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Abstract

Recent advancements in natural language pro-
cessing (NLP) have been driven by large lan-
guage models (LLMs), thereby revolutionizing
the field. Our study investigates the impact
of diverse pre-training strategies on the perfor-
mance of Turkish clinical language models in
a multi-label classification task involving ra-
diology reports, with a focus on overcoming
language resource limitations. Additionally,
for the first time, we evaluated the simultane-
ous pre-training approach by utilizing limited
clinical task data. We developed four models:
TurkRadBERT-task v1, TurkRadBERT-task v2,
TurkRadBERT-sim v1, and TurkRadBERT-sim
v2. Our results revealed superior performance
from BERTurk and TurkRadBERT-task v1,
both of which leverage a broad general-domain
corpus. Although task-adaptive pre-training
is capable of identifying domain-specific pat-
terns, it may be prone to overfitting because of
the constraints of the task-specific corpus. Our
findings highlight the importance of domain-
specific vocabulary during pre-training to im-
prove performance. They also affirmed that a
combination of general domain knowledge and
task-specific fine-tuning is crucial for optimal
performance across various categories. This
study offers key insights for future research on
pre-training techniques in the clinical domain,
particularly for low-resource languages.

1 Introduction

Language models have undergone a significant
transformation in the field of natural language pro-
cessing, demonstrating exceptional capabilities in
executing tasks with minimal guidance. This shift
can be attributed to pivotal milestones, such as
word2vec (Mikolov et al., 2013), which replaced
feature engineering methods with deep learning-
based representation learning. Furthermore, the
emergence of contextualized word embeddings
with ELMo has led to the development of (Peters
et al., 1802) pre-trained transformer-based models

such as BERT (Devlin et al., 2018), GPT (Radford
et al., 2018), T5 (Raffel et al., 2020), and BART
(Lewis et al., 2019).
Recent advancements in large language models
(LLMs) have led to the development of models with
parameter sizes exceeding hundred billion, includ-
ing the GPT (Generative Pre-trained Transformer)
series (Radford et al., 2018, 2019b,a; Ouyang et al.,
2022), such as ChatGPT and GPT-4 (OpenAI,
2023), which are pre-trained on massive datasets.
However, research focusing on LLMs architectures
within specialized domains characterized by lim-
ited resources is scarce. A range of approaches for
developing language models exists to address the
issue of limited language resources, including si-
multaneous pretraining with in-domain data (Wada
et al., 2020) and domain-adaptive pretraining by
fine-tuning an existing generic language model
with in-domain data (Gururangan et al., 2020). The
choice of pre-training technique depends on the
specific task data and available resources, but de-
termining the optimal utilization of limited clini-
cal task data in pretraining and selecting the most
suitable data for pretraining methods remain open
questions. This study aimed to assess and contrast
different techniques using a limited task corpus for
pretraining BERT models in the Turkish clinical do-
main, a low-resource setting. We introduce two pre-
trained language model families, TurkRadBERT-
sim and TurkRadBERT-task, each comprising two
models for the clinical domain in the Turkish lan-
guage. These models explore the effects of dif-
ferent corpus selections that combine small task-
related corpora and pretraining strategies in the
Turkish clinical domain. The TurkRadBERT-sim
pre-trained model family, developed via simulta-
neous pre-training (Wada et al., 2020), involves
a balanced combination of two distinct corpora:
one general and one limited task-specific. Both
corpora were upsampled to create pretraining in-
stances, resulting in robust neural language models.
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The TurkRadBERT-task pretrained model family,
developed via task-adaptive pre-training, involves
an additional pretraining stage where the model
is adaptively pretrained on a smaller, task-specific
dataset following the initial pretraining. We also
created a labeled dataset for multi-label document
classification using head CT radiology reports to
evaluate the models. The main contributions can
be listed as follows:

• While simultaneous pretraining has previously
been explored with limited biomedical data in
the work of (Wada et al., 2020), our study
shifts the focus towards applying this ap-
proach to limited clinical Turkish radiology
data for the first time. We conducted an eval-
uation of simultaneous pretraining, incorpo-
rating limited clinical task radiology data, and
compared it with task-adaptive pretraining
through continual pre-training. This novel
comparison provides valuable insights into
the efficacy of these methods in the context of
limited clinical radiology data, highlighting
their potential in specialized domains.

