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Abstract

Current language processing tools presuppose
input in the form of a sequence of high-
dimensional vectors with continuous values.
Lexical items can be converted to such vectors
with standard methodology and subsequent pro-
cessing is assumed to handle structural features
of the string. Constructional features do typ-
ically not fit in that processing pipeline: they
are not as clearly sequential, they overlap with
other items, and the fact that they are combi-
nations of lexical items obscures their onto-
logical status as observable linguistic items in
their own right. Constructional grammar frame-
works allow for a more general view on how
to understand lexical items and their configu-
rations in a common framework. This paper
introduces an approach to accommodate that
understanding in a vector symbolic architec-
ture, a processing framework which allows for
combinations of continuous vectors and dis-
crete items, convenient for various downstream
processing using e.g. neural processing or other
tools which expect input in vector form.

1 Continuous and discrete models

Processing models and memory models for
knowledge-intensive tasks of many kinds are cur-
rently implemented as vector models of vari-
ous kinds. The latest few generations of imple-
mented natural language processing tools follow
this trend, and benefit from the convenient and well-
understood processing framework geometric mod-
els offer, the seamless incorporation of learning
into a continuous model, and the attendant possibil-
ity to generalise from a large body of background
knowledge to work with a specific task. Results
on benchmark tasks has been impressive, and this
is gratifying for those of us who have advocated
for unsupervised learning, for statistical and proba-
bilistic approaches, and for somewhat neurophysi-
cologically inspired processing architectures.

The most obvious flip side of the impressive re-
sults comes with the cost of running such models.
The amount of training data required is enormous
compared to previous generations of models, the
number of parameters to set during training is or-
ders of magnitudes of orders of magnitudes larger,
and the expense for appropriate computing infras-
tructure is prohibitive.

Much of this computing effort appears to be
wasteful for those who have an understanding of
the linguistic signal. The processing model starts
from no understanding of what it is expected to
model, is fed chunks of linguistic data with the
instruction to pay attention to character sequences
(mostly but not always with special attention paid
to white space and sentence separators), and eventu-
ally will be able to relate the strings it has been fed
with to each other in interesting and behaviourally
adequate ways.

Previous generations of statistical models have
at times experimented with including lexical cat-
egories or structural features to enrich the string
input, but results have been equivocal and the cur-
rent generation of natural language processing tools
has dispensed with dependency graphs and lexical
classes, preferring to infer the operatively effective
relations between string elements directly from the
data.

2 One can have both

For a linguist, the entire approach causes some frus-
tration. One view of a linguist’s job description is
to provide the appropriate features for a learning
system to pay attention to, and to strive to optimise
the convergence of features, categories, and dimen-
sions of variation for a natural language processing
system to deliver the best results, the steepest learn-
ing curves, and the smallest set of parameters for
some set of tasks. The current generation of nat-
ural language processing tools do not invite such
intervention or such hypothesis testing: indeed,
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the practice of feature engineering is somewhat
frowned upon.

In more general terms, a continuous geometric
model has intuitively appealing qualities (even to
the extent that the metaphors such a model invites
coupled with our understanding about geometry
in a physical world can lead our intuitions astray
(Karlgren and Kanerva, 2021)): where a symbolic
model allows for greater transparency, greater ex-
planatory power, convenient inspectability and ed-
itability, and a more direct path to hypothesis test-
ing, a continuous geometric model offers robust-
ness, coverage, and generalisability. And today,
by representing linguistic observations as vectors
we will have a convenient interface to downstream
computation using various past, current, and most
likely many future flavours of machine learning.

There is no inherent contradiction between con-
tinuous models and discrete elements of study.
Words are discrete observations and are routinely
represented as vectors in language processing tasks,
typically encoded by a shallow neural net which
takes local context into account in narrow windows
to model syntactic dependencies or slightly larger
windows to model topical association. Configura-
tional features such as elements from construction
grammars can be represented similarly.

