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Abstract

Text in electronic health records is organized
into sections, and classifying those sections
into section categories is useful for downstream
tasks. In this work, we attempt to improve
the transferability of section classification mod-
els by combining the dataset-specific knowl-
edge in supervised learning models with the
world knowledge inside large language models
(LLMs). Surprisingly, we find that zero-shot
LLMs out-perform supervised BERT-based
models applied to out-of-domain data. We also
find that their strengths are synergistic, so that a
simple ensemble technique leads to additional
performance gains.

1 Introduction

The text in electronic health record notes is typi-
cally organized into multiple sections. Correctly
understanding what parts of a note correspond to
different section categories has been shown to be
useful for a variety of downstream tasks – includ-
ing abbreviation resolution (Zweigenbaum et al.,
2013), cohort retrieval (Edinger et al., 2017), and
named entity recognition (Lei et al., 2014). How-
ever, documentation of sections is not consistently
done across health systems, so building systems to
robustly classify clinical text into sections is not
trivial. Prior work on text classification has shown
that systems trained on a dataset from one source
perform quite poorly on different sources (Tepper
et al., 2012a).

In this work, we extend recent work on sec-
tion classification (Zhou et al., 2023) that uses the
SOAP ("Subjective", "Objective", "Assessment",
"Plan") framework (Podder et al., 2022; Wright
et al., 2014). Our previous work (Zhou et al., 2023)

mapped heterogeneous section types across three
datasets onto SOAP categories (plus "Other") in or-
der to facilitate cross-domain adaptation. However,
despite showing improvements, that work showed
that the problem was still challenging for a super-
vised approach that fine tuned pre-trained BERT-
style encoder methods.

The insight of this current work is that super-
vised transformers, while powerful, may overfit to
source domain training data. Zero-shot methods,
on the other hand, have recently gained attention
for their sometimes surprising ability to make accu-
rate classification decisions without supervision. In
general, for zero-shot classification to work, (1) the
pre-training data must contain enough information
about the kind of questions it will be asked, and
(2) the prompt must be able to precisely represent
the meaning of the classification labels. To work
on section classification, then, we explore differ-
ent base models since it is hard to know a priori
which models will satisfy (1), and we explore vari-
ations in prompts that inject knowledge about the
classification task to satisfy (2).

Therefore, we investigate the following research
questions related to the ability of large language
models (LLMs) to do SOAP section classification:

RQ1: How do different LLMs perform on the
section classification task in zero-shot and few-shot
experiments?

RQ2: How do LLMs in the zero-shot setting
compare against supervised BERT-based models
applied across domains in their ability to classify
SOAP sections?

RQ3: Are the strengths of LLMs and BERT-
based models complementary so that ensemble
methods may be synergistic?
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2 Methods

2.1 Datasets
In this study we used three datasets, discharge,
thyme and progress, containing 1372, 4223, and
13367 sections, respectively. The discharge dataset
consists of discharge summaries from the i2b2
2010 challenge (Tepper et al., 2012b). The thyme
dataset consists of colorectal clinical notes from
the THYME (Temporal History of Your Medi-
cal Events) corpus (Styler IV et al., 2014). The
progress dataset consists of progress notes from
MIMIC-III (Gao et al., 2022). Although these
datasets are common in that they are all medical
notes, they differ in both the health care institutions
they are coming from and the specialties who wrote
them. Following Zhou et al. (2023), the section
names in these datasets were mapped to SOAP cat-
egories (“Subjective”, “Objective”, “Assessment”
and “Plan”). For sections that did not fit into the
SOAP categories, the "Others" label was assigned.
Therefore, these datasets are tasks that classify a
section into one of the 5 categories. We followed
the same train/test split as in Zhou et al. (2023).

2.2 Prompt design
Performing classification with generative LLMs re-
quires the creation of an input prompt that cues the
model to generate output that can be deterministi-
cally mapped to a classifier output. We design our
prompt to be a clinical note section followed by
a multiple-choice question. The multiple-choice
question begins with "Which of the following state-
ments is correct about the text above" and is fol-
lowed by statements describing the 5 categories in
the SOAP section classification task. The prompt
then lists the possible multiple choice answers as
categories of SOAP, describing them based on the
original definitions (Podder et al., 2022) instead of
their labels, to attempt to inject more knowledge
into the prompt. We also include the fifth possible
answer of "none of them is correct", meaning that
the section does not belong to any one of the SOAP
categories. Figure 1 shows an example of a prompt
with an answer.

For few-shot classification, we randomly sample
a few examples from the training set with answers,
formatted as in Figure 1, and concatenate them
together, followed by the query section text with
the answer left blank. For zero-shot classification,
the prompt contains only the query text with the
answer left blank.