• We created small task-related corpora, includ-
ing Turkish head CT radiology reports by Ege
University Hospital. Then, we built four pre-
trained clinical language models, for the first
time, using Turkish head CT radiology reports,
Turkish general corpus, and Turkish biomedi-
cal corpara, including Turkish medical articles
(Türkmen et al., 2022) and Turkish radiology
theses (Türkmen et al., 2022).

• We developed a multi-label document classifi-
cation task aimed at identifying the presence
or absence of 12 clinically significant observa-
tions, as well as a "no findings" label indicat-
ing no observations, within head CT radiology
reports for the purpose of evaluating language
models. To the best of our knowledge, there
are no existing multi-label document classifi-
cation studies in the Turkish clinical domain.

2 Related Work

To optimize natural language processing models for
specialized domains, various studies have explored
different approaches to adapt general BERT models
for the biomedical domain. BioBERT (Lee et al.,
2020), an early attempt to adapt general BERT

models to the biomedical domain, employed con-
tinual pretraining to enhance performance. Initial-
ized from the general BERT model, BioBERT was
further trained on PubMed abstracts and full-text ar-
ticles, yielding an improved performance for tasks
such as named entity recognition, relation extrac-
tion, and question answering. Similarly, Clinical-
BERT (Alsentzer et al., 2019), a domain-specific
language model, was created using continual pre-
training with MIMIC data, demonstrating its effec-
tiveness in improving clinical task performance.
Other studies have explored continual pretraining
for biomedical language models, such as SciB-
ERT (Beltagy et al., 2019) and BlueBERT (Beltagy
et al., 2019), which were pretrained on a mix of
biomedical and general domain corpora. An alter-
native approach, pretraining from scratch, focuses
exclusively on in-domain data, without relying on a
generic language model. This method has been ef-
fective in creating models, such as PubMedBERT
(Gu et al., 2021), which is pretrained solely on
PubMed abstracts. Comparisons between the two
pretraining methods reveal that continual pretrain-
ing often leads to more successful transfers from
general to specialized domains. For example, one
study proposed four BERT models (Bressem et al.,
2020), two pretrained on German radiology free-
text reports (FS-BERT and RAD-BERT), and two
based on open-source models (MULTI-BERT and
GER-BERT). The FS-BERT model, which used
the pretraining from scratch approach, performed
poorly compared to the other models, suggesting
that domain-specific corpora alone might be insuf-
ficient for learning proper embeddings. Another
study developed RadBERT (Yan et al., 2022), a
set of six transformer-based language models pre-
trained on radiology reports with various language
models for initialization, to explore their perfor-
mance in radiology NLP applications.
Although pretraining BERT models can improve
performance across various biomedical NLP tasks,
they require significant domain-specific data.
Biomedical text data are often limited and scattered
across various sources, and few publicly available
medical databases are written in languages other
than English. This creates a high demand for ef-
fective techniques that can work well even with
limited resources. One solution to this problem is
the simultaneous pre-training technique proposed
in (Wada et al., 2020), which up-samples a limited
domain-specific corpus and uses it for pre-training
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Corpus Size (GB) N tokens Domain
General Turkish Corpus 35 4,404,976,662 General
Turkish Biomedical Corpus 0,48 60,318,554 Biomedical
Turkish Electronic Radiology Theses 0,11 15,268,779 Radiology
Head CT Reports 0.036 4,177,140 Clinical Radiology

Table 1: Corpora statistics

in a balanced manner with a larger corpus. Us-
ing small Japanese medical article abstracts and
Japanese Wikipedia texts, the authors created a si-
multaneous pretrained BERT model, ouBioBERT.
The study confirmed that their Japanese medical
BERT model performed better than conventional
baselines and other BERT models in a medical
Japanese document classification task. However,
they did not focus on applying the simultaneous
pre-training approach to limited clinical task radiol-
ogy data. Building upon this work, our study shifts
the focus towards applying the simultaneous pre-
training approach to limited clinical task data for
the first time. To overcome the limitations of the
limited resources problem, many researchers have
explored the benefits of continued pretraining on a
smaller corpus drawn from the task distribution as
task-adaptive pre-training (Gururangan et al., 2020;
Schneider et al., 2020). In addition, (Turkmen et al.,
2022) previously demonstrated that their biomedi-
cal BERT models, the BioBERTurk family, which
were continuously pre-trained on a limited Turkish
radiology thesis corpus, exhibited improved perfor-
mance in clinical tasks. However, the authors also
highlighted the potential ineffectiveness of domain
incompatibility when evaluating Turkish language
models, emphasizing the need for a closer align-
ment between domain-specific data and evaluation
tasks.