3 The general idea of high-dimensional
computation

High-dimensional computation allows for the in-
corporation of linguistic items, single lexical items,
configurational elements, or constituent structures
jointly, using simple operations. This framework
was first introduced by Plate under the name
Holographic Reduced Representation (HRR; Plate,
1991, 2003) and further developed as Multiply–
Add–Permute (MAP: Gayler, 1998), Vector Sym-
bolic Architecture (VSA: Gayler, 2004), and Hy-
perdimensional Computing (Kanerva, 2009). The
idea is to encode information in a vector with three
simple linear algeabric operations that keep vector
dimensionality constant: vector addition, vector
multiplication, and permutation. Addition of two
vectors yields a new vector similar to its operand
vectors; addition can be used to represent a set.
Multiplication, coordinate by coordinate, yields a
product vector which is dissimilar to its operand
vectors. Permutation takes a single vector, rear-
ranges its coordinates, and produces a vector that
is dissimilar to the operand. The operations are

invertible: the operations can be undone and the
component vectors retrieved from the result. These
operations are based on a well-understood com-
putational algebra, similarly to how most vector
models rely on geometry. A vector space together
with linear algebraic manipulation operations and
geometric access and analysis operations can be
used to combine observations into a common vector
represtentation systematically, transparently, and
explicitly, and for our purposes allows us a con-
venient way to evaluate the information value of
features we expect to be important to understand
the linguistic signal.

Random indexing is a high-dimensional compu-
tation framework, which assigns randomly gener-
ated fixed-dimensional index vectors to observa-
tions of interest, to be combined using the above
operations. Random indexing traces its roots to
Kanerva’s Sparse Distributed Memory framework
(Kanerva, 1988). A randomly generated index vec-
tor is defined to be sparse, i.e. to mostly contain
0s with a small number of 1s and −1s—say 10
non-zero elements in a 1000-dimensional vector—
and the characteristics of high-dimensional spaces
are such that two such randomly generated vec-
tors will be very close to orthogonal. We assign
random index vectors to each linguistic item of in-
terest: single words and constructions alike. If a
new previously unencountered item shows up dur-
ing processing, it can be assigned a new unique in-
dex vector without retooling the previously known
space of items. In random indexing of linguistic
material, addition is used to combine observations
that are collocated into a joint vector: an utterance
can be represented as the sum of index vectors
for every word in it. Permutation can be used to
distinguish item occurrences in different roles or
different surface forms, to distinguish cases, se-
mantic roles, or head-attribute relations, e.g. This
framework will allow us to represent sequences
and configurations together with their constituent
elements conveniently.

4 Some examples

This section is based on some previously published
example implementations and experiments (Karl-
gren and Kanerva, 2019; Karlgren et al., 2018). Pre-
vious work using this approach was used to build
general associative lexical resources (Sahlgren
et al., 2016) using permutations to differentiate
between left hand and right hand context (Sahlgren
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et al., 2008). This model is a parsimonious method
to aggregate cooccurrence statistics and has proven
quite useful in practical application, but has today
been superseded by large language models that are
able to capture longer range dependencies.

This purely lexical model can be enhanced by
adding constructional elements, inflectional infor-
mation, semantic roles, and even contextual extra-
linguistic information. Sentences such as the ones
given in Example (1) both involve fish. This is of
course for some purposes a notable observation, but
we can add the observation that the fish in question
participate in different roles in the sentences. This
can be encoded by adding a semantic role label
to the fish vector, adding a tense and aspect anno-
tation to the main verb or even to all referential
expressions to indicate that fish in Sentence (1-b)
are agents doing their thing in present progressive
in contrast with the fish in Sentence (1-a). What
features to represent are up to the hypotheses being
considered, and adding spurious features will not
confuse the system except adding a slight noise to
the resulting vector. The features of interest can be
retrieved separately, since the operations used are
invertible. The representation of fishagent can be
derived from the representation of fish by invok-
ing a permutation specific for agent roles.

(1) a. The fishermen have cured the
[fish]patient by smoking or by salting
them in brine.

b. The [fish]agent are jumping up like
birds now.

(2) a. fishermen + fishermenagent +
cure+fish+fishpatient+present−
perfect+smoke+salt+brine+ ...

b. fish+fishagent+jump+present−
progressive+ birds+ now + ...

In a series of experiments on a commercial data
set of customer reviews we tested the effect of
adding amplifiers, negations, and constructional
markers for attitudinal expression in addition to
lexical features. We represented each sentence in
the collection as a vector into which we added the
index vector for each term present in it, weighted
by inverse frequency. We also added a separate
amplifier vector if an amplifier was present; a
negation vector if the main verb of the sentence
was negated; a number of verbal class vectors
cogitation, expression, privatesensation, and
some others; separate vectors for each observed

tense form in the sentence; vectors for presence of
a personal pronoun; vectors for a number of attitu-
dinal classes; and a series of constructional vectors
for presence of subclause, presence of auxiliaries,
and presence of adverbial constructions. These vec-
tors form a lexical-semantic-constructional space
with all features represented jointly. To demon-
strate how this space can be queried for features,
we represented the Sentence (3-a) separately with
only lexical features and with only semantic and
constructional features. We then retrieved the most
similar sentence from the joint vector space: the
lexical vector retrieves Sentence (3-b); the seman-
tic and constructional vector retrieves the more
personally expressive utterance with negative senti-
ment in Sentence (3-c). The original objective of
this experimentation was to find attitudinal expres-
sions for certain types of product: here it is useful
to show how a large number of features can be used
to build a space and then that space can be queried
with attention paid to subsets of features.

