gov-rel-dep triples.  Note that  any variable of
the triplet (gov, rel, or dep) can be equal to all,
denoting no restriction on this variable.

6Head-initiality is introduced in Gerdes et al. (2019,
2021), where it is called direction.
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Figure 3: Two-dimensional scatter plots with verbal
subjects and objects.

A head-initiality of 0 for a given language
and  construction  shows  a  strictly  head-final
construction, a head-initiality of 100 indicates
a strictly head-initial  construction.  Measuring
head-initiality across the UD languages for the
combination of core dependency relations (to
be  defined  in  the  next  section)  gives  the
unidimensional scatter plot of Figure 2, where,
unsurprisingly, Japanese is the most head-final
language,  and  Arabic  the  most  head-initial
language of our language sample set.7

A second two-dimensional scatter plot (Fig.
3)  opposes  the  head-initiality  of  nominal
subjects  in  the  x-axis  (VERB-subj-  NOUN|
PROPN) and nominal direct objects in the y-
axis  (VERB-comp:obj-  NOUN|PROPN).  We
allow both the UD POS noun and proper noun
as arguments. We observe a typical triangular
shape  of  the  resulting  distribution  indicating
that nearly all languages have the tendency to
have  direct  objects  more  to  the  right  than
subjects.  Put differently,  hardly any language
has a higher head-initiality on subjects than on
direct  objects.  See Gerdes et  al.  (2021) for a
discussion of how this observation generalizes
to the well-known absence of OVS languages.

7Colors and shapes of the language points follow
the  original  typometrics  paper  with  colored
triangles for  the  different  subgroups  of  Indo-
European  languages,  plus signs  for  agglutinating
languages,  orange  x signs  for  Afroasiatic  and
Semitic languages, and  circles and  stars for other
groups. Data, scatterplots, and detailed captions are
on  https://typometrics.elizia.net/.  Note  that  only
some languages are labeled. This has no semantics
and is done automatically to increase readability.

4 Flexibility of languages

For  a  language  L,  flexibility measures  the
distance  of  a  construction  C  from  a  rigid
construction.  In  this  paper,  we only consider
constructions  involving  a  governor  G  and  a
dependent  D  by  a  particular  relation.  The
construction  has  a  wider  or  narrower  range
depending on whether the relation between G
and D or the categories of G and D are more or
less constrained.

flexibility(L,C) 
= 2  min( head_initiality(L,C),✕

    100–head_initiality(L,C) )
= twice the smallest distance of head_ 

initiality(L,C) to 0 or to 100

The value of flexibility(L,C) ranges from 0
to 100 and measures the distance of C from a
strictly head-initial or head-final construction.
A very similar  measure,  word order  entropy,
has  been  proposed  by  Levshina  (2019),
inspired  by  Futrell  et  al.  (2015).8 She  also
considers  the  entropy  for  couples  of
dependencies, such as the relative position of
subjects and objects.

For a given language L, we can compute the
weighted  average  of  flexibility(L,C)  for  a
relevant set S of constructions C, which will be
discussed below.

head_initiality(L) = 
weighted average of head_initiality(L, C)on 
constructions C

flexibility(L) = 
weighted average of flexibility(L, C) on 
constructions C.

A measure very similar to flexibility(L) has
been introduced by Futrell et al. (2015), using
conditional entropy. In information theory, the
conditional  entropy  H(Y|X) quantifies  the
amount of information needed to describe the
outcome of the random variable Y given that
the value of the random variable X is known.
The more  H(Y|X) is close to 1, the more Y is
independent from X,  H(Y|X) being equal to 0.
In Futrell et al. (2015), X is used to select a set
S of constructions, while Y describes the word
order  on  S.  In  other  words,  entropy,  like

8Precisely,  entropy(L,C) = p.log2(p) - (1–
p)log2(1-p),  with p = head_initiality(L,C).  This
value also ranges from 0 to 100%, with value 0 for
p=0  or  100%  and  100%  for  p=50%.  The  only
difference  with  our  calculation  is  that  entropy
smoothes values for p around the 50% mark.
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flexibility, measures the extent to which word
order  choices  depend  on  syntactic  construc-
tions.9

Let  us  discuss  our  choices  of  S  for  head-
initiality  and  flexibility.  The  computation  of
head_initiality(L) and flexibility(L) is sensitive
to the range D of data considered. Unlike head-
initiality(L),  the computation of  flexibility(L)
is sensitive to the granularity of the partition of
D into a set  S of constructions:  the finer the
partitioning  S,  the  higher  the  yield  of
flexibility(L). In our case, we have adopted a
rather fine granularity, as we consider any gov-
rel-dep triplet  as  a  different  construction,
where  gov is the POS of the governor,  dep is
the  POS  of  the  dependent,  and  rel is  the
relationship  between  them.  We  could  have
used an even finer granularity, by taking into
account  certain  features,  for  example  by
distinguishing  relative  pronouns  (PronType=
Rel)  from personal  pronouns (PronType=Prs)
or  by  isolating  demonstratives  (PronType=
Dem).10 Moreover,  when  we  have  a  direct
complement  of  the  verb,  we  will  distinguish
nominal  complement  (dep=NOUN)  and
pronominal complement (dep=PRON), but not
when it  is  a prepositional  complement (dep=
ADP).  Sometimes  the  granularity  can  be
excessive,  as  when  UD/SUD  distinguishes
proper  nouns  (PROPN)  and  common  nouns
(NOUN).11 It  must  also  be  remarked  that
Levshina(2018)  restricts  her  computation  for
verbal  constructions  to  verbs  that  are  roots,
arguing that word order can be quite different
between main and subordinate clauses in some
languages  (German  and  Wolof  for  instance).
Our preference is to keep all occurrences, but it

9The entropy view of flexibility is very elegant, but,
as  mentioned  by  Levshina  (2019),  Futrell  et  al.
(2015)  gives  “one  aggregate  score”  for  each
language,  rather  than  considering  individual
constructions before aggregating them.
10Levshina  (2019)  also  considers  constructions
restricted to one dependent word form. This is only
possible if the corpus contains enough occurrences
of  the  word,  which  commonly  implies  for  many
languages to parse raw corpora that are bigger than
the manually annotated corpora of UD.
11On  the  other  hand,  UD  does  not  usually
distinguish  prepositional  dependents  of  the  verb,
which are all rel=obl, whether they are arguments
or modifiers. This distinction is made only in a few
treebanks, notably the native SUD treebanks (with
the  comp and  mod labels).  SUD  uses  the  udep
relation, for underspecified  obl dependencies when
the  distinction  in  argument  and  modifier  is  not
encoded. 

is  certainly  interesting  to  do  a  partition
between  main  clauses  and  subordinate
clauses.12

Unlike  flexibility(L),  the  computation  of
head_initiality(L) is obviously very dependent
on  the  choice  made  for  the  head  of  each
construction. It is this question that motivated
us  not  to  work  with  UD,  but  to  choose  the
SUD variant where adpositions, subordinating
conjunctions,  and  auxiliaries  are  chosen  as
heads.13 For  auxiliaries,  the  question  is
delicate,  because  while  for  Indo-European
languages,  they are clearly heads,  this is less
obvious in languages where they are particles.
On  the  other  hand,  the  wh-words  of  Indo-
European languages are treated as pronouns in
both UD and SUD, even though they also have
a  head  role,  which  explains  in  part  their
peculiar placement.

For head-initiality(L), we decide to consider
the relations  of  type  comp,  mod,  udep,  subj,
dislocated, that we call the  core relations. We
have included the  dislocated relation, because
the boundary between governed and dislocated
elements is not always well defined.14 We have
eliminated  the  det relation  because  the
direction  of  the  determiner-noun  relation  is
controversial  (see  the  discussion  around  the
DP-hypothesis since Hudson 1984 and Abney
1987), as well as clf (for classifiers), which is
used  inconsistently.  For  flexibility(L),  we
could keep  det and  clf, because the choice of
the governor of a given relation does not play
any  role:   Flexibility  only  measures  the
proportion of dependencies going in the same
direction  and  remains  the  same  when  all
dependencies  are  inverted.  However  the  det
and clf have only a small influence on the final
result  (cf.  Table  D)  and,  to  be  precise,  we
decided  to  use  the  core relations  for  the
computation  of  flexibility(L)  as  well.   Other
SUD/UD relations are of little interest for our
study  as  their  direction  is  fixed  in  the  UD
annotation  guidelines.  This  includes  conj,
fixed,  goeswith,  etc.  It  should  also  be  noted
that  we  have  not  considered  the  relations
between  co-dependents  at  all.  Yet,  some

12About the relations between constructions in main
and subordinate clauses, see Schachter (1973).
13For  instance,  Futrell  et  al.  (2015)  based  on
computation  on  UD  indicates  that  French  and
Italian are mostly head-final, while, based on SUD,
they are head-initial at 76% and 77% respectively!
14 For  instance,  in  a  pro-drop  language  such  as
Chinese, it is difficult to decide if preverbal objects
are dislocated or not. See Note 3.
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languages with a very strict  head-final  order,
such  as  Japanese or  Korean,  can  have  much
greater  freedom  in  the  placement  of  co-
dependents, which is not taken into account in
the present study.

Lastly, we chose to give each construction a
weight  equivalent  to  its  frequency  in  the
corpora, unlike Bakker (1998), who gives the
same weight to each of the 10 constructions he
considers  (as  well  as  Levshina  (2019),  who
considers  quantitative  values  for  each
construction  but  does  an  average  with  equal
weight). 

Figure 4 shows the head-initiality  of  SUD
2.11 languages in the x-axis and the flexibility
in the y-axis. For treebanks with at least 1000
core relations, we observe that Ancient Greek,
Tupinambá, Emerillon(Teko), Turkish-German
(code switching corpus)  and Old East  Slavic
are  the  most  flexible  languages  (with
flexibilities  59.3,  56.7,  55.2,  52.9,  and  51.7
respectively),  while  Japanese,  Hindi,  Xibe,
Kazakh and Telugu (flexibilities of around 0.5,
1.6, 2.1, 2.4, and 2.4 respectively) are the least
flexible languages. 

Languages with head-initiality equal to 0 or
100 have flexibility 0 and the closer they are to
50 the more likely they are to be flexible. But
there  are  languages  L  with  head_initiality(L)
close to 50 and flexibility(L) close to 0, such as
Bambara:  these  are  mixed  order  languages.
Languages  with  high  flexibility(L),  such  as
Ancient Greek, are free order languages.15

5 Comparison with Bakker’s flexibility

Bakker  (1998)  proposes  a  computation  of
flexibility  based  on  the  same  principles  but
does not take into account the greater or lesser
flexibility  of  each  construction  for  each
language. In Bakker's computation, a language
is either flexible or completely rigid.

flexibility[Bakker](C,L) = 
0 if the construction C is completely rigid in L, 
1 if it is flexible

flexibility[Bakker](L)=

(equal-weighted) average over 10 constructions C 
of flexibility[Bakker](C,L)

15Our measures  are also dependent on the corpus
chosen  for  the  calculus  and  its  genre.  The
flexibility  measure  of  Ancient  Greek  is  certainly
increased  by  the  fact  that  the  corpus  contains
poetry and theater.