3 Materials and Methods

In this section, we provide a concise overview
of the pre-training methods employed for the de-
velopment of Turkish clinical language models
and the characteristics of the corpora used in this
process. We developed four Turkish clinical lan-
guage models, leveraging the BERT-base architec-
ture and constrained language resources by em-
ploying two pre-training strategies: simultaneous
pre-training and continual pre-training, referred
to as task-adaptive pretraining. Two models, re-
ferred to as the TurkRadBERT-sim family, were
developed by employing simultaneous pre-training

techniques that combined general, biomedical, and
clinical task corpora, while utilizing distinct vocab-
ularies. In contrast, two models, the TurkRadBERT-
task family, were developed by employing task-
adaptive pretraining using the task corpus. To con-
struct these clinical models, we employed four dis-
tinct corpora: the Turkish biomedical corpus com-
piled from open-source medical articles (Türkmen
et al., 2022), Turkish electronic radiology theses
corpus (Türkmen et al., 2022), Turkish web corpus
(Schweter, 2020), and newly created Turkish radi-
ology report corpus, which is a limited task corpus.
While all corpora were utilized in simultaneous
pre-training, only Turkish radiology reports were
used in task-adaptive pre-training. Subsequently,
the clinical language models were fine-tuned on
a downstream NLP task within the Turkish clin-
ical domain. Finally, the clinical language mod-
els were compared to the general Turkish domain
BERT model, BERTurk (Schweter, 2020), and the
BioBERTurk variant (Turkmen et al., 2022), which
was continually pretrained on Turkish radiology
theses.

3.1 Pre-training Strategies

The BERT framework (Devlin et al., 2018) consists
of two phases: pretraining and fine-tuning. Dur-
ing pre-training, BERT is trained on large-scale
plain text corpora, such as Wikipedia, whereas
in the fine-tuning phase, it is initialized with the
same pre-trained weights and then fine-tuned us-
ing task-specific labeled data, such as sentence pair
classification. BERT employs two unsupervised
tasks during the pre-training phase: Masked Lan-
guage Model (MLM) and Next Sentence Prediction
(NSP). In MLM tasks, a certain percentage of input
tokens is randomly masked, and the model predicts
the masked tokens in a sentence, as described in the
Cloze task (Taylor, 1953). For the NSP, the model
predicts whether the second sentence follows a con-
secutive sentence in the dataset.
In our study, we implemented several modifications
to the BERT architecture for simultaneous pretrain-
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ing (Wada et al., 2020), our first technique. This
pre-training approach posits that training the BERT
model using both large and small corpora can pre-
vent overfitting issues caused by limited medical
data. To accurately feed inputs into the model, we
followed a procedure from the same study (Wada
et al., 2020). We divided the small medical corpus
and large general corpus into smaller documents
of equal size, and combined them to create struc-
tured inputs. This approach mitigates potential
overfitting resulting from the limited data size by
increasing the frequency of pre-training for MLM
instances containing small medical data. In accor-
dance with the same study by (Wada et al., 2020),
we utilized domain-specific generated text and the
Wordpiece algorithm to generate a domain-specific
vocabulary, which is referred to as amplified vo-
cabulary in their research. Thus, we examined the
impact of the domain-specific vocabulary
Simultaneous pretraining enables the model to
learn language representations by training on large-
scale texts. However, this approach is expensive
owing to the extensive amount of data involved.
Finally, we implemented the task-adaptive pretrain-
ing method (Gururangan et al., 2020) using only
a small amount of clinical task data. This tech-
nique is less resource-intensive than the others. In
contrast to the aforementioned pre-training meth-
ods, we developed different BERT models based on
model initialization for task-adaptive pre-training,
using the existing BERT vocabulary instead of cre-
ating a new one.

