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Abstract 

In this project we train a Transformer-based 
model from scratch, with the goal of parsing the 
morphology of Ancient Syriac texts as 
accurately as possible. Syriac is a low-resource 
language, only a relatively small training set 
was available. Therefore, the training set was 
expanded by adding Biblical Hebrew data to it. 
Five different experiments were done: the 
model was trained on Syriac data only, it was 
trained with mixed Syriac and (un)vocalized 
Hebrew data, and it was trained first on 
(un)vocalized Hebrew data and then trained 
further on Syriac data. The models trained on 
Hebrew and Syriac data consistently 
outperform the models trained on Syriac data 
only. This shows that the differences between 
Syriac and Hebrew are small enough that it is 
worth adding Hebrew data to train the model 
for parsing Syriac morphology. Training 
models with data from multiple languages is an 
important trend in NLP, we show that this 
works well for relatively small datasets of 
Syriac and Hebrew. 

1 Introduction 

In this paper we develop a morphological parser for 
the Syriac language. The trained model is able to 
segment graphical units into distinct words, it 
segments the morphemes within a word, and 
disambiguates morphemes and lexemes, all at the 
same time. 
 Syriac is a Semitic language with a rich 
morphology. Therefore, to add linguistic 
annotations to a text, it is better to encode the 
smaller parts of a word (morphemes) rather than 
the complete words. A complication is that the 
Syriac language is written without vowels, which 
leads to the problem that a word can be parsed in 
different ways. Furthermore, we only have a small 
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Syriac training set. Therefore, we try to improve 
the model’s prediction accuracy by adding Biblical 
Hebrew data to the training process. Biblical 
Hebrew is a Semitic language that is closely related 
to Syriac, and the training set that we have for this 
language is substantially bigger. 
 Since the late 1970s, the Eep Talstra Center for 
Bible and Computer (ETCBC) of the Vrije 
Universiteit Amsterdam has developed and 
maintained a richly annotated dataset of the 
Masoretic Text of the Hebrew Bible. This dataset 
contains a wealth of linguistic features on the levels 
of words, phrases, clauses and larger text units. 
More recently, ancient texts in Syriac have been 
prepared in a similar way. However, a vast corpus 
of Syriac texts is available, and we hope to develop 
a faster approach to annotate these texts, because 
annotating them manually is a labor-intensive task. 
 We have trained the Transformer model in five 
different ways, to see which approach gives the 
highest accuracy on the Syriac test set: a model 
trained on Syriac data only, a model trained on a 
mix of (vocalized or unvocalized) Hebrew and 
Syriac data, and a model which is trained on 
(vocalized or unvocalized) Hebrew data first and 
trained further on Syriac data. 
 A trained model can make predictions on “new” 
Syriac texts, resulting in morphologically 
segmented texts. These results need to be corrected 
manually, and these corrected results can be 
processed further in a rule-driven way to produce 
the linguistic annotations. Therefore, training the 
models is the first step in a longer pipeline. 

2 State of the art 

Between 2000 and 2020 a number of studies were 
published in which Natural Language Processing 
(NLP) tasks for Semitic languages are described, 
often dealing with part of speech tagging (e.g., 
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Modern Hebrew: Bar Haim et al. 2008; Amharic: 
Tachbelle et al. 2011; Arabic: Kübler, and 
Mohamed 2012; Mishnaic Hebrew: Giovanetti et 
al. 2018). Other studies deal with morphological 
analysis (Daya et al. 2004, Lembersky et al. 2014) 
and segmentation (Zeldes 2018). 
 With the larger availability of digital (annotated) 
Semitic texts and the advent of large, Transformer-
based language models, there is an acceleration in 
the development of models and tools for NLP tasks 
for Semitic languages. A Large Language Model 
which focuses on Modern Hebrew, is AlephBERT 
(Seker et al. 2021), which can be used for a number 
of tasks, including segmentation, part of speech 
tagging, full morphological tagging, named-entity 
recognition and sentiment analysis. A similar 
model for Arabic, AraBERT, was developed by 
Antoun, Bali and Hajj (2021).  
 Relatively close to our research is a paper on 
adding diacritics to consonantal Hebrew texts 
(Shmidman et al. 2020). It uses a combination of a 
machine learning (“several bi-LSTM based 
modules”) and a rule-driven approach 
(“comprehensive inflection tables and lexicons”). 
Koppel and Shmidman (2020) give an overview of 
developments in Machine Learning in relation to 
the Hebrew language and its texts. 
 A list of NLP resources for Hebrew can be found 
here: https://github.com/NNLP-
IL/Resources. 
 An important trend in NLP is the development 
of multilingual models. These are models that can 
be used for a number of NLP tasks in various 
languages. Some of these models are trained on 
one language, like English, and they can be trained 
further on other languages, but there are also 
models that are trained from scratch on a number 
of languages (Ruder 2020).   