Figure 4: Head-initiality vs Flexibility (core)

Bakker gives the flexibility values for a sample
of  86  European  languages  47  of  which  are
Indo-European.  We  propose  to  compare
Bakker's values with a typometric index of the
same type. Some of Bakker’s constructions can
be directly translated into SUD corpus queries,
others can be approximated. For example, his
“Adj/N” translates directly into the typometric
measure  NOUN-mod-ADJ.  The  Verb-
Recipient  relation  (V/R)  can  only  be
approximated  by  VERB-comp:obl-  ADP|
NOUN (cf. Table A2 in Annex). The complete
list  of  Bakker’s  constructions  and  their
translation  into  typometric  measures  are
provided in  the construction flexibility  Table
A3 of the Annex.16

As  Bakker’s  flexibility  measure  is
categorical  per  construction,  we  have  to
arbitrarily  set  a  threshold at  5%,  considering

16Bakker (1998: 393ff) introduces another measure
which  he  calls  consistency and  which  is  very
dependent on the set  of considered constructions,
which  are  still  the  10  same  constructions  (see
Section 5): 
consistency[Bakker](L)  =
|  #{  C  /  C  is  head-initial  for  L  }  
– #{ C / C is head-final for L } |.
It seems to us that the consistency of a language L
is well captured by our head_initiality(L), which is
not  dependent  on  the  partitioning  P  into
constructions  undertaken  by  the  linguist.
Moreover,  Bakker  (1998:  401-2)  notes  that
flexibility[Bakker]  and  consistency[Bakker]  are
correlated, but this is obvious as soon as there are
languages  whose  head-initiality  is  close  to  0  or
100.  Likewise,  our  flexibility  and  head-initiality
are  related,  since  flexibility(L)  ≤  2   min✕
( head_initiality(L), 100 – head_initiality(L) ),
which we have visualized as a triangle in Figure 4.
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that languages with less than 5% variation for a
given construction C are inflexible for C.

We can  compare  those  3  measures  across
the  languages  that  we  also  find  in  UD:  1.
Bakker’s  flexibility,  2.  our  recomputation  of
the flexibility à la Bakker, as a non-weighted
average over Bakker’s 10 constructions,  with
the 5% threshold as indicated above, and 3. our
typometric flexibility.17

Figure 5: Typometric vs Bakker-like flexibility

The scatterplot  of  Figure 5 shows the strong
correlation  between  the  Bakker-like  measure
of  flexibility  and  the  typometric  flexibility.
The Bakker-like flexibility is also significantly
correlated with Bakker’s flexibility (Fig. C2),
while there is only a weak correlation between
the  typometric  flexibility  and  Bakker’s
flexibility (Fig. C1). See the complete results
in Tables B in the Annex.

6 Flexibility of constructions

Having compared the overall flexibility of the
languages, we can now see how the languages
in  a  given sample S  are  distributed  for  each
construction C and compare the constructions.
Specifically, we are interested in how the head-
initiality of the languages in our sample (the
138 languages in  UD 2.11)  is  distributed for
the different constructions C. Our hypothesis is
that  this  distribution  is  reasonably  well
described by the following two values:

17Some of Bakker’s constructions, such as Dem/N
or Pro/N, involve features that are not present in all
UD treebanks  (PronType=Dem  and  Poss=Yes  in
these two cases). Our computation is restrained to
languages with all the required features.

average_head_initialityS(C) = average of 
head_initiality(L,C) over the Ls in S.

average_flexibilityS(C) = average of flexibility(L,C)
over the Ls in S.

The less flexible C is on average, the more
languages  are  attracted  to  0  and  100.  The
average-head-initiality  indicates  whether  0  or
100 attracts  more to  one than  the other.  We
propose two other values that will  help us to
better understand this attraction towards 0 and
100.

head_initial_weightS(C) =
average_head_initialityS(C) / 
average_flexibilityS(C)

head_final_weightS(C) = 
(100 – average_head_initialityS(C)) / 
average_flexibilityS©

For a uniform distribution, flexibility = 50,
head-initiality  =  50,  head-initial-weight  =  1,
and head-final-weight  =  1.  When head-final-
weight > 1, the distribution is drawn towards 0
and when head-final-weight < 1, it  is pushed
away.  The  reverse  holds  for  head-initial-
weight. Our postulate is that the distribution of
head-initiality  is  similar  to  a  uniform
distribution  that  has  been  distorted  by
stretching it from both sides.18 Our head-initial
and head-final weights give us an estimate of
the strength of the force at each end. 

We observe that for all the most frequent C
constructions, both head_initial_weightS(C) > 1
and head_final_weightS(C) > 1 (see Table A3
in the Annex where all but one of the weights
for  the  10  Bakker  constructions  are  greater
than  1),  which  means  that  languages  are
attracted on both ends.

To give an idea of the different distributions
we  encounter,  the  three  scatter  plots  below
show three head-initiality distributions on the
treebanks: 1. Num/N (NOUN-any-NUM),19 2.

18Levshina  (2019),  like  us,  uses  the  mean  head
initiality and the standard deviation to characterize
the  distribution  of  a  head  initiality  for  a  given
construction. The standard deviation is relevant for
characterizing  Gaussian  distributions,  but  not  for
“stretched” distributions as here, particularly when
elements tend to move away from the center  and
when these  movements  are  asymmetric,  with one
end more attractive than the other.
19To be precise, SUD uses a special feature ExtPos,
indicating the external  POS of a word. Numerals,
all  categorized  NUM in  UD,  are  nummod or  det
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aux-v (AUX-comp:aux-VERB),  and 3. Adj/N
(NOUN-mod-ADJ).  The  first  (Num/N)
distribution  tends  towards  0  and  is  pushed
away from 100 (weights 3.6 and 0.7), while the
two other distributions are attracted both by 0
and 100, with a bigger attraction to 0 for Adj/N
(weights  4.2 and 2.4)  and to  100 for  Aux/V
(weights 1.7 and 2.8).

      Num/N     Adj/N   Aux/V
Figure  6:  Head-initiality  language  distribution  
for three constructions Num/N, Adj/N, Aux/V.

Again,  we  can  compare  our  flexibility
results  with  two  measures:  the  flexibility
measure  proposed  by  Bakker  (1998)  and  a
Bakker-like  measure  that  we  calculate  from
our sample. 

flexibility[Bakker](C)=
% of languages in Bakker’s sample that are flexible
for C.

flexibility[Bakker_like]S(C) =
% of Ls in S with flexibility(L,C)>5.

Bakker restricts his study to a sample S of
86  European  languages,  24  of  them  having
enough data in UD to be compared.20

when they are used as a quantifier (my 7 cats). In
other  uses,  they  work  as  a  proper  noun  (line  7,
page 7,  year  2023)  and  receive  the  feature
ExtPos=PROPN. It  is  this feature,  rather  than the
POS, that is used in all our computations. It remains
that the use of  nummod is not consistent across all
treebanks.
20When looking at a particular construction C, we
only consider  a  language L if the treebanks  of  L
have at least 50 occurrences of C. For Bakker-like
measures to be calculated for L, the threshold of 20

We  find  that  V/O  is  the  most  flexible
construction, followed by V/R and Adj/N. Two
constructions  do  not  behave  at  all  as  in
Bakker's  sample:  Aux/V appears as  the most
flexible  construction  after  V/O,  while  Rel/N
appears as extremely inflexible.

Bakker  also  compares  the  flexibility  of
languages  with  head-initial  and  head-final
basic  order.  Again  we  can  introduce
typometric Bakker-like measures. We consider
that a language has head-initial basic order if
more than 50% of core dependencies are head-
initial.

head_initial_flexibility[Bakker_like]S(C) = % of Ls 
in S with head_initiality(L,C)>50
that have flexibility(L,C)>5.

head_final_flexibility[Bakker_like]S(C) = % of Ls 
in S with head_initiality(L,C)<50
that have flexibility(L,C)>5.

Bakker  (1998:  392)  “observed  that  head-
modifier  orders  are,  on  the  whole,  more
flexible than modifier-head orders.” We have
completely different results with our measures
(see  Table  A3  in  the  Annex):  Only  for
adpositions,  languages  with  head-initial  core
order  are  more  flexible  than  languages  with
head-final core order.

7 Predictivity

With these notions in place, it is now possible
to measure which construction predicts best the
overall core flexibility of a given language. For
this,  we  measure  the  Spearman  correlation
between the distribution of flexibility(L,C) for
various couples of construction C (Figure 8).
We are particularly interested in the correlation
with  the  core construction.  Among  the  10
Bakker constructions, the best predictors of the
core flexibility is the V/O construction, unlike
V/R.  Note  also  some  notable  correlations:
Aux/V and V/O that have a correlation of 0.59
as  well  as  subj and  comp that  have  a
correlation of 0.53.

Bakker (1998: 392) however states that “the
best  predictors  of  overall  flexibility  are  the
flexibility  of  the  recipient,  genitive,  numeral
and  relative  clause.  On  the  other  hand,  no
prediction whatsoever can be drawn from the
behavior of adpositions  and articles.”  This  is
not backed up by our data with our weighted
flexibility  measure:  The  typometric  genitive
flexibility has a correlation of only 0.18 with

must  be reached for  each  of the 10 constructions
considered.
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the core flexibility, numerals have a correlation
of 0.01, and relatives of 0.07.

Figure  7:  Heatmap  of  Spearman  correlation
between  the  distributions  of  flexibility(L,C)  for
various couples of construction C. See Table D of
the Annex for detailed values.

Nonetheless,  our data agrees with a common
typologist  view,  most  notably  Dryer  (1992),
that  sees  V/O  as  a  good  predictor  for  word
order constraints on other constructions.

Note  also  that  the  constructions  with  the
biggest flexibility are the best predictors. This
was expected because constructions with low
flexibility tend to gather all languages around 0
and 100.

8 Conclusion

We  have  introduced  a  first  measure,  head-
initiality,  which  measures  the  variable  head-
dependent word order on a language’s treebank
or on specific constructions. Based on this, we
develop an operational notion of flexibility that
renders  the  intuition  that  the  average  head-
initiality can be far  from 0 or 100 while the
languages are strict per given construction. 

We then show that our empirical notion of
flexibility  can  be  compared  to  previous
definitions of flexibility of word order, notably
to Bakker’s work. Our notion of flexibility has
the advantage that it can directly be computed
from treebanks, that it does not require ad-hoc
thresholds  to  categorize  languages  or
constructions, and that it can be applied with
any granularity of constructions.

Finally,  we  show  which  construction
predicts  overall  word  order  flexibility  of  a
language. For this, we rely on Spearman's rank
correlation  coefficient,  which  allows  us  to
calculate  a  correlation  between  two
distributions.  We  show  that  over  UD’s

language  sample,  the  highest  correlation  is
obtained  for  nominal  objects  (V/O
construction). 