3.2 Data Sources for Model Development

In the development of various language models,
multiple corpora were utilized to ensure that the
models were well suited to the specific domain
and task at hand. The selection of appropriate cor-
pora is crucial to the performance of language mod-
els, as it directly influences their understanding of
domain-specific language patterns, structures, and
vocabularies. The corpora used are summarized in
Table 1 and listed below:
Head CT Reports: We collected 40,306 verified
Turkish radiology reports pertaining to computed
tomography (CT) examinations for patients aged 8
years and above from the neurology and emergency
departments at Ege University Hospital between
January 2016 and June 2018. Prior to data analysis,
reports containing fewer than 100 characters were
excluded, and newline characters and radiology-

specific encodings were removed for consistency.
All text data underwent de-identification and du-
plicate removal. Following preprocessing, 2,000
reports were randomly selected for the head CT
annotation task, and the remaining data (approxi-
mately 36 MB) was reserved for pre-training tech-
niques.
General Turkish Corpus: This corpus, which was
used in the development of the BERTurk model,
contains a large collection of Turkish text data (ap-
proximately 35 GB). This serves as a foundation
for training language models to understand Turkish
language patterns.
Turkish Biomedical Corpus: A domain-specific
corpus (Türkmen et al., 2022) consisting of full-
text articles collected from Dergipark, a platform
hosting periodically refereed biomedical journals
in Turkey.
Turkish Electronic Radiology Theses: A unique
corpus of open-domain Ph.D. theses (Türkmen
et al., 2022) conducted in radiology departments of
medical schools obtained from the Turkish Council
of Higher Education’s website.

3.3 Data preparation

The first phase after data understanding is trans-
forming the text to the BERT-supported inputs,
namely tokenization. All engineering processes to
be fed into BERT were designed for Google Cloud
TPUs and implemented using CPU core i8. Further-
more, Wordpiece algorithm was used to generate
vocabulary for tokenization in both pre-training
methods due to the success in morphologic-rich
languages such as Turkish (Toraman et al., 2023).
Each vocabulary config file is the same as BERTurk
for a fair comparison. We implemented the tok-
enizer library from Huggingface 1 to build BERT’s
vocabulary in simultaneous pre-training. For con-
tinual pre-training, we used existing BERT’s vo-
cabulary for continual pre-training instead of cre-
ating a new one. After this process, we used
create_pretraining_data.py script provided by the
Google AI Research team 2 to convert all docu-
ments into TensorFlow examples compatible with
TPU devices.

3.4 Pretraining setup

We followed BERT-base architecture consisting of
12 layers of transformer blocks, 12 attention heads,

1https://huggingface.co/docs/tokenizers/python/latest/
2https://github.com/google-research/bert
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and 110 million parameters for all pre-training
strategies. All models were also generated using
the same hyperparameters (see Appendix B, Ta-
ble 5 ) and were trained with open-source training
scripts available in the official BERT GitHub repos-
itory using V3 TPUs with 32 cores from Google
Cloud Compute Services 3.

3.5 Developed Language Models

The simultaneous pre-training technique is the first
pre-training method we implemented to utilize a
small in-domain corpus. Moreover, the first step
in simultaneous pre-training is choosing data for
small and large corpus data. We produced different
TurkRadBERT-sim models according to vocabulary
usage. The distinction between the two models lies
in their vocabulary use; the first model leverages
an amplified, domain-specific vocabulary, whereas
the latter adopts the BERTurk vocabulary.
TurkRadBERT-sim v1 employed a large Turk-
ish general corpus (35 GB) used for developing
BERTurk, alongside a mixed Turkish biomedical
corpus, Turkish Electronic Radiology Theses, and
Turkish Head CT Reports as smaller counterparts.
Excluding the data utilized for labeling (approxi-
mately 6 MB), the head CT reports were not used
as a standalone small corpus for pre-training due to
their limited size (30 MB) compared to other cor-
pora. Furthermore, experimental results suggested
that simultaneous training with such a data size did
not yield significant outcomes in radiology report
classification. To address this, we combined the
small-sized corpus to match the large one, creating
pre-training instances. The model also employed
an amplified vocabulary, built from the generated
corpus, for simultaneous pre-training.
TurkRadBERT-sim v2 was also based on the
BERT-base architecture and was pre-trained simul-
taneously. The model used the same corpus as v1
during pretraining. The difference was that the gen-
eral domain vocabulary was used to observe the
effect of the domain-specific vocabulary.
The last pre-training method is task-adaptive pre-
training on radiology reports (30 MB). We devel-
oped two different BERT models according to the
model initialization.
TurkRadBERT-task v1 used a general domain
language model for Turkish, BERTurk for model
initialization and then carried out continual pre-
training as a task-adaptive pre-training method. Vo-