Prior work has shown LLMs prefer an option at
a specific location for multiple-choice questions,
such as always choosing the first or the last op-
tion (Singhal et al., 2022). To control for this source
of variation, we shuffle the options every time be-
fore feeding the prompt into the model such that,
for example, the option "Subjective" can be in any
one of the five options’ locations. For the very rare
cases that a model generates outputs not belonging
to one of the 5 options, we consider that to be the
"Others" category.

Figure 1: Example of a prompt with the answer pro-
vided. It consists of a clinical note section text and a
multiple choice question. The options are for "Subjec-
tive", "Objective", "Assessment", "Plan" and "Others"
respectively.

2.3 LLM experiments

To understand the performance of LLMs on section
classification, we performed experiments to com-
pare different LLMs and across different number
of shots. In this study, we chose to experiment with
FLAN-T5 (Chung et al., 2022), BioMedLM (Veni-
galla et al., 2022) and Galactica (Taylor et al.,
2022). 1 We chose these models because, during
preliminary work, they performed well with seem-
ingly fewer hallucinations (Ji et al., 2023) than
other models we explored.

BioMedLM has 2.7 billion parameters and is
trained on biomedical abstracts and papers. FLAN-
T5 is trained on the web crawl C4 dataset (Raffel
et al., 2020) and additionally more than 1000 tasks,
and we used the XXL version which contains 11
billion parameters. Galactica is trained on a large
corpus containing scientific literature, and we used
the standard version which contains 6.7 billion pa-
rameters. For each model we selected the largest
variant that could fit in the memory of our GPU.

1We were unable to experiment with models like ChatGPT
due to the terms of the data use agreements of our datasets.
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The maximum input token size is 512 for FLAN-
T5, 1024 for BioMedLM, and 2048 for Galactica,
which limits the maximum number of shots (input
examples in the prompt) to 0, 5, and 10, respec-
tively. Following Zhou et al. (2023), we report the
micro-F1 scores. These experiments were done on
a 40 GB NVIDIA A40 GPU. The best LLM will be
used in the following ensemble model experiments.

2.4 Ensemble of BERT and LLMs

We experiment with improving the performance
of cross-domain section classification by ensem-
bling BERT (Vaswani et al., 2017) and LLMs. At a
high level, the ensemble model will weight the two
models’ prediction by their confidence and choose
the one with the highest confidence. Confidence is
measured by a model’s prediction probability of a
category. For a pair of source and target domain, we
first train a BERT model on the source domain and
apply it to the target domain. For the target domain,
we will obtain the model’s prediction (predBERT )
along with the prediction probability (probBERT )
of that class by applying a softmax function on the
model’s output logits. Second, we apply an LLM
to the target domain as well. To obtain confidence
estimates from LLMs, we introduce a “black-box”
method for estimating confidence of an LLM based
on bootstrapping. We use this method for maxi-
mum generalizability – it could be applied even to
black box models like ChatGPT that do not allow
access to underlying probability distributions. To
estimate confidence values, we make predictions
for the same section ten times and vary the order
of the five options across the runs. Because the
prompt becomes different, the model sometimes
makes different option choices. Probabilities are
obtained by simply dividing option counts by the
number of predictions (ten). We define the LLMs
prediction (predLLM ) to be the one with the high-
est probability (probLLM ) . When ensembling, for
each instance, we compare the prediction probabil-
ities (probBERT , probLLM ) from both models and
use the prediction with the highest probability:

predEns =

{
predLLM if probBERT < probLLM
predBERT if probBERT > probLLM

As an example, if BERT predicts a section to
be "Subjective" with a probability of 0.55 and the
LLM predicts it to be "Objective" with a prob-
ability of 0.7, the ensemble model will use the
LLM’s "Objective" prediction because it has a
higher prediction probability. We use BioClini-

calBERT (Alsentzer et al., 2019) for the BERT
model and the training of BERT follows the same
hyperparameter settings as described in Zhou et al.
(2023).

3 Results

3.1 Comparing LLMs
Figure 2 shows the results of running Random (ran-
dom guess), FLAN-T5, Galactica and BioMedLM
with 0-, 5-, and 10-shot experiments, averaged
across datasets. Because of the input token size
limit, the maximum number of shots for the three
models are 0-, 5- and 10-shots respectively. We
observe that the best performing LLM is FLAN-
T5 at 0-shot (RQ1). We will use FLAN-T5 in the
ensembling model development.

Figure 2: Dataset averaged F1 score of Random, FLAN-
T5, BioMedLM and Galactica models using 0-, 5- and
10-shot. Due to different prompt-length restrictions, not
all settings could be run with all models.

3.2 Ensemble of BERT and LLMs
Table 1 shows the cross-domain F1 score for BERT,
0-shot FLAN-T5, and their ensemble for each pair
of source and target domains. After averaging,
we observe that FLAN-T5 is competitive against
BERT (RQ2), and the ensemble model that com-
bines both achieves the best performance.