Since  the  Spearman  correlation  is  a
symmetric measure, we would like to continue
our study by proposing an asymmetric measure
that allows us to decide if one distribution can
predict  another.  Our  hypothesis,  to  be
confirmed, is that constructions with the most
uniform  distribution,  thus  being  flexible  and
well-balanced, provide better predictions of the
behavior  of  other  constructions.  The  V/O
construction,  which  many  authors  take  as  a
basic construction (see in particular the study
of Dryer 1992) is thus an excellent candidate.
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ANNEX  
Languages Bakker-flexibility Bakker_like_flexibility typometric_flexibility
Armenian 40 60 33
Belarusian - 50 26
Bulgarian 60 60 19

Czech - 50 30
Danish 30 20 26
English 40 40 13
French 10 40 14
German 40 30 33
Greek 60 40 16
Hindi - 20 2

Icelandic 40 90 35
Italian 30 50 18
Latin 90 80 48
Naija _ 10 6

Norwegian 40 20 21
OldEastSlavic - 80 52

OldFrench - 60 31
Polish 60 50 35

Russian 70 70 29
Slovak 50 50 37
Spanish 30 40 17

Swedish 40 20 21

Ukrainian - 70 26

WesternArmenian - 50 37

Table  A1.  Various  flexibility  measures  for  languages  where  a  treebank-based  verification  of  Bakker’s
measures is available as described in footnote 20. 
   

Bakker’s 10 relations Corresponding construction
V/O VERB-comp:obj-NOUN/PROPN

 Adj/N NOUN-mod-ADJ 
Pro/N NOUN-any-[Poss=Yes]
V/R VERB-comp:obl-ADP/NOUN

Gen/N NOUN-mod[gen]-ADP/NOUN
Rel/N NOUN-mod@relcl-VERB
Adpos ADP-comp-NOUN
Num/N NOUN-any-NUM
Dem/N NOUN-any[PronType=Dem]
Aux/V AUX-comp:aux-VERB

 Table A2: the 10 Bakker’s relation and their corresponding constructions
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Measures V/O Adj/N Pro/N V/R Gen/N Rel/N Adpos Num/N Dem/N Aux/V

freqSample 3.3 3.6 0.7 0.6 1.5 0.4 5 0.9 0.7 2.5

concerned_languages 113 96 51 59 68 42 103 85 64 87

typometric_flexibility% 26.2 16.2 15.9 31 20.2 2.5 5.5 22 10.3 25.7

Bakker-like_flexibility% 62.5 62.5 37.5 66.7 62.5 8.3 8.3 66.7 50 54.2

Bakker-like-flexibility(S)% 48.2 35.4 29.4 62.7 45.6 7.1 12.6 51.8 29.7 46

Bakker-like-head_initial(S)% 46.3 18.8 14.6 56.2 37 0 23.3 51.8 26.3 43.5

Bakker-like-head_final(S)% 49.3 68.8 90 65.1 51.2 7.9 8.2 50 57.1 46.9

head_initiality% 61 32 19 68 57 89 71 13 15 68

head_initial_weight 2.3 2 1.2 2.2 2.8 35.8 12.9 0.6 1.4 2.6

head_final_weight 1.5 4.2 5.1 1 2.1 4.3 5.3 4 8.3 1.3

Table A3. Measures for the 10 constructions considered by Bakker (1998). Among them Bakker-like flexibility
is normalized over the 24 languages in Table A1, Others are normalized with the amount of languages in the row
‘concerned languages’

Table B. Spearman correlation (left) and Pearson correlation (right) between Bakker’s  flexibility, Bakker-like
flexibility and  typometrics flexibility
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     Figure C1: Typometric VS Bakker-flexibility            Figure C2: Bakker-like VS Bakker-flexibility

Gen/N Num/N Rel/N det Pro/N Adj/N Dem/N Adpos mod subj Aux/V V/R V/O comp udep core any

Gen/N 1 0.197 0.654 -0.051 0.185 0.209 0.044 0.156 0.53 -0.268 -0.379 -0.281 -0.308 -0.254 -0.386 -0.184 -0.14

Num/N 0.197 1 0.086 -0.02 0.169 0.526 0.104 -0.4 0.423 -0.068 0.003 -0.023 -0.121 -0.087 0.04 0.008 0.01

Rel/N 0.654 0.086 1 0.09 -0.062 0.004 0.037 0.362 0.121 -0.292 0.003 0.069 0.062 0.145 -0.006 0.074 0.167

det -0.051 -0.02 0.09 1 0.469 0.397 0.469 0.251 0.009 0.032 0.359 0.418 0.375 0.056 0.146 0.079 0.144

Pro/N 0.185 0.169 -0.062 0.469 1 0.532 0.583 -0.177 0.296 0.503 0.056 0.195 0.142 0.057 0.103 0.224 0.218

Adj/N 0.209 0.526 0.004 0.397 0.532 1 0.716 -0.267 0.68 0.229 0.171 0.257 0.107 0.087 0.124 0.273 0.256

Dem/N 0.044 0.104 0.037 0.469 0.583 0.716 1 -0.064 0.482 0.365 0.193 0.399 0.307 0.165 0.219 0.352 0.296

Adpos 0.156 -0.4 0.362 0.251 -0.177 -0.267 -0.064 1 -0.025 0.217 0.338 0.205 0.304 0.415 0.233 0.394 0.444

mod 0.53 0.423 0.121 0.009 0.296 0.68 0.482 -0.025 1 0.442 -0.119 -0.03 -0.123 0.407 0.462 0.684 0.664

subj -0.268 -0.068 -0.292 0.032 0.503 0.229 0.365 0.217 0.442 1 0.478 0.421 0.453 0.492 0.545 0.722 0.688

Aux/V -0.379 0.003 0.003 0.359 0.056 0.171 0.193 0.338 -0.119 0.478 1 0.839 0.844 0.907 0.842 0.809 0.838

V/R -0.281 -0.023 0.069 0.418 0.195 0.257 0.399 0.205 -0.03 0.421 0.839 1 0.954 0.895 0.921 0.833 0.826

V/O -0.308 -0.121 0.062 0.375 0.142 0.107 0.307 0.304 -0.123 0.453 0.844 0.954 1 0.941 0.93 0.858 0.86

comp -0.254 -0.087 0.145 0.056 0.057 0.087 0.165 0.415 0.407 0.492 0.907 0.895 0.941 1 0.689 0.843 0.843

udep -0.386 0.04 -0.006 0.146 0.103 0.124 0.219 0.233 0.462 0.545 0.842 0.921 0.93 0.689 1 0.85 0.864

core -0.184 0.008 0.074 0.079 0.224 0.273 0.352 0.394 0.684 0.722 0.809 0.833 0.858 0.843 0.85 1 0.989

any -0.14 0.01 0.167 0.144 0.218 0.256 0.296 0.444 0.664 0.688 0.838 0.826 0.86 0.843 0.864 0.989 1

Table D. Spearman correlation between the distributions of flexibility(L,C) for various constructions
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Abstract

Nominal classifiers categorize nouns based on
salient semantic properties. Past studies have
long debated whether sortal classifiers (related
to intrinsic semantic noun features) and men-
sural classifiers (related to quantity) should be
considered as the same grammatical category.
Suggested diagnostic tests rely on functional
and distributional criteria, typically evaluated
in terms of isolated example sentences ob-
tained through elicitation. This paper offers a
systematic re-evaluation of this long-standing
question: using 981,076 nominal phrases from
a 489 MB dependency-parsed word corpus,
corresponding extracted contextual word em-
beddings from a Chinese BERT model, and
information-theoretic measures of mutual in-
formation, we show that mensural classifiers
can be distributionally and functionally distin-
guished from sortal classifiers justifying the ex-
istence of distinct syntactic categories for men-
sural and sortal classifiers. Our study also en-
tails broader implications for the typological
study of classifier systems.

1 Introduction

Classifier systems constitute a major feature of
East and South-East Asian languages (Li, 2013).
Classifiers categorize referent nouns based on
salient semantic features such as humanness, an-
imacy, shape, or others (Aikhenvald and Mihas,
2019). In Mandarin, classifiers are obligatory
when a noun is preceded by a number, a demon-
strative, or a quantifier (Li and Thompson, 1989).
For example, the classifier (in bold font) cannot be
omitted in the following examples from Li (2013):
两 liǎng *(个 gè) 学生 xuéshēng ‘two students’,
这 zhè *(种 zhǒng) 动物 dòngwù ‘this kind of
animal’, 每 měi *(本 běn) 书 shū ‘every book’.
In other contexts, however, classifiers can be op-
tional. In addition to sortal classifiers, which
categorize nouns in terms of intrinsic semantic
features, classifier systems also include mensural

classifiers (or measure words), that are related to
noun quantity. Table 1 lists a few common classi-
fiers in Mandarin Chinese.
While sortal classifiers, like张 zhāng, are typi-

cally associated with nouns displaying specific in-
trinsic semantic features, e.g., flat properties such
as for the noun 地图 dìtú ‘map’, mensural classi-
fiers like组 zǔ ’group’,斤 jīn ‘half kilogram’, or
美元 měiyuán ‘US Dollar’ are usually character-
ized as being less restricted by the semantics of the
nouns they combine with. In this paper, mensu-
ral classifiers like组 zǔ ’group’ will be referred as
quantity, those like斤 jīn ‘half kilogram’ and美元
měiyuán ‘US Dollar’ will be referred as measure-
ment and currency units respectively. In addition,
Dryer et al. (2005) and Li (2013) indicate that sor-
tal classifiers tend to be combined with countable
nouns (e.g., 三 sān 本 běn 书 shū ‘three books’,
三 sān只 zhī 碗 wǎn ‘three bowls’) while mensu-
ral classifiers refer to quantities of mass nouns (or
”nouns with low countability”) such as三 sān箱
xiāng 水 shuǐ ‘three boxes of water’ and 三 sān
斤 jīn 米 mǐ ‘three half-kilograms of rice’. How-
ever those distinctions are not systematic: count-
able nouns can also be modified by mensural clas-
sifiers and mass nouns by sortal classifiers. For
instance, the countable noun,书 shū ‘book’ can be
found in a nominal phrase such as三 sān箱 xiāng
书 shū ‘three boxes of books’, and the mass noun,
米 mǐ ‘rice’ can be modified by a sortal classifier
in三 sān粒 lì米 mǐ ‘three grains of rice’.
Given their apparent similarities and differ-

ences, typological and general linguistic studies
have long debated whether sortal and mensural
classifiers should be considered as the same syntac-
tic category (e.g., Lyons, 1977; Li and Thompson,
1989) or two different categories (e.g., Nguyen,
2004; Singhapreecha, 2001; Her and Hsieh, 2010).
In these studies, suggested diagnostic tests rely
on functional and distributional criteria, typically
evaluated in terms of isolated example sentences
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Determiner Classifier Noun Translation
一 yī ‘one’ 张 zhāng ‘sortal classifier’ 地图 dìtú ‘map’ one map

这 zhè ‘this’ 组 zǔ ‘group’ 照片 zhàopiàn ‘photo’ this group
of photos

十二 shíèr ‘twelve’ 斤 jīn ‘half kilogram’ 米 mǐ ‘rice’ six kilograms
of rice

一亿 yíyì ‘100 million’ 美元 měiyuán ‘US Dollar’ 公司 gōngsī ‘company’ a 100 million US
Dollar company

Table 1: Nominal phrases extracted from the Leipzig corpus of Mandarin Chinese (Goldhahn et al., 2012) using the
CoreNLP Parser(Chen and Manning, 2014). The examples show noun phrases including the sortal classifier张
zhāng and three measure words for quantities组 zǔ ’group’,measurements斤 jīn ‘half kilogram’, and currencies
měiyuán ‘US Dollar’.

obtained through elicitation. We address this ques-
tion in a more systematic and empirical way us-
ing data from large Mandarin corpora. We com-
pare the distribution of sortal and mensural clas-
sifiers in terms of their contextual word represen-
tations and their function in terms of contribution
to noun predictability. The idea that classifiers
can be used to enhance the predictability of up-
coming nouns is based on a study by Dye et al.
(2017, 2018). The authors show that gendered
determiners in German, which also partition the
language’s nouns into classes (masculine, femi-
nine, and neuter), serve the communicative func-
tion of efficiently reducing the entropy of upcom-
ing nouns in context. Similarly, our study adopts
a communicative perspective on noun class parti-
tioning and evaluates sortal vs. mensural classi-
fiers in terms of their respective contribution to
noun entropy reduction. If sortal and mensural
classifiers prove to be distributed differently or to
show differences in their degree of reducing the en-
tropy of upcoming nouns, we will be able to suc-
cessfully conclude that they can be considered sep-
arate syntactic categories. Otherwise, they would
be better analyzed as two types within the same
category.
Our study is based on 981,076 manually vali-

dated noun phrases extracted from a 489MB cor-
pus of Mandarin Chinese that is part of the Leipzig
Corpora Collection (Goldhahn et al., 2012), an
open access collection of pre-cleaned data. We pre-
parsed the data using the CoreNLP Chinese depen-
dency parser (Chen and Manning, 2014). Our re-
sults show that mensural classifiers can be distribu-
tionally and functionally distinguished from sortal
classifiers. Additionally two traditional subtypes
of mensural classifiers (i.e., measurement and cur-
rency units) emerge as distinct from the other men-

sural classifier subtype (which we will refer to as
quantity).