3 Data 

Our dataset consists of five files2, which are based 
on the ETCBC database. The Hebrew files that can 
serve as the input data for the model, contain 
vocalized or unvocalized text of the Masoretic Text 

 
2 The files can be found in the data folder of our GitHub 
repository: 
https://github.com/etcbc/ssi_morphology. 
The raw input files are s2-in (Syriac), t-in_voc (vocalized 
Hebrew), t-in_con (unvocalized Hebrew), the corresponding 
parsed output files are s2-out (Syriac) and t-out (Hebrew).  
In this repository one can also find the code. 

(MT) of the Hebrew Bible. The Hebrew output file 
contains the morphologically parsed MT. The text 
of these datasets is based on the fifth edition of the 
Biblica Hebraica Stuttgartensia3. The Syriac input 
file contains some books from the Peshitta, a 
translation of the Hebrew Bible in Syriac 4  (Ter 
Haar Romeny and Van Peursen, 1966–) and some 
non-biblical texts 5 . The Syriac input texts are 
unvocalized, but they contain some diacritics, 
which can be found in the Syriac manuscripts. 
 Each line in a data file contains one verse, and 
the text is represented in the ETCBC transcription. 
The first line of the vocalized Hebrew dataset, 
which is the first sentence of the Hebrew Bible, 
looks as follows: 
 
Gen 1 1 B.:R;>CIJT B.@R@> >:ELOHIJM 
>;T HAC.@MAJIM W:>;T H@>@REY 
 
This line contains four tab-separated fields, with 
the following data: book, chapter, verse, and text. 
 In Hebrew script, the text, which means “In the 
beginning God created the heaven and the earth”, 
looks as follows: 
 

א אֱ˄הִים אֵת הַשָּׁמַיִם וְאֵת הָאָרֶץ ית בָּרָ֣  בְּרֵאשִׁ֖
 
All consonants, vowel signs and diacritics have a 
value in the transcription, e.g.,  ב is transcribed with 
B,  א with >, qametz is transcribed with @, shewa 
with “:”, and dagesh with “.”. The transcription is 
read from left to right, unlike the text in Hebrew 
script.   
 The same line, but taken from the unvocalized 
dataset looks as follows: 
 
Gen 1 1 BR>CJT BR> >LHJM >T HCMJM 
W>T H>RY 
 
This text contains the same consonants as the 
vocalized text, but it misses the vowel signs. 
Finally, the corresponding verse in the 
morphologically parsed output file looks as 
follows: 

3 For an electronic edition of the MT with all the 
annotations, see: 
https://github.com/ETCBC/bhsa. 
4 A digitized version of the whole Peshitta can be found 
here: https://github.com/ETCBC/peshitta. 
5 For the texts, see also: 
https://github.com/ETCBC/linksyr/tree/ma
ster/data. 
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Gen 1 1 B-R>CJT/ BR>[ >LH(J(M/JM >T 
H-CMJ(M/(JM W->T H->RY/:a 
 
The output dataset contains the same consonantal 
text as the input data, with a number of extra signs 
which indicate the morphological structure of the 
words: 
The dash (-) separates different words within a 
graphical unit. 
A word can have different morphemes, which are 
marked with special signs: 
After “[“ follow verbal endings, and after “/” 
follow nominal endings. 
“+” initializes a pronominal suffix. 
Between exclamation marks, one finds the verbal 
preformative, e.g., !J! in a 3rd person masculine 
singular yiqtol, !T! in a 2nd person masculine 
singular yiqtol or !! in a qal infinitive or imperative. 
Between closing square brackets one finds the 
prefix that is characteristic for a verbal stem, e.g. 
]HT] for hitpael, ]N] for niphal, etc. 
“~” initializes a univalent final, for example, a ~H 
is a locative he. 
 