(3) a. I really did not like the clarinet, I am
afraid: it sounded weak!

b. My sister plays the clarinet.
c. I’m surrounded by really soft decadent

pillows which do not work for me at
all.

In a continued set of experiments on attitude anal-
ysis we experimented with constructional features
and their distribution in a dataset of some one mil-
lion microblog posts that mention among other
things corporate entities. We represented each mi-
croblog post as a sum vector of index vectors for in-
dividual lexical items; for unique triples of part-of-
speech tags—each triple such as DT − JJ −NN
or V BD − RB − RB having been assigned its
own index vector; for observed tense and aspect for
the main verb; for observations of the presence of
modal auxiliaries and various adverbs; for seman-
tic role labels for the agent of each clause; for the
presence of several categories of amplifiers; and
for some extracted configurations for verbs of ut-
terance and cogitation, e.g. utteranceverb− that
and other frequent constructions. These features
were extracted using the NLTK toolkit (Bird, 2006)
and on lexical resources coded using a comprehen-
sive lexically oriented grammatical description of
English (Quirk et al., 1985).

Similarly to the Example (3) above, we found, as
shown in Example (4) that the resulting representa-
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tion if only tested for lexical content indicated that
the most similar utterance to Sentence (4-a) would
be Sentence (4-b) while incorporating the various
constructional features Sentence (4-c) was found
to be the best match. This we found to be useful
for a project on tracking corporate sentiment online
(Karlgren et al., 2012). In this case, the agency
and animateness of the corporation in question is
the significant feature linking the first and the third
utterance.

(4) a. <CORPORATION X> announced
their intention to move their corporate
headquarters to Houston.

b. Houston is rocking, wow
<CORPORATION X>!

c. <CORPORATION X> plans to comply
with the court order and will provide
information to A!

Our examples taken from previous implementa-
tions presented here are intended to demonstrate
that with very simple additional processing, con-
structional features can be added to a processing
model, allowing the concurrent inclusion of many
information sources into one joint representation
in a computationally and conceptually habitable
way, well supported by established computational
practice. These operations are low effort, and can
be done selectively to provide a test bench for ex-
perimentation to find what the relative effect of con-
structional features are, given e.g. a classification
task or a ranking problem. This information can
be selectively retrieved from the vectors as shown
in the above examples, but more importantly, they
can be used to enrich some given lexical model
with constructional features of choice by the op-
erations outlined above. They are not intended to
convince the reader of the utility of any specific
set of features or of their suitability to some estab-
lished task—it is the processing model and compu-
tational approach that is novel and useful, not our
hypotheses about language and its functions.

Such resulting vectors are similar to pre-trained
off-the-shelf word embeddings such as are rou-
tinely used as input to downstream machine learn-
ing models and indeed constructional features can
be combined with such word embeddings through
the application of addition operations. In general,
the current generation of natural language process-
ing tools are agnostic to the content of their input
and are able to accommodate even weak signals

found in the input. This suggests that a useful vali-
dation path to test hypotheses of the effectiveness
and usefulness of constructional features is not only
to study the end results on benchmark tasks, but
the path to get to those results, and to investigate
how the model takes the potentially enriched infor-
mation into account in its training.

5 Take home

This short paper attempts to convince its readers
that it is possible to combine lexical and config-
urational features in a joint vector space model;
that combining configurational or constructional
features and lexical features in a joint vector space
model is a useful and desirable path to investigate
the validity of constructional hypotheses; that rad-
ical construction grammars provide a theoretical
back end to such representations; and that hyper-
dimensional computing or vector symbolic archi-
tectures provide a well-established computational
framework for processing such discrete informa-
tion into a form which can be ingested by today’s
most popular processing tools. The details of our
implementation are not important for this argument
but random indexing is a convenient and light-
weight approach to combining heterogenous in-
formation into a geometric representation.
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