2 Measuring categorial differences

The goal of our study is to quantitatively evaluate
whether distributional and functional properties of
words traditionally labeled sortal vs. mensural
classifiers suggest that they constitute a single or
two separate syntactic categories in Mandarin Chi-
nese. Based on 981,076 manually validated noun
phrases extracted from a 489MB corpus, we ana-
lyze the syntactic distributions of sortal and men-
sural classifiers, as well as the differences in their
communicative function for natural language use.
We used contextual word embeddings as ameasure
of classifier distributions and mutual information
(MI) (Cover and Thomas, 2012) as a measure of
their contribution to facilitating noun predictabil-
ity.

2.1 Data
We downloaded three of the 1M sentence corpora
of Mandarin Chinese from the Leipzig Corpora
Collection (Goldhahn et al., 2012)1 and normal-
ized the data by converting all Chinese characters
into simplified Chinese using the Open Chinese
Convert software.2 We then applied the CoreNLP
Chinese dependency parser (Chen and Manning,
2014) to our dataset. We used the dependency in-
formation to extract all complete nominal phrases
containing nouns, classifiers, and other dependents
such as determiners and adjectives, as well as the
frequencies of all nouns and classifiers. 91 out of
1,079,190 nominal phrases were removed from the

1The types of corpora are 2007-2009 news, 2011
newscrawl, and 2015 China web: https://wortschatz.
uni-leipzig.de/en/download/Chinese.

2https://github.com/BYVoid/OpenCC
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data due to their unusual length (more than 35 char-
acters)3. A sample of the remaining extracted nom-
inal phrases is shown in Table 2.
Manual validation of the data revealed that

despite the Mandarin Chinese CoreNLP parser’s
overall good performance4 reported in Chen and
Manning (2014), a significant proportion of words
had been erroneously labeled as classifiers. We
manually validated all 1,577 word types identified
as classifiers by the parser. After excluding tokens
containing symbols (‘县、区、乡、’), non Chi-
nese (‘ま’) or invalid characters (‘\ue997’), num-
bers (‘二九’), dialectal expressions (‘拨儿’), and
other similar cases, we were able to retain 315 clas-
sifier types. Excluded cases are listed in table 3.
We labeled them as either sortal or mensural classi-
fiers following the classification suggested in Chao
(1965)’s reference grammar. Not all 315 classi-
fier types are listed in Chao (1965). For those not
listed in the grammar, we inferred the labels ap-
plying compatible classification criteria. As a re-
sult, 55 classifiers were labeled as sortal classifiers
and 260 as mensural classifiers. We further cate-
gorized mensural classifiers into one of three sub-
categories: quantities (148), measurements (86),
and currency (86) (see table 1 for examples of
sortals, quantities, measurements, and currencies).
The complete list of the classifiers with their corre-
sponding labels is indicated in table 4.
Almost all discarded classifiers were hapaxes,

such that at the end of the validation process, we
were still left with 981,076 noun phrases out of
the original 1,079,190. We analyzed the remaining
classifiers in terms of their distributional properties
(represented by contextual word embeddings) and
functional properties (measured asmutual informa-
tion (MI) (Cover and Thomas, 2012)).
Distributional information was obtained using

the pre-trained Chinese BERT model from Hug-
ging Face.5 We extracted contextual word embed-
dings for all retained classifiers. Embeddings were
based on the last-hidden state, where most of the
contextual information is encoded.

3Extracted phrases ofmore than 35 characters were judged
to be abnormal by the author who is a native speaker. Given
its small proportion, the removal of 91 our of 1,079,190 does
not have a significant impact on the overall distributions.

4The unlabeled attachment score (UAS) and labeled at-
tachment score (LAS) reported for the test dataset by Chen
andManning (2014) are 83.9% and 82.4% respectively. UAS
indicates the percentage of words that have been assigned the
correct head, and LAS shows the percentage of words that
have been assigned the correct head and label.

5https://huggingface.co/bert-base-chinese

Contextual word embeddings were adopted in
order to be able to distinguish between tokens
used as classifiers vs. identical tokens represent-
ing other parts of speech (e.g., 桶 tǒng ‘bucket’
represents a quantity in the phrase一 yī桶 tǒng水
shuǐ ‘one bucket of water’ but is a noun the phrase
黄色 huángsè的 de桶 tǒng ‘the yellow bucket’).
Since the model returns one embedding per Chi-
nese character, we were forced to discard classi-
fiers represented by multi-character units6. This
however only marginally changed our overall pro-
portions for the two categories that lie at the core
of this study: sortal classifiers vs. generic mea-
sure words. Overall, this step affected our four
categories in the following way: sortal classifier
tokens: 0% removed; generic measure word to-
kens: 1.4% removed; measurement tokens: 18.8%
removed; and currency tokens: 99.3% removed.
Because of their very specific use and homoge-
neous meanings, measurements and currency units
are not usually considered contentious in the de-
bate as to whether sortal and mensural classifiers
constitute a unique or two separate categories. The
removal of multi-character units from the currency
units and measurement categories only removed a
very small proportion of our overall classifier set
and did not interfere with our main concern re-
garding the classification of sortal classifiers and
generic measure words. At the end of this data
cleaning process, our dataset contained 500,987
word embeddings corresponding to 221 distinct
classifiers.
All noun frequencies (type: 324,920 and to-

ken: 27,596,565), frequencies of classifiers (type:
315 and token: 981,076), and their corresponding
nouns (noun type: 45,159 and token: 981,076) in
the retained nominal phraseswere used to calculate
the overall entropy of nouns and the Mutual Infor-
mation between classifiers and their head nouns.

2.2 Method

Syntactic categories are commonly defined by the
distribution and the function of the elements they
contain. Words belonging to the same category
are expected to display identical or similar distri-
butional properties and functions. Our goal in this
paper was to apply quantifiable measures of dis-
tribution and function to classifier tokens in order
to objectively compare the distributional and func-
tional properties of the types commonly identified

6Classifiers corresponding to multiple vectors.
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Determiner Classifier Noun Phrase

三 sān ‘three’ 部 bù sortal 片约 piānyuē ‘film appointment’ 三部片约
‘three shooting sessions’

这 zhè ‘this’ 支 zhī sortal 团体 tuántǐ ‘group’ 这支出道 12年的团体
‘this 12-year-old group’

本 běn ‘this’ 周 zhōu ‘week’ 新闻 xīnwén ‘news’
本周台湾旅游新闻
‘Taiwan travel news
of this week’

Table 2: Sampled nominal phrases extracted from the Leipzig corpus of Mandarin Chinese (Goldhahn et al., 2012)
using CoreNLP Chinese Parser (Chen and Manning, 2014). The nominal phrase三部片约 sān bù piānyuē‘three
film shooting sessions’only contains a determiner, a classifier, and a noun. In addition to the determiner, classifier,
and noun, the other two phrases also contain other modifying elements.

Discarded types Examples
symbols ‘II’, ‘·’, ‘〖’
characters with symbols ‘县、区、乡、’, ‘日圆、入不敷出’
invalid characters ‘\ue997’, ‘\ue08d
foreign characters ‘ま’, ‘４Ｇ’
numbers ‘二九’, ‘陆仟捌佰零’
combinations of numbers and symbols ‘二·一六’, ‘八⃝八二六⃝’
combinations of classifier + noun ‘号楼’, ‘吨钢’
combinations of noun + classifier ‘人次’,‘人份’
combinations of classifier + classifier ‘吨级’, ‘架次’
reduplicated classifiers ‘盘盘’, ‘首首’
verbal classifiers ‘下’,‘遍’,‘次’
dialectal phrases ‘拨儿’,‘斗子’
phrases with typos ‘豪米’,‘屇’
words not convertible into simplified Chinese ‘埸’
meaningless phrases ‘圈共’,‘岔起’, ‘服轨’
words that cannot be classifiers ‘跺’, ‘啸’, ‘恒星’,‘烧烤’, ‘富二代’, ‘菩萨摩诃’

Table 3: Listed criteria used to manually validate parsed classifiers by using the CoreNLP parser (Chen and Man-
ning, 2014)

as either sortal or mensural classifiers in the litera-
ture.