The ETCBC approach of encoding morphology 
distinguishes between a paradigmatic form and a 
realized form of the morphemes. E.g., the 
paradigmatic form of the masculine plural marker 
is JM ( ים- in Hebrew script). In several places in the 
MT, it is spelled as M ( ם). Here the J ( י), which is 
part of the paradigmatic form, is not written. This 
is indicated in the encoding with an opening 
parenthesis. E.g., in Genesis 17:20, one finds  נשיאם 
(“princes”), which has the morphological encoding 
NFJ>/(JM, indicating that the J occurs in the 
paradigmatic plural form, but it is not realized. The 
opposite can also occur. If a character occurs in the 
text, but not in the paradigmatic form, it is preceded 
by “&”. 
 In the morphological encoding, there are some 
Latin letters preceded by a colon:  
:a marks that a word is in absolute state. 
:c marks that a word is in construct state. 
:n  marks the narrative vocalization of the waw. 
:d  marks the D-stem. 
:u  marks the u-a pattern of the passive. 
 
The “=” sign is used to disambiguate consonantal 
homographs, e.g., one distinguishes between KBD/ 
 /==and KBD ,(”liver“ ,כָּבֵד ) /=KBD ,(”heavy“ ,כָּבֵד )
  .(”heaviness“ ,כֹּבֶד )

 
The alphabets of Syriac and Hebrew are identical, 
also in the ETCBC transcription, except that the sin 
 is lacking in Syriac. The Syriac dataset contains (שׂ )
three different Syriac diacritics: dots below and 
above the text, and seyame. 
 A limitation of the present dataset is that for 
every word in the input, there is only one correct 
parsing in the output. In some cases, the text is 
ambiguous, and a word could be parsed correctly 
in different ways. A possible improvement of the 
dataset is to include alternative parsing options.    

4 Data preparation 

We start with texts that do not have any parsing, 
which means that a text has not been segmented in 
phrases, clauses, or sentences. All verses of a book 
in the dataset are concatenated and split separately 
in shorter sequences of n graphical units. n is one 
of the required hyperparameters for training a 
model. These shorter sequences are partly 
overlapping and form a moving window. E.g., if 
the text is: 
 
BR>CJT BR> >LHJM >T HCMJM W>T H>RY 
 
and n is 5, the text will be split in the following 
three training inputs: 
 
BR>CJT BR> >LHJM >T HCMJM 
BR> >LHJM >T HCMJM W>T 
>LHJM >T HCMJM W>T H>RY 
 
When all the texts are split in partly overlapping 
sequences and a subset is selected randomly as 
Syriac test set, a problem is that part of the 
sequences in the test set can also be found in the 
training set, which means that training and test set 
are not independent of each other. A possible 
solution is to select a few complete books as test 
set, but that leads to the problem that the language 
of these books may not be representative of Syriac 
in general. Therefore, we have used a different 
solution. If n is 5, the texts of 5 consecutive verses 
are grouped, and from all these groups of 5 verses, 
the validation and test set are selected. With this 
approach, it is guaranteed that the texts are long 
enough to extract at least one sequence of 5 
graphical units, and they are short enough to split a 
book in many sequences, with the result that parts 
of the book can be found in the training, validation 
and test set, without overlap between these 
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datasets. After this split, each sequence of 5 verses 
is split further in the partly overlapping shorter 
sequences of 5 graphical units. All short sequences 
that contain a case of ketiv/qere in the Hebrew 
datasets are removed, because the consonantal text 
that is written (the ketiv) and the morphological 
analysis generally do not match. These words are 
indicated with a “*” in the data files. 