3https://cloud.google.com/

cabulary was also inherited from BERTurk.
TurkRadBERT-task v2 used a Turkish biomed-
ical BERT model, BioBERTurk variant(Turkmen
et al., 2022), which was further pre-trained on Turk-
ish electronic theses for model initialization. This
Turkish biomedical BERT was chosen because it
achieved the best score in classification radiology
reports (Turkmen et al., 2022). For tokenization,
the model again inherited from the general domain.

4 Supervision Task

4.1 Multi-label CT radiology reports
classification

We developed a multi-label document classifica-
tion task using 2000 Turkish head CT reports men-
tioned in Section 3.2. This was necessary as there
was no shared task for clinical documents in Turk-
ish. Our dataset has 20618 sentences and 249072
tokens. The objective of the document level clas-
sification task is to identify the existence of clin-
ically significant observations in a radiology re-
port that is presented in free-text format. These
are ’Intraventricular’ ,’Gliosis’, ’Epidural’, ’Hydro-
cephalus’, ’Encephalomalacia’, ’Chronic ischemic
changes’, ’Lacuna’, ’Leukoaraiosis’, ’Mega cis-
terna magna’ ,’Meningioma’, ’Subarachnoid Bleed-
ing’, ’Subdural’, ’No Findings’. The classification
process involves reviewing sentences within the re-
port and categorizing them into one of two classes:
positive or negative. The 13th observation, “No
Findings”, indicates the absence of any findings.
Those 12 labels were selected to indicate major
and relatively common clinical pathologies possi-
ble to be detected in a pre-contrast cranial comput-
erized tomography (CT) examination. Moreover,
the 12 labels used in the study also are not vague
radiologic findings, but definite clinical patholo-
gies. Therefore, no hedging was performed regard-
ing these categories radiology experts labeled the
dataset at document level according to this annota-
tion schema. The annotation process unfolded in
three stages, involving three experienced radiolo-
gists (C.E, M.C.C, and S.S.O). In each stage, two
annotators (C.E, M.C.C) independently labeled a
portion of the reports. Subsequently, the third an-
notator examined these annotations to detect any
discrepancies. At the conclusion of each stage, all
three annotators reached a consensus by generating
mutually agreed-upon annotations. A spreadsheet
file was utilized to facilitate the annotation task for
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Model Precision Recall F1 Score
BERTurk 0.9738 0.9456 0.9562 (± 0.0077)
TurkRadBERT-task v1 0.9736 0.9462 0.9556 (± 0.0057)
BioBERTurk 0.9731 0.9440 0.9535 (± 0.0068)
TurkRadBERT-task v2 0.9643 0.9352 0.9470 (± 0.0068)
TurkRadBERT-sim v1 0.8613 0.7969 0.8149 (± 0.0214)
TurkRadBERT-sim v2 0.8170 0.7863 0.7879 (± 0.0135)

Table 2: Average Precision, recall, and F1 Score for each model. We performed ten separate runs with different
random seeds and present both the average and standard deviation.