2.2.1 Exploring distributions
In order to evaluate the (dis)similarity between
the distributions of our four classifier types, we
compared their contextual word embeddings ex-
tracted from the pre-trained Chinese BERT model
for all 221 single-character classifier types of our
dataset. The embeddings produced by the model
correspond to vectors with 768 dimensions for
each token. We used the Uniform Manifold Ap-
proximation and Projection algorithm (UMAP) de-
veloped by McInnes et al. (2018) to perform high
dimensionality reduction in order to better eval-
uate the (dis)similarity between the distributions
of our four classifier types. UMAP maintains
separability of categories: in a UMAP visualiza-

tion, if two categories are separable in the pro-
jected space they will also be separable in the
original space (Tunstall et al., 2022). We pro-
jected the 768-dimensional embeddings onto a 2-
dimensional plane highlighting the differences in
distributions for the four different classifier types.
The distributions of sortal and mensural classi-

fiers are predicted to be alike if they occur with
similar words around them, as suggested by sev-
eral authors in existing literature (Lyons, 1977;
Cheng and Sybesma, 1999; Paik and Bond, 2002;
Bender and Siegel, 2004; Gebhardt, 2011, among
others). Given the way the UMAP algorithm
has been designed, if classifier distributions align,
their UMAP projection should mostly overlap.
Such an overlap would constitute an argument to-
wards positing one single classifier category for
all overlapping types. If classifier distributions do
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Sortal: 口,扇,盏,出,尊,棵,条,枝,所,张,粒,头,顶,把,面,封,管,道,件,匹,门,枚,
堵,座,只,架,首,朵,家,篇,辆,卷,个,行,颗,杆,处,桩,幅,顿,部,幕,位,艘,
根,本,株,宗,栋,则,支,幢,台,项,袭

Mensural:
quantity

级,片,盘,股,壶,脸,排,系列,册,手,号,层,团,段,周,版,包,瓶,帮,箱,堂,
锅,节,岁,剂,组,块,种,轮,类,杯,天,盆,筐,盒,堆,桶,世,边,套,名,副,担,
队,对,笔,页,派,味,划,群,截,袋,族,栏,脚,区,番,点,列,章,厘,票,分,
路,班,些,站,批,月,丝,桌,阶,碗,年,重,肚子,双,身,代,盅,串,样,滴,缸,
笼,辈,罐,眼,撮,匙,届,垛,竹篓,尾,筒,篓,坨,集,帧,墩,柄,户,扎,刻,餐,
具,起,发,针,品,日,小捆,瓮,屉,酒杯,杓,句,场,炉,竿,樽,沓,簇,期,茶
匙,箩筐,记,席,缸子,间,缕,池,阕,囊,员,帖,伙,拨,曲,束,圈,辑,叠,波,
摊,份,楼,款

Mensural:
measurement

秒,英里,米,克,西西,公尺,亩,公里,毛,丈,英寸,英尺,公斤,公分,小时,
斗,码,海里,加仑,寸,吨,尺,磅,斤,平方米,公吨,呎,平方英呎,微米,立方
英尺,兆瓦特,毫克,公克,兆赫,瓦,兆,度,厘米,平方公尺,安培,千伏,平方
公里,元,英吋,盎司,公升,打,立方米,平方英尺,盎斯,平方尺,海浬,公厘,
克拉,平方呎,毫米,毫升,英哩,千兆,大卡,千瓦时,美分,千伏特,伏特,英
亩,瓦特,坪,公顷,摄氏度,伏,平方厘米,海哩,千克,微秒,浬,兆瓦,立方厘
米,平米,瓩,吋,平方海里,公倾,千瓦,华里,角,兆瓦时

Mensural:
currency

先令,法郎,卢比,克朗,英磅,马币,比索,新币,缅元„瑞典克朗,银元,加元,
铢,丹麦克朗,韩币,台币,澳元,澳币,港币,日圆,镑,新元,泰铢,美金,欧元,
美元,港元,日元,英镑,韩元,澳大利亚元

Table 4: List of all 315 manually validated and classified classifiers mainly based on Chao (1965)’ reference
grammar. Classifiers explicitly mentioned in the grammar are indicated in bold face.

not align, the UMAP projections should present
as largely distinct. This would favor an analysis
of more than one existing syntactic classifier cate-
gory.

2.2.2 Evaluating functional contributions
Given that classifiers precede nouns within noun
phrases, we also wanted to test whether classi-
fiers, like German gendered articles (Dye et al.,
2017), contribute to reducing uncertainty about
upcoming nouns, and whether this reduction is
equally operated by all types classifiers previ-
ously identified. For that purpose, we applied the
information-theoretic measure of mutual informa-
tion (MI) (Cover and Thomas, 2012) to all classi-
fiers and their corresponding head nouns.
Mutual information (MI) indicates how much

information (in bits) is shared between a classi-
fier and its corresponding head noun. The higher
the value of mutual information for a specific
classifier-noun pair, the more systematically those
nouns can be found together. In terms of pro-
cessing, this systematicity contributes to signifi-
cantly reducing the listener’s (or reader’s) uncer-
tainty about the upcoming noun. Low mutual in-
formation would on the contrary indicate that clas-
sifiers are not particularly helpful for predicting (a

class of) upcoming nouns.
IfC andN represent the sets of all classifiers and

nouns respectively, and c and n their corresponding
elements, then MI between each type of classifier
and its corresponding nouns is defined as follows:

I(N ;C) = H(N)−H(N |C)

=
∑

n∈N,c∈C
p(n, c)log

p(n, c)

p(n)p(c)
(1)

We computed the mutual information between
classifiers and nouns for each type of classifier.
We then used a one-way ANOVA to evaluate the
level of significance of the differences inMI across
all four categories (sortal classifiers, quantities,
measurements, and currencies).

3 Results

3.1 Distribution
The UMAP projections for the distributions of sor-
tal classifiers and all three subtypes of mensural
classifiers are plotted in Figure 1. Darker zones
correspond to a higher proportion of projections in
that area of the plane. Lighter zones correspond to
fewer projections or an absence of projections in
that area.
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The plots show distinct patterns of distribution
for all four different types of classifiers: while
there may be some partial overlap in lighter re-
gions, dark (high token frequency) regions are
clearly separated out for all four subcategories.
They all occupy different regions in the plane.
Currencies are especially well separated from

the rest three subcategories. However, it is worth
noting that the word embeddings for currencies are
only a small subset of our full dataset since the ma-
jority of word embeddings for currencies are rep-
resented by more than one character correspond-
ing to more than one vector in the BERT model.
These multi-character tokens had been removed in
the data pre-processing phase.
Both sortal classifiers and generic measure

words (quantities) show a broader range of possi-
ble distributions. Yet the former are mainly clus-
tered in the right region of the plane, while the lat-
ter are concentrated in the left half of the plane.
The distribution of measurements is mostly situ-
ated in the middle.

Figure 1: Visualization of the projections of 500,988
contextual word embeddings for all classifiers using
UMAP (McInnes et al., 2018)

3.2 Function

For all classifier types, classifiers drastically re-
duce the entropy of upcoming nouns.
A one-way ANOVA test revealed that the differ-

ence in mean mutual information associated with
each classifier type is significant across all four

Figure 2: Percentages of Mutual information between
nouns and classifiers over the entropy of noun. Error
bars indicate bootstrapped (n sample = 10,000) 95%
C.I. of I(N; C). The number of asterisks denotes the
magnitude of significance compared to a significance
level of p = 0.05.

types.7 We also used Tukey’s HSD Test to perform
multiple comparisons across the different types of
classifiers.
We found that the mean mutual information be-

tween nouns and units of measurements is not sig-
nificantly different from that between nouns and
currency units.8 Functionally, those two subtypes
appear to play very similar roles: The overall en-
tropy of nouns from our corpora lies around 12.29
bits. From Figure 2, it is apparent that both units
of measurement (8.90 bits) and currencies (9.17
bits) greatly help with predicting upcoming nouns:
knowing a measurement or currency accounts for
around 75% of the original noun entropy. These
two subcategories are significantly different from
the other two.
MI involving units of measurements was signif-

icantly different from that involving sortal classi-
fiers or generic quantities.9 Not unsurprisingly, MI
involving currency units also significantly differed
from MI involving sortal classifiers or generic
quantities.10

Even though the significance levels were not
as high as for all other significant category pairs,
differences in MI involving generic quantities vs.

7F(3) = 25.46, P < 0.0001.
8P = 0.94, 95% C.I. = [-1.55, 1.02].
9p = 0, 95% C.I. = [-3.80, -1.81]; p = 0, 95% C.I. = [-2.63,

-1.07].
10p = 0, 95% C.I. = [-4.45, -1.70]; p = 0.0001, 95% C.I. =

[-3.35, -0.90].
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those involving sortal classifiers still reached sig-
nificance levels.11 Our findings indicate that at
the functional level, measure words can be distin-
guished from sortal classifiers. The presence of a
measure word denoting generic quantities makes
the upcoming noun more predictable than a sortal
classifier in the same context. Classifiers denoting
quantities (7.05 bits) account for 57% of the raw
noun entropy, while sortal classifiers (6.09 bits)
only account for 49%.
As a result, functional properties again suggest

that mensural classifiers and sortal classifiers are
better analyzed as two separate categories. Addi-
tionally, the results also suggest that the mensural
classifier class is not homogeneous and that it may
be better analyzed as at least two separate (sub-
)categories: classifiers indicating generic quanti-
ties on the one hand and currency units and units
of measurement one the other.

4 Discussion and relation to previous
work

There is a longstanding debate as to whether men-
sural and sortal classifiers should be considered as
the same grammatical category in Mandarin Chi-
nese (or in classifier languages in general). Despite
a general consensus that categorization should be
performed on the basis of observable distributions
and functions, researchers’ conclusions diverge.
For some, sortal and mensural classifiers should

be considered as one category since they can oc-
cur in similar contexts (e.g., Lyons, 1977; Cheng
and Sybesma, 1999; Paik and Bond, 2002; Bender
and Siegel, 2004; Gebhardt, 2011).12 Others ar-
gue that sortal and mensural classifiers should be
considered as distinct since they cannot be modi-
fied in the same way (Her and Hsieh, 2010; Sing-
hapreecha, 2001; Nguyen, 2004). Her and Hsieh
(2010) specifically argue that the difference be-
tween sortal and mensural classifiers is mainly
semantic but has consequences on distributional
properties: mensural classifiers are semantically
substantive and block numeral quantification and
adjective modification of the noun, whereas sortal
classifiers are semantically null and not as restric-
tive.13

11p = 0.03, 95% C.I. = [-1.86, -0.04].
12n Table 1, the sortal classifier张 zhāng appears in a sim-

ilar position as the mensural classifiers组 zǔ,斤 jīn, and美
元 měiyuán (between either a number or a determiner and a
noun).

13Her and Hsieh suggest three diagnostic distributional

Similar differences are also claimed to exist
in other classifier languages, such as Thai (Sing-
hapreecha, 2001) or Vietnamese (Nguyen, 2004).
In Vietnamese, for instance, mensural classifiers
are described as sometimes occurring with modi-
fiers inserted between the classifier and the head
noun, whereas nothing can be inserted between a
sortal classifier and its head noun. In general, pre-
vious literature arguing for separate categories for
sortal and mensural classifiers tends to highlight
that mensural classifiers can occur with more mod-
ifiers than their sortal counterparts. This is another
way of saying that mensural classifiers are consid-
ered to allow a wider range of distributions than
sortal classifiers.
Our results appear to corroborate that claim.

Overall, in our results sortal and mensural classi-
fiers do not appear to significantly overlap in their
distributions, suggesting the existence of two dis-
tinct categories from a distributional perspective.
But the UMAP plot in Figure 1 also shows more
different distributions for mensural classifiers than
for sortals, especially if generic quantities, curren-
cies, and units of measure are analyzed as one
group.
As an overarching category, mensural classi-

fiers – including quantities, units of measurements,
and currencies – appear to have a very diverse
range of distributions. Given the very specific dis-
tributions for currencies and measurements, our
data and the results of our analysis of classifier dis-
tributions appears to suggest that those might be
better distributionally analyzed as three separate
categories. Even if we only compare generic quan-
tities to sortal classifiers, the range of projections
associated with the mensural classifiers clearly ex-
ceeds that of the sortals, in line with conclusions
drawn by proponents of separate syntactic cate-
gories.
From a functional perspective, some researchers

have attempted to argue that mensural classifiers
should be considered as belonging to the same syn-
tactic category as their sortal counterparts because
of the parallel roles they play within noun phrases
(see Lyons, 1977; Cheng and Sybesma, 1999; Paik
and Bond, 2002; Bender and Siegel, 2004; Geb-
hardt, 2011, among others).14 The results of our

tests to differentiate sortal and mensural classifiers: nu-
meral/adjectival stacking modification, de-insertion, and ge-
substitution.