5 The model  

The morphological analysis is approached here as 
a sequence to sequence (seq2seq) problem, for 
which we use a Transformer model 6 . The 
Transformer is the state-of-the-art model for 
numerous NLP tasks (Vaswani et al. 2017) and is 
also the basis of Large Language Models like 
ChatGPT and GPT4. The Transformer seq2seq 
model has an encoder/decoder architecture. The 
encoder consists of a stack of encoder layers, in 
which the output of one layer serves as the input of 
the next one. Each layer consists of two 
components: multi-head attention and a 
feedforward network. Fundamental for the 
transformer model is the concept of self-attention, 
with which a word is related to all other words in a 
text sequence. In the self-attention mechanism, the 
embedding matrix of a sentence is multiplied with 
three randomly initialized matrices WQ, WK, and 
WV, thus forming three new matrices Q (Query), K 
(Key) and V (Value). From these matrices, the 
attention matrix Z1 is calculated as follows: 

 

𝑍ଵ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾்

ඥ(𝑑௞)
ቇ 𝑉ଵ 

 
Z1 has the index 1, because this is the first attention 
head. There can be an arbitrary number of heads 
that are concatenated: 
 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑍ଵ , 𝑍ଶ, 𝑍ଷ, … )𝑊଴ 
 
in which W0 is a new weight matrix. 
 After that, information of the word order in a 
sentence is added using positional encoding. The 
resulting matrix is fed to a feedforward network 
consisting of two dense layers with ReLU 
activation. 

 
6 The code for the model can be found in the file 
model_transformer.py in the scr folder in the GitHub 
repository. 

 Just like the encoder, the decoder consists of a 
number of layers, one layer giving its output to the 
next one. 
 The decoder of the transformer model starts with 
a start symbol and the representation of the 
sentence produced by the encoder, and from that 
the first word of the output after the start symbol is 
generated. Then, the representation, the start 
symbol and the first word together are fed to the 
encoder, after which the second word is generated. 
This is done until a stop symbol is generated. 
 In the present implementation, various 
hyperparameters can be tweaked, which can be 
found in the README of the GitHub repo. The 
only thing that we vary in the experiments 
described here are the number of epochs and the 
training datasets.   
 The model is trained from scratch, which makes 
it possible to get a good impression of what the 
difference is between a model trained on Syriac 
data alone, and a model that is trained on Hebrew 
and Syriac data. 
 In all our experiments, the number of heads in 
the encoder is 8, and the number of encoder layers 
and decoder layers is 3. The feedforward hidden 
dimension is 512. During decoding we used beam 
search, with a beam size of 3. The length of the 
partly overlapping text sequences is 7 graphical 
units.  

6 Results 

The model was trained with five different training 
strategies: 
 
1. The model was trained on Syriac data.  
2. The model was trained on a mix of unvocalized 
Hebrew and Syriac data. 
3. The model was trained on a mix of vocalized 
Hebrew and Syriac data. 
4. The model was trained first on unvocalized 
Hebrew data (10 epochs), and after that trained 
further on Syriac data. 
5. The model was trained first on vocalized Hebrew 
data (10 epochs), and trained further on Syriac 
data. 
 
 The approach of two experiments is called 
transfer learning. In transfer learning, a model is 
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trained first on a large dataset, after which the 
model is trained further on a smaller dataset for a 
specialized task. This is generally beneficial if 
there is only a small training dataset available for 
the specialized task, like in our case. 
 In all the experiments, we varied the number of 
epochs in the main training loop (20, 25, 30, 35, 
and 40 epochs). 
 We checked the accuracy of the predictions on 
the Syriac test set, which is identical for each 
experiment. The accuracy is defined as the 
percentage of graphical units that is predicted fully 
correctly at a specific index of the test sequences. 
These test sequences are partly overlapping, just 
like the training sequences. Therefore, for most 
words in the test set multiple predictions are made. 
 The results can be found in figure 1, which 
shows the results of the index with the highest 
accuracy. 

The accuracy of the model trained on Syriac data 
increases with the number of epochs from 87.3% 
for 20 epochs to 89.3% for 30 or more epochs. The 
accuracy of the predictions of the models trained 
on Hebrew and Syriac data vary somewhat 
between 89.8% (20 epochs) and 90.8% (35 
epochs), both achieved by the model trained 
simultaneously on unvocalized Hebrew and Syriac 
data. 
 The models trained on Hebrew and Syriac data 
perform consistently better than the models trained 
on Syriac data only. Even though the accuracy of 
the latter models is only 1-2% higher, this is quite 
substantial, and it is hard to achieve this result by 
tuning hyperparameters. 