Category BERTurk TurkRadBERT-task v1
Intraventricular 0.4815 (± 0.4475) 0.4000 (± 0.3266)
Gliosis 0.8580 (± 0.0577) 0.8155 (± 0.1024)
Epidural 0.9012 (± 0.0349) 0.9000 (± 0.0333)
Hydrocephalus 0.9458 (± 0.0327) 0.9673 (± 0.0459)
Encephalomalacia 0.9622 (± 0.0173) 0.9633 (± 0.0081)
Chronic ischemic changes 0.9918 (± 0.0044) 0.9921 (± 0.0026)
Lacuna 0.9655 (± 0.0000) 0.9655 (± 0.0000)
Leukoaraiosis 0.8995 (± 0.1063) 0.8762 (± 0.1227)
Mega cisterna magna 0.6000 (± 0.1500) 0.4500 (± 0.0577)
Meningioma 1.0000 (± 0.0000) 1.0000 (± 0.0000)
Subarachnoid Bleeding 0.9281 (± 0.0183) 0.9544 (± 0.0118)
Subdural 0.9666 (± 0.0119) 0.9757 (± 0.0081)
No Findings 0.9455 (± 0.0145) 0.9311 (± 0.0167)

Table 3: Average F1 scores for each label in the TurkRadBERT-task v1 and BERTurk models. In each experiment,
we carried out ten distinct runs using different random seeds, from which we determine and report the average and
standard deviation.

the annotators The annotated datasets were sub-
sequently divided randomly into test (10%), val-
idation (10%), and training (80%) sets for fine-
tuning. The class distributions, as illustrated in
Appendix A, demonstrate the varying prevalence
of different categories in the datasets. The datasets
exhibit an imbalanced distribution, which is a typi-
cal characteristic of text processing in the radiology
domain (Qu et al., 2020).

4.2 Fine-tuning Setup

The fine-tuning of all pretrained models was con-
ducted independently utilizing identical architec-
ture and optimization methods as previously em-
ployed in the study (Devlin et al., 2018). In the
process of fine-tuning, the objective is not to sur-
pass the current state-of-the-art performance on the
downstream tasks, but rather to assess and compare
pretraining techniques for developing Turkish clini-
cal language models. So, an exhaustive exploration
of hyperparameters was not utilized. Consequently,
the optimal parameters identified from a limited hy-

perparameter search are employed, working under
the assumption that the fairness of model evalua-
tions and comparisons isn’t compromised by the po-
tential presence of more optimal hyperparameters.
Hyperparameter searches were conducted for each
model, examining learning rate values ϵ from the
set {2e-4, 3e-5, 5e-5}, maximum sequence lengths
ϵ from the set {128, 256, 512}, batch sizes ϵ from
the set {16, 32}, and the number of training epochs
ϵ from the set {15, 20}. Due to memory constraints,
a batch size of 64 was not considered. The config-
urations employed for the TurkRadBERT-sim and
TurkRadBERT-task models are displayed in Table
6 and Table 7 in Appendix B respectively.
The effectiveness of distinct pre-trained BERT
models on the clinical multilabel classification task
was evaluated by computing average precision, re-
call, and F1 score across ten runs, utilizing the most
suitable hyperparameter settings.
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5 Experimental Results

In this study, we evaluated the performance
of five different models, including BERTurk,
TurkRadBERT-task v1, TurkRadBERT-task v2,
TurkRadBERT-sim v1, and TurkRadBERT-sim v2,
for Turkish clinical multi-label classification. We
compared their performance over ten runs in terms
of average precision, recall, and F1 score. Addition-
ally, we analyzed the performance of wining two
model (BERTurk, TurkRadBERT-task v1) on indi-
vidual categories using their respective F1 scores.
The results are presented in Tables 2 and 3.
Table 2 shows that BERTurk achieves an F1 score
of 0.9562, with a precision of 0.9738 and recall
of 0.9456. TurkRadBERT-task v1 has a slightly
lower F1 score of 0.9556 but with comparable pre-
cision (0.9736) and recall (0.9462). Both mod-
els demonstrate strong performance on the classi-
fication task, with BERTurk slightly outperform-
ing TurkRadBERT-task v1 in terms of the over-
all F1 score. While BERTurk performed better
than TurkRadBERT-task v1, there are no statis-
tical differences between these models (P value
0,255). Additionally, BERTurk has also outper-
formed BioBERTurk. Other models, such as
TurkRadBERT-task v2, TurkRadBERT-sim v1, and
TurkRadBERT-sim v2, show lower overall perfor-
mance compared to BERTurk, TurkRadBERT-task
v1 and BioBERTurk.
However, it is essential to evaluate the models’ per-
formance for each label, as this offers a deeper
understanding of their strengths and weaknesses.
Table 3 presents the F1 scores for each category
for BERTurk and TurkRadBERT-task v1. The re-
sults reveal that the performance of the models
varies across categories, with some labels show-
ing a noticeable difference in F1 scores between
the two models. BERTurk performs better than
TurkRadBERT-task v1 in the following categories:
Intraventricular, Gliosis, Epidural, Leukoaraiosis,
Mega cisterna magna, and No Findings. In con-
trast, TurkRadBERT-task v1 outperforms BERTurk
in the categories of Hydrocephalus, Encephalo-
malacia, Chronic ischemic changes, Subarachnoid
Bleeding, and Subdural. The F1 scores for Lacuna
and Meningioma are identical for both models.