14In Table 1 for example, both sortal classifier (张 zhāng)
andmensural classifiers (组 zǔ,斤 jīn, and美元měiyuán) can
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study are closer in line with work suggesting that
sortal and mensural classifiers are in fact function-
ally different.
Our study focuses on differences in the commu-

nicative function across classifier types. While we
assume, based on evidence found for German gen-
dered articles (Dye et al., 2017, 2018), that all clas-
sifiers will to some degree help anticipate the up-
coming noun in the noun phrase they occur in, we
wanted to test whether there would be a significant
difference in the amount of MI effectively shared
between the classifiers and their head noun. Such
a significant difference would then suggest the ex-
istence of multiple syntactic categories associated
with classifiers.
Related work by Liu et al. (2019) used MI to in-

vestigate how systematically classifiers can be pre-
dicted from the semantics of a given noun. The
answer to that question would be relevant to ques-
tions related to classifier learning, but is distinct
from our study. By focusing on the relation be-
tween noun entropy and its reduction in the pres-
ence of a classifier, we are specifically targeting
the predictive value of classifiers in noun phrase
processing.15
Our results show that there are significant dif-

ferences in how much different types of classifiers
help predict upcoming head nouns, with currency
and measure units being the most predictive, clas-
sifiers denoting generic quantities ranking second,
and sortal classifiers being the least helpful. Inter-
estingly, while our results do suggest the existence
of three different classifier categories from a func-
tional perspective, the observed functional contri-
butions are the opposite of what previous literature
would have suggested.
Proponents of distinct classifier categories typ-

ically argue that while sortal classifiers are as-
sociated with nouns based on their referents’ in-
herent properties (such as shape, humanness, an-
imacy, etc.), mensural classifiers denote quantities
not directly related to the nouns’ meanings (see for
example Jarkey and Komatsu, 2019; Unterbeck,
1994), suggesting that sortal classifiers would be
more specifically linked to the nouns they combine
with.16 What we see in the results of our MI cal-
be used to quantify nouns.

15Lau and Grüter (2015) also investigate classifiers from a
processing perspective, but using an experimental approached
based on eye-tracking experiments involving L2 speakers of
Mandarin.

16E.g., in table 1 the sortal classifier 张 zhāng combines
with the referent/noun 地图 dìtú ‘map’ highlighting its flat

culations is that all mensural classifier types share
a greater amount of information with their head
nouns than sortal classifiers do.

5 Conclusion

The distinction between sortal and mensural classi-
fiers has been a long-standing debate in the fields
of Chinese, (South-)East Asian linguistics, general
linguistics and linguistic typology. Previous litera-
ture attempted to solve this problem using isolated
example sentences and categorical grammaticality
judgements. In this paper, we instead systemati-
cally re-evaluate the distributional and functional
properties of classifiers using quantitative method-
ologies.
Using 981,076 noun phrases from a 489MB

dependency-parsed corpus of Mandarin Chinese,
we show that mensural and sortal classifiers are
indeed measurably different both in their distri-
butions and their functional contribution to noun
phrase processing. We further find that mensural
classifiers do not constitute a homogeneous class.
Based on both their very specific distributions and
they very significantly different functional contri-
butions, units of measurement and currency can be
classified as one if not two classes that are distinct
from both sortal classifiers and generic measure
words.
Our results also include two broader typologi-

cal implications: since (i) sortal and mensural clas-
sifiers can be reliably identified as distinct cate-
gories in at least one language, (ii) themost promis-
ing line of analysis for further typological inves-
tigations into classifier systems will investigate
whether languages with classifier systems cluster
into two discrete types: those with separate cate-
gories for sortal andmensural classifiers, and those
without a clear sortal/mensural split.

6 Appendix

Limitations and future work

In our results, currencies appeared as distribution-
ally very different from both other mensural clas-
sifier types. However, when we extracted the con-
textual word embeddings of the classifiers for the
distributional analysis, we discarded word embed-
dings for multi-token classifiers since they would

properties, while the mensural classifier斤 jīn quantifies the
referent/noun 米 mǐ ‘rice’ by applying a specific measuring
unit.
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be represented by multiple rather than a single vec-
tor. This significantly reduced the number of rep-
resentations for currencies. In the future, we might
be able to use average vectors over multi-tokens or
leftmost vectors to represent those discarded cur-
rencies, but further work will be needed to show
their specific distributions. Regardless of this lim-
itation, our study still revealed significant differ-
ences between the two largest subsets of classi-
fiers: sortal classifiers and generic measures of
quantity.
Our data does not cover all possible types of

written and spoken genres. Yet, since a limited
sample of genres already reveals distributional and
functional differences between the two types of
classifiers, those differences justify assigning sor-
tal and mensural classifiers to separate syntactic
categories in Mandarin Chinese. Future work
could compare results across a broader variety of
genres, notably to investigate classifier use in spo-
ken Mandarin Chinese, where speakers may be
more likely to either drop classifiers or make more
extensive use of the most common generic classi-
fier个 gè at the expense of all other classifiers.
This project focuses on classifiers in Mandarin

Chinese. In the future, wemay be able to apply this
methodology to other classifier languages to assess
whether split classifier systems are the norm for
languages with classifier systems or whether lan-
guages cluster into two discrete types: those with
separate categories for sortal and mensural clas-
sifiers, and those without a clear sortal/mensural
split.
Our code will be made available for replication

and extension by the community.
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Abstract

We present work in progress that aims to
address the coverage issue faced by rule-
based text generators. We propose a
pipeline for extracting abstract dependency
template (predicate-argument structures) from
Wikipedia text to be used as input for generat-
ing text from structured data with the FORGe
system. The pipeline comprises three main
components: (i) candidate sentence retrieval,
(ii) clause extraction, ranking and selection,
and (iii) conversion to predicate-argument form.
We present an approach and preliminary evalu-
ation for the ranking and selection module.

1 Introduction

Rule-based Natural Language Generation (NLG)
systems have become increasingly unpopular since
the NLP field switched first to statistical systems,
then to neural: rule-based systems tend to have
low coverage (limited robustness to new inputs),
reduced suprasentential fluency, and on the whole
need to be built manually, all of which in combina-
tion means they are no longer competitive in shared
task competitions and other NLP research contexts.
However, their output can generally be guaranteed
to have high accuracy and grammaticality, which
continues to make them the system of choice in
many commercial contexts.1 Moreover, they can

1E.g. Arria NLG’s NLG Engine.

Figure 1: A DBpedia triple set from WebNLG+ and a
corresponding generated text. Triple = Property(DB-
Subj, DB-Obj), where the DB-Subj is an entity, and the
DB-Obj another entity, a numeric, a date, etc.

be efficient in terms of data and energy require-
ments, and suitable for low-resource languages.
That is, on their own or in combination with, e.g.,
language-model-based modules, rule-based NLG
potentially has an important role to play in the cur-
rent NLP landscape if shortcomings such as the
coverage issue addressed here can be overcome.

WebNLG+. The present work was prompted by
the WebNLG+ shared task (Castro Ferreira et al.,
2020), in which part of the test set inputs contained
features not seen in the training or development
data. The WebNLG+ dataset is a benchmark for
data-to-text NLG consisting of aligned DBpedia
triple sets and texts. DBpedia triples are the build-
ing blocks of the inputs, and consist of three related
elements called a Property, a Subject and an Object
in Semantic Web terminology. A Subject (denoted
by DB-Subj in this paper) is usually an entity that
has a Property and a value for this Property, which
is the Object (DB-Obj). E.g. in Figure 1, the entity
Audi_A1 is associated with 4 properties: Engine,
Transmission, Assembly and BodyStyle. The se-
mantics of each property is defined by DBpedia
editors,2 but in most cases, the Property of the
DB-Subj is DB-Obj makes it clear (e.g., the Trans-
mission of the Audi_A1 is 5-speed manual).

The coverage issue. Unlike their neural coun-
terparts, rule-based generators submitted to the
WebNLG+ challenge such as RDFJSREALB (La-
palme, 2020), DANGNT-SGU (Tran and Nguyen,
2020) or FORGe (Mille et al., 2019b) are not
able to cope with new (previously unseen) prop-
erties. FORGe, which we are aiming to extend,
operates on dependency structures at several levels
of representation (syntax, semantics), and needs
partially lexicalised predicate-argument (PredArg)
structures in the PropBank style (Kingsbury and
Palmer, 2002) to use as input for generation (see
Figure 2b). In other words, if a mapping between

2See http://mappings.dbpedia.org/index.
php/How_to_edit_the_DBpedia_Ontology.
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property and PredArg structure as shown in Fig-
ure 2a-b does not exist, the generator cannot intro-
duce the appropriate words and, unless a backup
mechanism is in place, it will fail to generate a text.

(a) Assembly(DB-Subj, DB-Obj)

(b) DB-Obj assemble DB-Subj
pos=NP tense=PRES pos=NP

A1 A2

(c) DB-Obj assembles the DB-Subj.
the DB-Subj is assembled by DB-Obj.

Figure 2: (a) The Property Assembly, (b) a correspond-
ing PredArg template (graph with no linear order in-
formation), and (c) two possible verbalisations of the
property via the template. A1/2 = first/second argument.

Thus, the overall problem that we are tackling is
the following: given (i) the rule-based FORGe gen-
erator that covers all properties in the WebNLG+
training data, (ii) a file which contains the map-
pings between these properties and their respective
PredArg template, (iii) an input triple set that con-
tains one or more properties not currently covered
by the generator, automatically extend the map-
ping file in ii with new unseen property/template
pairs that will enable FORGe to generate a text that
verbalises all input properties.

Proposed solution. Our aim is the automatic
extraction of property/template pairs via a pipeline
for retrieving and ranking candidate clauses from
Wikipedia that correspond to a given DBpedia in-
stantiated property (i.e. a triple), and converting
them to predicate-argument representations. We
are at an early stage of this research: the pipeline
and components have been defined and connected,
and we have identified two main challenges in our
approach: one is candidate clause extraction, i.e.
how to find a sentence or a clause that exactly
matches the input triple, the other is the identi-
fication of such candidates, i.e. if provided with a
list of candidates clauses that contains a match, is
it possible to identify it. In this paper, we focus
on the second challenge, since if we are not able
to identify target candidates, the approach cannot
work. In the remainder of the paper, we present
the different components and resources used in
our pipeline, and provide an encouraging prelim-
inary quantitative and qualitative evaluation of a
transformer-based candidate ranking and selection
component.3

3The code and data are available at https://github.
com/mille-s/PredArg-Template_Extraction.

2 Related Work

A number of papers have tackled the extraction of
templates from text to be used as input for NLG.
Duma and Klein (2013) mine and prune sentence
templates from Wikipedia articles, but (i) extract
templates given an entity (instead of a property
as in our case), and (ii) manage to obtain a tem-
plate for about 20% of the target entities. Ell and
Harth (2014) achieve impressive coverage with
their (multi-property) sentence templates, but also
suffer accuracy problems, with the text faithfully
representing the input in only about half the cases.
Our general approach is conceptually similar to
Perera and Nand (2015)’s, who use an open In-
formation Extraction (IE) tool to identify candi-
date sentence spans that verbalise a given prop-
erty, and then acquire lexicalisation information
via VerbNet, resorting to default strategies when
a predicate is not covered by VerbNet. Hoang
et al. (2022) suggest several general approaches
to align triple components and textual elements,
namely string, substring, hypernym and synonym
matching; for property matching, they also use a
pre-trained vector model to calculate the distance
between words. Other recent work on this topic
uses keyword matching (Kaffee et al., 2022) or co-
sine similarity (Abhishek et al., 2022) for aligning
triples and text in under-resourced languages. In
order to assess the strength of the alignment, Ab-
hishek et al. (2022) apply a Natural Language In-
ference (NLI) model to detect (lack of) entailment
between the triples and the candidate sentences.