 
7 This is the file evaluation_syriac.ipynb in the folder 
badness_analysis. 

 The Hebrew datasets consisting of 22946 verses 
are substantially bigger than the Syriac datasets 
(5596 verses) we used. Therefore, training a model 
with Hebrew data takes substantially longer, which 
may be a disadvantage for including this dataset, 
especially if one wants to optimize the model 
further by tuning the hyperparameters. So, as is 
often the case, there is a tradeoff between speed and 
performance. 

7 Error analysis 

In the predictions on the test set, the model can 
make different kinds of mistakes. We provide a 
notebook in the GitHub repository7 , with which 
each mistaken prediction is classified as one of six 
error categories, with the goal of further improving 
the model. The following kinds of mistakes are 
distinguished: 
 
0. Parse errors in the encoding. In this case, the 
prediction is ungrammatical according to the 
parsing conventions. 
1. The consonantal form of the prediction and the 
true surface form differ.  
2. Ungrammatical morpheme type combinations. 
This is the case if there is, e.g., a combination of 
verbal and nominal morphemes that do not match. 
3. Unparadigmatic morphemes. In this case the 
model predicts a morpheme that falls outside of the 
ETCBC inventory of paradigmatic Syriac 
morphemes. 
4. Difference in number of analytical words with 
the true form. In this case, the number of “-” signs 
in the graphical unit is incorrect. 
5. Difference in morphemes with the true form. In 
this case, the analysis of the word is grammatically 
correct, but not within the given context, there 
could for instance be an incorrect number of “=” 
signs at the end of the lexeme. 

Figure 1. The accuracy of predictions on the 
Syriac test set with five different training 
strategies. 
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 The results are shown in figure 2. It shows the 
results for the number of epochs with the highest 
accuracy. 

In general, the models show similar patterns. For 
every model, the most frequent type of error is 5, 
which means that the parsing is grammatically 
correct, but not in the given context. The error 
types 0 and 2 hardly occur. 
 In most error categories, the model which was 
trained on Syriac only has more errors than the 
other models. An important difference between this 
model and the other models is found in error type 
1, indicating errors in the surface text, where the 
model trained on Syriac has 2-3 times more errors 
than the models trained on both Hebrew and Syriac 
data. The consonantal text of the input and output 
should be identical, and this is language 
independent. This is a clear sign that adding the 
Hebrew data helps here, simply because the 
volume increases. The same may be true for the 
error categories 3, 4, and 5. Here and there, the 
Hebrew may help because a morpheme is the same 
as in Syriac, but it is likely that it helps mostly 
because it adds volume to the dataset, which helps 
to make the model more consistent in analyzing 
morphemes. 

8 Conclusions 

In this paper we trained a Transformer model from 
scratch with the goal of analyzing Syriac 
morphology. An important part of the research was 
to see if adding Hebrew to the training set would 
improve the accuracy of the predictions on the 
Syriac test set. We compared results of the models 

that were trained on Syriac data alone, models that 
were trained on (un)vocalized Hebrew and then 
trained on Syriac, and models that were trained on 
(un)vocalized Hebrew and Syriac simultaneously. 
The highest accuracy of the model trained on 
Syriac data was 89.3%. The best model overall was 
trained on unvocalized Hebrew and Syriac 
simultaneously with an accuracy of 90.8%, which 
outperforms the best “Syriac only” model with 
1.5%. 
 Further improvements can possibly be achieved 
by optimizing the hyperparameters of the models, 
but it is clear that adding Hebrew data to the 
training set helps with improving the performance 
on the Syriac test set. The same effect may be 
expected with a larger Syriac dataset, but as long 
as that dataset is relatively small, adding Hebrew 
data is a good solution. Another way to expand the 
dataset is to use data augmentation, which we are 
considering for future experiments. 
 It has been shown in other tasks that a model 
trained on a variety of data can be very useful to be 
trained further for specialized tasks. In our project 
we see the same phenomenon. The experiment 
could be broadened in various ways. One could for 
instance use one of our models and train it further 
on data from other languages than Hebrew and 
Syriac, such as Akkadian or Arabic, or train models 
to parse Syriac texts syntactically. 
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