6 Discussion

By assessing the experiments as a whole, we
derived the following conclusions. When compar-
ing simultaneous pre-training and task-adaptive

pre-training, it is observed that, owing to the size
difference between the task data and the general
data, the limited domain-specific data may be
overshadowed by the large general-domain data.
This causes the model to focus more on learning
general rather than task-specific features. This
phenomenon highlights the importance of carefully
balancing general and domain-specific data during
the pretraining process to ensure that the model
effectively captures the nuances of the specialized
domain.
The performances of the BERTurk and
TurkRadBERT-task v1 models are quite similar
because both models leverage the knowledge
gained from the large general-domain corpus dur-
ing pre-training. BERTurk is directly pre-trained
on this large corpus, while TurkRadBERT-task v1
is initialized with BERTurk’s weights and then
fine-tuned using task-adaptive pre-training on a
smaller clinical corpus. This fine-tuning enables
TurkRadBERT-task v1 to capture domain-specific
patterns, structures, and terminologies absent in
the general-domain corpus.
However, the small task-specific corpus used in
task-adaptive pretraining may limit the model’s
learning of domain-specific knowledge. Con-
sequently, despite the benefits of task-adaptive
pre-training, TurkRadBERT-task v1, which utilized
this approach, had a slightly lower performance
than BERTurk. In limited data scenarios, the
task-adaptive pre-training approach may be prone
to overfitting, especially when pre-trained on
a small task-specific corpus. The model may
become overly specialized in training data and
fail to generalize well to unseen examples (Zhang
et al., 2022).
In terms of performance, TurkRadBERT-task
v1 has a slightly higher F1 score (0.9556) than
BioBERTurk (0.9535) and TurkRadBERT-task
v2 (0.9470). This suggests that despite the more
specialized biomedical knowledge in BioBERTurk,
the general-domain BERTurk model provides
a more robust foundation for task-adaptive
pre-training in this specific clinical task.
Another conclusion reached in this study is
that comparison between TurkRadBERT-sim
v1 and v2 offers insights into the impact of
domain-specific vocabulary on model performance.
TurkRadBERT-sim v1, which used an amplified
vocabulary built from the generated corpus, out-
performed TurkRadBERT-sim v2 that employed
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the general domain vocabulary. This finding
indicates that using a domain-specific vocabulary
during pre-training can enhance the ability of the
model to capture and understand domain-specific
language patterns, ultimately leading to improved
performance on clinical NLP tasks.
Examining the F1 scores for each label in Table
3 provides a more detailed perspective of the
performance of the two most successful models.
First, the optimal performance on specific labels,
such as meningioma and chronic ischemic changes,
might be attributed to the use of precise, standard
reporting terminology to define these pathologies,
a factor that likely provides high results, regardless
of the classifier employed. BERTurk outperforms
TurkRadBERT-task v1 in certain labels, such as
Intraventricular, Gliosis, Epidural, Leukoaraiosis,
Mega cisterna magna, with No Findings. The
higher performance of BERTurk on certain
labels could be attributed to the general domain
knowledge acquired during direct pre-training
(different from other pre-training methods), which
may provide better coverage for specific categories,
particularly those with a lower frequency in
the task-specific corpus. BERTurk’s broader
pre-training data exposure could potentially give it
an advantage over models like TurkRadBERT-task
v1 when dealing with specific labels that have
lower representation in the task-specific corpus,
even though TurkRadBERT-task v1 is initialized
with BERTurk. This suggests that a combination
of general domain knowledge and task-specific
fine-tuning may be critical for optimal perfor-
mance across diverse categories. On the other
hand, TurkRadBERT-task v1 exhibits superior
performance for labels like Hydrocephalus,
Encephalomalacia, Subarachnoid Bleeding,
and Subdural. This suggests that task-adaptive
pre-training can offer a performance boost in
some instances by fine-tuning the model based on
domain-specific information. However, it is worth
noting that the overall performance differences
between the two models are relatively small,
highlighting the importance of leveraging both
general-domain and task-specific knowledge in
these models.