One difference between our approach and most
of the related work on template mining for NLG
is that we want to extract predicate-argument tem-
plates (Figure 2b), and not full-sentence templates.
However, the approaches have a lot in common,
since we extract the predicate-argument structures
from sentences. The main issue with most of the
approaches above is the lack of accuracy. Recently,
Transformers have been shown to improve accuracy
for Question-Answering (Karpukhin et al., 2020),
including for the specific task of aligning text and
structured data (Oguz et al., 2022) and also for
fact checking, for instance for comparing tables
and text (Zhang et al., 2020). In our approach, we
therefore explore another way of aligning linguis-
tic predicates and properties via Transformer-based
meaning similarity scoring.
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Figure 3: Overview of the pipeline for PredArg template extraction (see Appendix A for module output illustrations)

3 Template Extraction Pipeline

In this section, we describe the components that al-
lows us to extract one or more PredArg template(s)
given one input DBpedia triple.4 Figure 3 shows
a complete view of the pipeline (see Appendix A
for module outputs). The three main components
of the pipeline (indicated across the bottom in Fig-
ure 3) are: (i) Candidate sentence retrieval, (ii) Can-
didate clause ranking and selection, (iii) conversion
to predicate-argument template.

3.1 Candidate sentence retrieval

The first step is to find candidate sentences for a
given input triple; since DBpedia triples are often
verbalised in Wikipedia texts, we use the Wikipedia
contents as a candidate source. Via the Hugging-
Face dataset,5 we have access to the title and the
cleaned (plain) text of each article. We first find
the Wikipedia articles of both the DB-Subj and the
DB-Obj (if any), and then run the entity linking
tool DBpedia Spotlight (Mendes et al., 2011) on
the input triple’s DB-Subj and DB-Obj and on the
article text to find sentences that mention both the
DB-Subj and the DB-Obj.

In order to find more candidate sentences and
possibly get better candidates, we also perform a
relaxed search. We get a named entity type for the
DB-Subj using Spacy NER,6 and parse Wikipedia
article titles until we find an article about an entity
of the same type as the DB-Subj. We then pro-
ceed to run Spacy NER on the DB-Obj and the

4Since FORGe performs triple aggregation during the gen-
eration, we don’t need to extract PredArg templates that corre-
spond to multiple triples.

5https://huggingface.co/datasets/
wikipedia

6https://spacy.io/api/entityrecognizer

found article so as to find sentences that contain
two entities of the type of the DB-Subj and DB-
Obj, and replace these entities with the ones from
the original input for the ranking phase.

3.2 Candidate clause ranking and selection

In this section, we detail how we extract minimal
clauses and calculate their semantic similarity with
the input triple using a Sentence Transformer bi-
encoder model7 (Reimers and Gurevych, 2019),
so that candidates scored above a given threshold
are kept while others are discarded (see Section 4).
Existing sentence similarity approaches return a
score for a pair of sentences; in our case, we need
a similarity score between a triple and a clause, so
we fine-tuned the model to this task using a dataset
created for this purpose.

Fine-tuning. We created a fine-tuning dataset
with pseudo-verbalisations of input triples aligned
with sentences from the WebNLG+ training set as
follows. For each triple T, we compiled 4 sets of
sentences that correspond to 4 levels of similarity
with T: 1 (sentences that verbalise exactly T), 0.66
(sentences that verbalise a triple that has 2 elements
in common with T, either DB-Subj and Property,
DB-Subj and DB-Obj, or Property and DB-Obj),
0.33 (1 element in common with T), and 0 (no
element in common with T), see Table 1.

We obtained 7,645 triple/sentence pairs in to-
tal for the set of similarity 1, 24K pairs for 0.66,
399K for 0.33 and 23M for 0. To balance the
dataset, we randomly picked 7,645 pairs from the
sets 0.66, 0.33 and 0. Finally, we converted each
triple to a typed pseudo-verbalised form (Pasricha

7https://huggingface.
co/sentence-transformers/
nli-distilroberta-base-v2
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Triple: Location(Agra Airport, India)
1.00 ’Agra Airport is in India.’, ’Agra airport is located

in India.’
0.66 ’Agra Airport is located in Uttar Pradesh.’, ’The

Taj Mahal is in India.’, etc.
0.33 ’AGR is the ATA Location Identifier for Agra Air-

port.’, ’AC Hotel Bella Sky Copenhagen is in Copen-
hagen.’, ’Mother Theresa is from India’, etc.

0.00 ’Agnes Kant is a national of the Netherlands.’, ’FC
Köln played the 2014-15 season in the Bundesliga.’,
’Ampara Hospital has 476 beds.’, etc.

Table 1: Sentences with different similarity levels; in
bold, the elements in common with the triple.

et al., 2020): Location(Agra Airport, India) →
<AIRPORT> Agra Airport <PROP> location
<PLACE> India.8 In our use case, when an un-
known property is detected in the input, we will
not have at hand a verbalisation of the triple that
contains it since the objective of our pipeline is
to discover such verbalisations. Therefore, the
pseudo-verbalisation here is an adequate strategy:
the pseudo-verbalised input triple will be compared
to the candidate clauses.

Clause extraction. The sentences retrieved (see
Section 3.1) are usually long, in the Wikipedia
style; we thus reduce each sentence to the minimal
subtree that contains a finite verb and two elements
of the same types as the the DB-Subj and the DB-
Obj respectively. Each candidate sentence is parsed
with the Stanza Universal Dependency parser (Qi
et al., 2020); the output syntactic structures are then
processed to extract the minimal subtree via our
own graph-transduction grammars. The original
sentence span that corresponds to this clause sub-
tree is selected (see Appendix A for illustration).

3.3 Conversion to PredArg templates
The predicate-argument structures of the selected
clauses from the previous step are created. For
this, we use the grammar-based UD Converter re-
leased for the Surface Realisation Shared Tasks
(Mille et al., 2019a), which given a UD parse re-
turns a predicate-argument structure. The specific
DB-Subj and DB-Obj are replaced by generic [DB-
Subj] and [DB-Obj] placeholders.

4 Experiments and preliminary results
In this paper, we provide a first evaluation of the
ranking component; we believe that there are many
ways of finding more candidate sentences (see Sec-
tion 5), but predicting which candidate is suitable
(or not) is particularly crucial in our pipeline.

8See Appendix B for details on the data and fine-tuning.

Evaluation setup. For the evaluation, we com-
pare two models, the off-the-shelf Transformer
(Reimers and Gurevych, 2019) and our fine-tuned
version of it, on two datasets, (a) the WebNLG+
development subset of single-property inputs (401
triples), and (b) the subset of the WebNLG+ test set
comprising all and only items with properties not
seen in the WebNLG+ training data (113 triples).
The objective is to obtain performance upper and
lower bounds for the fine-tuned model by examin-
ing how accurate it is at selecting the right candi-
date (a) for properties seen during fine-tuning, and
(b) for unseen properties, which is the most realis-
tic scenario for PredArg template extraction. For
each input triple, there are 1 to 3 exactly matching
sentences (the corresponding reference sentences
in the WebNLG+ dataset), which are the target
sentences that we want the model to prefer (rank
highest) for the input triple. For use as the non-
matching candidates, which should be dispreferred
(ranked lower) by the model, we select all other
sentences that verbalise one-triple inputs, and all
sentences that verbalise two-triple inputs; the total
Dev and Test candidate pools contain 1,834 and
2,887 sentences respectively. This way, we ensure
that we have candidates with a significant mean-
ing overlap with the target sentences (one-triple
inputs can share elements with one another, see
Section 3.2, and two-triple inputs can include ele-
ments or even full triples of the one-triple inputs).

Results. On the development data (top half of
Table 2), the fine-tuned model ranks all the target
sentences at the top in 98.5% of the cases, and
one of the target sentences at the top in 99.5%
of the cases. The average similarity score of the
correctly top-ranked sentences is 0.963, and the
first non-target sentence is on average scored 0.346
points below. The off-the-shelf model is effective
at placing one, but not all, target sentences at the
top, and the difference in scores between the target
and non-target sentences is half of what it is for the
fine-tuned model (0.170 and 0.346 respectively).

To assess to what extend the models capture
the semantics of the properties, we repeated the
experiment above but modifying the input triples
in two ways: replacing the property name by an-
other randomly selected property (Avg. top PMod),
and inverting the DB-Subj and DB-Obj (Avg. top
PInvSO). The off-the-shelf model has a harder time
discriminating between correct and wrong proper-
ties than the fine-tuned model (similarity scores of
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0.785 and 0.684, respectively, for the off-the-shelf
model, 0.963 and 0.754 for the fine-tuned model).
However, neither of the models is able to discrim-
inate cases where the DB-Subj and DB-Obj are
switched, yielding even higher scores on average
than with the original triple (Avg. top PInvSO).

We then looked for the threshold at which a
model gets the best F1 score when selecting a can-
didate sentence. We tested all thresholds (in steps
of 0.01 from 0 to 1) for each model on the Dev set
and obtained values of 0.73 and 0.87 for the off-
the-shelf and fine-tuned models respectively, which
yield a F1 of 0.798 and 0.955 respectively. On the
unseen test set, these thresholds yield a significantly
lower F1 score, the fine-tuned model reaching an
F1 of only 0.694 and the off-the-shelf model 0.429.
Note that a better F1 can be achieved on these un-
seen triples by selecting different thresholds (both
higher, at 0.93 and 0.78 respectively).9

Error analysis. We examined all the false pos-
itives and false negatives for the best threshold
on the Dev set (0.87), and found the following er-
rors.10 False positives (53 errors): (i) a sentence
that corresponds to 2 triples was selected, because
one or more elements of the second triple are very
similar with the input triple’s DB-Subj, DB-Obj
or Property (75% of errors); (ii) the selected sen-
tence verbalises a triple that is almost identical to
the input triple (25%). False negatives (35 errors):
(i) mismatch between a DB-Subj, Property or DB-
Obj and their corresponding verbalisation due to
an accent, a comma in a number, quotation marks,
parentheses, casing (57%); (ii) a triple element is
verbalised with a word judged semantically distant
(29%); (iii) a reference sentence is wrong (14%).
Only false negatives (i) and (iii) in the stem from
errors or lack of normalisation in the data; the other
errors are due to the model.