To understand the performance gain of the en-
semble method, in Table 2, we show the dataset av-
eraged F1 scores of BERT and FLAN-T5 by SOAP
categories. We observe that FLAN-T5 is outper-
forming BERT on the "Assessment" and "Plan"
categories by a large margin, is slightly better on
the "Subjective" category, but is under perform-
ing on the "Objective" category. Because "Assess-
ment" and "Plan" are less prevalent categories in
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Source
domain

Target
domain

BioClinicalBERT FLAN-T5 Ensemble

thyme discharge 0.622 0.495 0.651
progress 0.465 0.495 0.491
discharge thyme 0.499 0.542 0.58
progress 0.652 0.542 0.593
discharge progress 0.741 0.795 0.821

thyme 0.625 0.795 0.817
Average 0.601 0.611 0.659

Table 1: F1 scores of BioClinicalBERT, FLAN-T5 and the ensemble when trained on the source domain and tested
on the target domain.

BioClinicalBERT FLAN-T5
Subjective 0.676 0.691
Objective 0.696 0.613

Assessment 0.164 0.46
Plan 0.127 0.29

Others 0.166 0.16

Table 2: The F1 scores of BioClinicalBERT and FLAN-
T5 broken down by prediction categories. The rows are
the categories and the columns are the models.

the datasets, and the "Objective" category is more
prevalent, FLAN-T5 achieves a competitive perfor-
mance against BERT on average. This observation
is also indicative that BERT and FLAN-T5 cap-
ture different aspects of the task and therefore their
ensemble achieves the best performance (RQ3).

4 Discussion

Our results related to RQ1 were quite surprising.
The best-performing LLM, FLAN-T5-XXL, while
being the largest model, has the least overlap with
our data genre and was unable to fit any example
instances into its prompt. The success of FLAN-
T5-XXL could be attributed to it both being larger
in parameter size and having instruction tuning
that other models don’t have. Future work should
explore smaller versions of FLAN-T5 to learn
whether the model size or fine tuning is more impor-
tant, but one interesting hypothesis is that explicit
fine tuning on tasks with multiple choice setups
may have benefited FLAN-T5.

Despite the BioMedLM (2.7b) having fewer than
half the parameters of the Galactica (6.7b) models,
performance is not as degraded as we might ex-
pect. This could be an indicator that incorporating
medical knowledge helps LLMs recognize medical
texts better and thus performs closer to models that

are larger when doing section classification. Here
again, it would be valuable to isolate the model size
variable from the pre-training genre variable, but
the closest Galactica model in size to BioMedLM
has 1.3 billion parameters – a closer model size
but still not a perfect comparison. Neither model
was seemingly able to take advantage of seeing
labeled instances in their prompts. One possible ex-
planation is that, because the output space has five
unique labels, and the categories are quite hetero-
geneous, it is just not able to see enough diversity
of each category type to meaningfully generalize.

Clinical-T5 (Lehman and Johnson, 2023; Gold-
berger et al., 2000), which is trained on
MIMIC (Johnson et al., 2016, 2020), can be ex-
plored in the future too, to examine the effect of pre-
training on a more highly aligned domain. How-
ever, we note that the pre-training data for Clinical-
T5 overlaps with the progress dataset we evaluate
on here, which makes it difficult to obtain fair zero-
shot comparisons.

Finally, the pace of new releases of LLMs is
quite fast, and models released after this work are
potentially quite powerful (e.g. Alpaca (Taori et al.,
2023) and Vicuna (Team, 2023)). Future work can
also include assessing those models’ capability for
section classification.

The ensemble model was found to be the best,
and a hypothesis can be that LLMs learn better for
the rarer categories and supervised learning learns
better on prevalent categories. One explanation for
this is that the supervised learner implicitly learns
a distribution over label frequency, which may bias
it towards frequent categories, while the zero-shot
learner only has access to the textual evidence to
make its decisions. If this same dynamic holds
more generally (as seen in other recent work (Yuan
et al., 2023)), LLMs may serve as an important

128



supplement to supervised learning in terms of pre-
dicting rare categories.

This study estimated the prediction probability
for LLM by repeating the experiments, and future
work can explore additional methods for obtaining
the prediction probability.

5 Conclusion

This paper demonstrates the use of LLMs for sec-
tion classification and an ensemble method for im-
proving the transferability of section classification
models. The supervised learning model and LLMs
are competitive, and when ensembled based on the
prediction probabilities, we observed a higher per-
formance. In analyzing the prediction performance
by categories, we found LLMs complemented the
supervised learning by performing better on the
rare categories, and the supervised method per-
formed better for the most prevalent category. Fu-
ture studies can extend to updated LLMs and the
use of LLMs for section classification is promising.

6 Limitations

A limitation in this study is we only used open-
source models. We were unable to evaluate Chat-
GPT, for example, because the data use agreements
under which these datasets are made available for-
bid sending the data to outside APIs. Other mod-
els are frequently being released and we did not
exhaustively test all publicly available language
models. However, the focus of the paper is not to
find the best LLMs but instead providing insights
into using LLMs to improve transferability.
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