7 Conclusion

This study provides a comprehensive compar-
ison of the performance of various models,
including BERTurk, TurkRadBERT-task v1,

TurkRadBERT-task v2, TurkRadBERT-sim v1,
and TurkRadBERT-sim v2, on a radiology report
classification task. Our findings demonstrate
that the BERTurk model achieved the best
overall performance, closely followed by the
TurkRadBERT-task v1 model. This highlights the
importance of leveraging both general domain
knowledge acquired during pre-training and
task-specific knowledge through fine-tuning to
achieve optimal performance on complex tasks.
We also observed that the performance of these
models varies across different labels, with
BERTurk performing better on certain categories,
particularly those with lower representation in
the task-specific corpus. This finding suggests
that a combination of general domain knowledge
and task-specific fine-tuning may be critical for
achieving optimal performance across diverse
categories. Additionally, it is essential to consider
label frequencies when interpreting results because
performance on rare labels may be more suscepti-
ble to noise and overfitting.
The simultaneous pre-training models
TurkRadBERT-sim v1 and v2 exhibit lower
performance compared to their task-adaptive coun-
terparts, indicating that task-adaptive pre-training
is more effective in capturing domain-specific
knowledge. Nevertheless, further investigation of
alternative pre-training and fine-tuning strategies
could help enhance the performance of these
models.
Future research could focus on expanding the
task-specific corpus to improve domain-specific
knowledge and performance on rare labels as well
as explore alternative pre-training and fine-tuning
strategies to further enhance model performance.
Moreover, investigating the factors contributing to
the performance differences between the models
for each label could provide valuable insights for
developing more effective models in the field of
medical natural language processing.
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A Additional dataset information
Category Positive Negative
Intraventricular 22 (%1.1) 1978 (%98.9)
Gliosis 54 (%2.7) 1946 (%97.3)
Epidural 51 (%2.55) 1949 (%97.45)
Hydrocephalus 70 (%3.5) 1930 (%96.5)
Encephalomalacia 177 (%8.85) 1823 (%91.15)
Chronic ischemic changes 951 (%47.55) 1049 (%52.45)
Lacuna 138 (%6.9) 1862 (%93.1)
Leukoaraiosis 49 (%2.45) 1951 (%97.55)
Mega cisterna magna 15 (%0.75) 1985 (%99.25)
Meningioma 39 (%1.95) 1961 (%98.05)
Subarachnoid Bleeding 209 (%10.45) 1791 (%89.55)
Subdural 227 (%11.35) 1773 (%88.65)
No Findings 299 (%14.95) 1701 (%85.05)

Table 4: Distribution of frequencies for each label’s pos-
itive and negative radiology documents in the dataset.

B Pre-training and fine-tuning
hyperparameters

Hyperparameters Values
Learning rate 1e-4
Batch size 256
Optimizer Adam
β1 0.9
β2 0.999
Warmp up steps 10000
Max sequence length 512
Max prediction per seq 76
Masked MLM probability 0.15
epoch 1000000

Table 5: Pre-training configuration for BERT models.

Parameters Value
Learning rate 5e-5
Batch size 32
Optimizer Adam
Max sequence length 512
epoch 20

Table 6: Best fine-tuning configuration for
TurkRadBERT-sim family

Parameters Value
Learning rate 3e-5
Batch size 32
Optimizer Adam
Max sequence length 512
epoch 15

Table 7: Best fine-tuning configuration for BERTurk,
BioBERTurk and TurkRadBERT-task family
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