Discussion. We were surprised by the decrease
in the score between the Dev and the Test sets, espe-
cially for the off-the-shelf Transformer, for which
we would expect no difference between seen and
unseen properties. We hypothesise that the Test
set is more challenging: (i) the reference sentences
seem less similar (0.910 on Test VS 0.932 on Dev
when running the off-the-shelf Transformer on the
gold sentences for triples of size 1); (ii) some prob-
lematic cases are more frequent (e.g. the DB-Subj
or DB-Obj has content in parentheses in 34% of

9Fig. 6 and 7 in Appendix C show the F1/Threshold plots.
10See Tables 3 to 8 in Appendix D for examples.

the Test triples, VS 12% in the Dev set); (iii) there
are more candidate sentences for the Test set (see
Evaluation setup). There are likely other factors.

All properties of Dev. Set (401 triples)
Off-the-shelf Fine-tuned

AccuracyAll (%) 91.02 98.50
AccuracyOne (%) 98.25 99.50
Avg. top POK 0.785 0.963
Margin 0.170 0.346
Avg. top PMod 0.684 0.754
Avg. top PInvSO 0.803 0.971
F1 (thresh.) 0.798 (0.73) 0.955 (0.87)

Unseen porperties of Test Set (113 triples)
Off-the-shelf Fine-tuned

AccuracyAll (%) 56.64 73.45
AccuracyOne (%) 87.61 96.46
Avg. top POK 0.787 0.929
Margin 0.110 0.212
Avg. top PMod 0.702 0.776
Avg. top PInvSO 0.815 0.952
F1 Dev thresh. 0.429 0.694
F1 (best thresh.) 0.537 (0.78) 0.745 (0.93)

Table 2: Evaluation of the ranking module (WebNLG+).
AccuracyAll/One = % of cases with all/one good can-
didate(s) ranked at the top; Avg. top POK = Average
score (0 to 1) of correctly top-ranked n candidates for a
given input triple; Margin = difference in % between
top ranked candidates and first non-correct candidate;
Avg. top PMod/InvSO = Average score (0 to 1) of the
top-ranked candidate for a given input triple in which
the property name was randomly changed / the DB-Subj
and DB-Obj were inverted; F1: best F1 score for candi-
date selection obtained via the indicated threshold.

5 Future work
We are currently developing the approach reported
here further, including investigating how to in-
crease the F1 for candidate selection on unseen
data, for instance by using cross-encoders for the
final ranking of the top candidates or NLI to fil-
ter out bad candidates (Abhishek et al., 2022). To
find more and better candidates, we will apply co-
reference resolution on the Wikipedia pages, test
Open IE approaches to identify text spans (Perera
and Nand, 2015), and explore the use of Simple
Wikipedia (Duma and Klein, 2013) and WEXEA
(Strobl et al., 2020). We will further develop our
prototype clause extractor, and will apply our ap-
proach to other languages to test its portability.
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A Sample outputs of all components

In this section , we illustrate each step of the whole
pipeline.

Input triple
Alan_Bean ∥ birthDate ∥ "1932-03-15"

Entity linking (DBpedia Spotlight)
• DB-Subj: Alan Bean

– kbid: 11139903761698166211
– dbpedia link:

http://dbpedia.org/resource/Alan_Bean

• DB-Obj: "1932-03-15"
– kbid: 0 (No dbpedia entity found)

Entity type assignment (Spacy)
• DB-Subj: Alan Bean

– Entity label: 380 (PERSON)

• DB-Obj: "1932-03-15"
– Entity label: 391 (DATE)

Typed pseudo-verbalisation
We first check if the DB-Subj or DB-Obj are

a number –using regular expressions- or a time
period –using the python module dateutil.parser. If
not, we do the DBpedia query:

• DB-Subj (Alan_Bean): None

• DB-Obj (1932-03-15): TIMEPERIOD

Since the DB-Obj has a type, we then query
DBpedia for the DB-Subj only, and choose the first
returned type (in bold below):

{{’uri’: ’http://dbpedia.org/ontology/Person’},
{’uri’: ’http://dbpedia.org/ontology/Animal’},
{’uri’: ’http://dbpedia.org/ontology/Astronaut’},
{’uri’: ’http://dbpedia.org/ontology/Eukaryote’},
{’uri’: ’http://dbpedia.org/ontology/Species’}}

We can then proceed to produce the pseudo-
verbalised triple as follows:

<PERSON> Alan Bean <PROP> birth date
<TIMEPERIOD> "1932-03-15"

Sentence extraction (Entity matching) and pars-
ing (Stanza)
To get Wikipedia pages, we retrieve (i) the page
of the DB-Subj, (ii) the page of the DB-Obj if any,
and (iii) 1,000 random article about an entity that
has the same type as the DB-Subj (matching the
Spacy tag of the title with that of the DB-Subj). We
then look for candidates on the pages, based on
the type predicted by DBpedia Spotlight (pages of
DB-Subj and DB-Obj) or by Spacy (other pages).
We detokenise the DB-Subj and the DB-Obj for
them to be parsed as one single named entity.

Figure 4: Sample UD structure (selected columns)

Clause Extraction (graph transduction gram-
mars)
The output of the clause extractor is the minimal
subtree that contains both the DB-Subj and
the DB-Obj, with additional trimming (e.g. a
relative pronoun before the DB-Subj is removed):
’Alan_Bean was born on "1932-03-15"’

Clause ranking (Transformer)
The similarity of the extracted clause with the
input triple is then calculated: ’Alan_Bean was
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born on "1932-03-15"’ -> 0.8853045701980591’.
If the clause is above the defined threshold, it is
selected for the template. See more examples of
ranking and selection in Appendix D.

Conversion to PredArg (UD Converter)
Figure 5 shows the delexicalised predicate-
argument template extracted from the selected
clause.

Figure 5: Sample PredArg template (selected columns)

B Details on the fine-tuning step

Our method for triple pseudo-verbalization is based
on the one in (Pasricha et al., 2020); we adapted a
couple of aspects not detailed in the paper: (i) we
implemented our own simple functions for check-
ing if a DB-Obj is of type number or date, and (ii)
we took the first ontology type (starting with dbo:)
in the rdf:type section of the DBpedia page for the
other types.

The finetuning dataset is built from the one-triple
items in the test set of the WebNLG+ dataset.11 For
finetuning the model, we sample 7,645 items for
each of the 4 similarity categories as explained in
the paper. The sample is divided 70/15/15 for train-
ing, development and test sets, respectively. The
train batch size is 16, and the train loss is Cosine
Similarity Loss. It uses the Embedding Similarity
Evaluator (which uses the development set) with
evaluation steps = 1000, and some warm-up steps
(10% of the training data), with num_epochs = 4.

C Plots F1-score clause ranking and
selection

Figures 6 and 7 show a plot of the F1-score in
function of the selection threshold for candidate
sentences.

D Sample classification errors

Tables 3 to 8 show examples of mis-selection of
candidate sentences for an input triple. In cyan,
correctly selected target sentences; in orange, erro-
neously selected (false positive) or discarded (false
negative) sentences.

11https://drive.google.com/file/d/
1BM-W0GTa931jdNp1De_vHcfa8GGdPhTL/view?
usp=sharing
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Figure 7: F1 score for clause selection (Test set)
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Input
<AIRPORT> Athens International Airport <PROP> location <PLACE> Spata
Target sentences
Athens International Airport is located in Spata.
Athens International Airport is in Spata.

Top-ranked sentences Score
Athens International Airport is located in Spata. 0.958
Athens International Airport is in Spata. 0.955
Athens International Airport, which is located in Spata, serves the city of Athens. 0.949
Athens International Airport is in Spata and serves the city of Athens. 0.943
Athens International Airport in Spata serves the city of Athens. 0.934
Agra Airport is in Agra. 0.523

Table 3: False positive Dev Type (i) (Non-target sentence > 0.87)

Input
<PLACE> Ann Arbor, Michigan <PROP> leader title <PERSONFUNCTION> Mayor
Target sentences
Mayor, is the title of the leader in Ann Arbor, Michigan.
The leader title of Ann Arbor, Michigan, is Mayor.
Ann Arbor, Michigan is led by the Mayor.

Top-ranked sentences Score
The leader title of Ann Arbor, Michigan, is Mayor. 0.994
Ann Arbor, Michigan is led by the Mayor. 0.990
Mayor, is the title of the leader in Ann Arbor, Michigan. 0.988
The City Administrator leads Ann Arbor in Michigan. 0.908
A City Administrator leads Ann Arbor, Michigan. 0.897
Albany, Georgia is led by a Mayor. 0.657

Table 4: False positive Dev Type (ii) (Non-target sentence > 0.87)

Input
<AIRPORT> Alpena County Regional Airport <PROP> runway length <NUMERIC> 1533.0
Target sentences
The runway length of Alpena County Regional Airport is 1,533.
The runway length of Alpena County Regional airport is 1533.0.

Top-ranked sentences Score
The runway length of Alpena County Regional airport is 1533.0. 0.995
The runway length of Alpena County Regional Airport is 1,533. 0.567
The Adolfo Suárez Madrid–Barajas Airport is in San Sebastián de los Reyes and has a runway length of

0.474
3500.0 metres.

Located in Alcobendas, Adolfo Suarez Madrid-Barajas Airport has a runway with the length of 3500.0 metres. 0.470
The Adolfo Suárez Madrid–Barajas Airport located at San Sebastian de los Reyes has a runway length of 3500. 0.466
Ann Arbor, Michigan has a population of 1580.7 per square kilometre and a total area of 74.33 square kilometres. 0.464

Table 5: False negative Dev Type (i) Number (Target sentence < 0.87)
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Input
<FOOD> Bakso <PROP> ingredient <FOOD> Noodle
Target sentences
Bakso contains noodles.
Noodle is an ingredient in Bakso.
The dish Bakso contains noodles.

Top-ranked sentences Score
Noodle is an ingredient in Bakso. 0.989
The dish Bakso contains noodles. 0.857
Bakso contains noodles. 0.820
Vermicelli is an ingredient in Bakso. 0.640
Vermicelli is an ingredient of the dish Bakso. 0.636
Vermicelli is included in bakso. 0.553

Table 6: False negative Dev Type (i) Casing (Target sentence < 0.87)

Input
<PERSON> N. R. Pogson <PROP> nationality <MUSICALARTIST> England
Target sentences
N. R. Pogson was English.
N.R. Pogson was an English national.
N. R. Pogson is British.

Top-ranked sentences Score
N.R. Pogson was an English national. 0.913
N. R. Pogson is British. 0.909
N. R. Pogson was English. 0.574
People from the United Kingdom are called British people. 0.482
British people is a demonym for people in the United Kingdom. 0.458
The native people of the United Kingdom are known as the British people. 0.441

Table 7: False negative Dev Type (ii) (Target sentence < 0.87)

Input
<PLACE> Swords, Dublin <PROP> is part of <SETTLEMENT> Dublin (European Parliament constituency)

Target sentences
Swords is a part of the Dublin European Parliamentary constituency.
Swords belongs to the Dublin constituency of the European Parliament.
Swords, Dublin is part of the Dublin European Parliament constituency.

Top-ranked sentences Score
Swords, Dublin is part of the Dublin European Parliament constituency. 0.893
Swords is a part of the Dublin European Parliamentary constituency. 0.835
Swords belongs to the Dublin constituency of the European Parliament. 0.774
Trane is located in Swords, Dublin, Ireland. 0.638
Trane is located in Swords, Dublin, which is in Ireland. 0.625
The location of Trane is in Swords, Dublin, Ireland. 0.620

Table 8: False negative Dev Type (iii) (Target sentence < 0.87)
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