
Proceedings of the Ancient Language Processing Workshop associated with RANLP-2023, pages 23–29,
held in Varna Bulgaria, Sept 8, 2023.

https://doi.org/10.26615/978-954-452-087-8_003

23

Abstract

In this project we train a Transformer-based
model from scratch, with the goal of parsing the
morphology of Ancient Syriac texts as
accurately as possible. Syriac is a low-resource
language, only a relatively small training set
was available. Therefore, the training set was
expanded by adding Biblical Hebrew data to it.
Five different experiments were done: the
model was trained on Syriac data only, it was
trained with mixed Syriac and (un)vocalized
Hebrew data, and it was trained first on
(un)vocalized Hebrew data and then trained
further on Syriac data. The models trained on
Hebrew and Syriac data consistently
outperform the models trained on Syriac data
only. This shows that the differences between
Syriac and Hebrew are small enough that it is
worth adding Hebrew data to train the model
for parsing Syriac morphology. Training
models with data from multiple languages is an
important trend in NLP, we show that this
works well for relatively small datasets of
Syriac and Hebrew.

1 Introduction

In this paper we develop a morphological parser for
the Syriac language. The trained model is able to
segment graphical units into distinct words, it
segments the morphemes within a word, and
disambiguates morphemes and lexemes, all at the
same time.
 Syriac is a Semitic language with a rich
morphology. Therefore, to add linguistic
annotations to a text, it is better to encode the
smaller parts of a word (morphemes) rather than
the complete words. A complication is that the
Syriac language is written without vowels, which
leads to the problem that a word can be parsed in
different ways. Furthermore, we only have a small

1 Corresponding author: mna@teol.ku.dk.

Syriac training set. Therefore, we try to improve
the model’s prediction accuracy by adding Biblical
Hebrew data to the training process. Biblical
Hebrew is a Semitic language that is closely related
to Syriac, and the training set that we have for this
language is substantially bigger.
 Since the late 1970s, the Eep Talstra Center for
Bible and Computer (ETCBC) of the Vrije
Universiteit Amsterdam has developed and
maintained a richly annotated dataset of the
Masoretic Text of the Hebrew Bible. This dataset
contains a wealth of linguistic features on the levels
of words, phrases, clauses and larger text units.
More recently, ancient texts in Syriac have been
prepared in a similar way. However, a vast corpus
of Syriac texts is available, and we hope to develop
a faster approach to annotate these texts, because
annotating them manually is a labor-intensive task.
 We have trained the Transformer model in five
different ways, to see which approach gives the
highest accuracy on the Syriac test set: a model
trained on Syriac data only, a model trained on a
mix of (vocalized or unvocalized) Hebrew and
Syriac data, and a model which is trained on
(vocalized or unvocalized) Hebrew data first and
trained further on Syriac data.
 A trained model can make predictions on “new”
Syriac texts, resulting in morphologically
segmented texts. These results need to be corrected
manually, and these corrected results can be
processed further in a rule-driven way to produce
the linguistic annotations. Therefore, training the
models is the first step in a longer pipeline.

2 State of the art

Between 2000 and 2020 a number of studies were
published in which Natural Language Processing
(NLP) tasks for Semitic languages are described,
often dealing with part of speech tagging (e.g.,

A Transformer-based Parser for Syriac Morphology

Martijn Naaijer♡1 Constantijn Sikkel♠ Mathias Coeckelbergs♣
Jisk Attema♢ Willem Th. Van Peursen♠

♡University of Copenhagen, Denmark ♠Vrije Universiteit Amsterdam, The Netherlands
♣Katholieke Universiteit Leuven, Belgium ♢Netherlands eScience Center, The Netherlands

24

Modern Hebrew: Bar Haim et al. 2008; Amharic:
Tachbelle et al. 2011; Arabic: Kübler, and
Mohamed 2012; Mishnaic Hebrew: Giovanetti et
al. 2018). Other studies deal with morphological
analysis (Daya et al. 2004, Lembersky et al. 2014)
and segmentation (Zeldes 2018).
 With the larger availability of digital (annotated)
Semitic texts and the advent of large, Transformer-
based language models, there is an acceleration in
the development of models and tools for NLP tasks
for Semitic languages. A Large Language Model
which focuses on Modern Hebrew, is AlephBERT
(Seker et al. 2021), which can be used for a number
of tasks, including segmentation, part of speech
tagging, full morphological tagging, named-entity
recognition and sentiment analysis. A similar
model for Arabic, AraBERT, was developed by
Antoun, Bali and Hajj (2021).
 Relatively close to our research is a paper on
adding diacritics to consonantal Hebrew texts
(Shmidman et al. 2020). It uses a combination of a
machine learning (“several bi-LSTM based
modules”) and a rule-driven approach
(“comprehensive inflection tables and lexicons”).
Koppel and Shmidman (2020) give an overview of
developments in Machine Learning in relation to
the Hebrew language and its texts.
 A list of NLP resources for Hebrew can be found
here: https://github.com/NNLP-
IL/Resources.
 An important trend in NLP is the development
of multilingual models. These are models that can
be used for a number of NLP tasks in various
languages. Some of these models are trained on
one language, like English, and they can be trained
further on other languages, but there are also
models that are trained from scratch on a number
of languages (Ruder 2020).

3 Data

Our dataset consists of five files2, which are based
on the ETCBC database. The Hebrew files that can
serve as the input data for the model, contain
vocalized or unvocalized text of the Masoretic Text

2 The files can be found in the data folder of our GitHub
repository:
https://github.com/etcbc/ssi_morphology.
The raw input files are s2-in (Syriac), t-in_voc (vocalized
Hebrew), t-in_con (unvocalized Hebrew), the corresponding
parsed output files are s2-out (Syriac) and t-out (Hebrew).
In this repository one can also find the code.

(MT) of the Hebrew Bible. The Hebrew output file
contains the morphologically parsed MT. The text
of these datasets is based on the fifth edition of the
Biblica Hebraica Stuttgartensia3. The Syriac input
file contains some books from the Peshitta, a
translation of the Hebrew Bible in Syriac 4 (Ter
Haar Romeny and Van Peursen, 1966–) and some
non-biblical texts 5 . The Syriac input texts are
unvocalized, but they contain some diacritics,
which can be found in the Syriac manuscripts.
 Each line in a data file contains one verse, and
the text is represented in the ETCBC transcription.
The first line of the vocalized Hebrew dataset,
which is the first sentence of the Hebrew Bible,
looks as follows:

Gen 1 1 B.:R;>CIJT B.@R@> >:ELOHIJM
>;T HAC.@MAJIM W:>;T H@>@REY

This line contains four tab-separated fields, with
the following data: book, chapter, verse, and text.
 In Hebrew script, the text, which means “In the
beginning God created the heaven and the earth”,
looks as follows:

א אֱ˄הִים אֵת הַשָּׁמַיִם וְאֵת הָאָרֶץ ית בָּרָ֣ בְּרֵאשִׁ֖

All consonants, vowel signs and diacritics have a
value in the transcription, e.g., ב is transcribed with
B, א with >, qametz is transcribed with @, shewa
with “:”, and dagesh with “.”. The transcription is
read from left to right, unlike the text in Hebrew
script.
 The same line, but taken from the unvocalized
dataset looks as follows:

Gen 1 1 BR>CJT BR> >LHJM >T HCMJM
W>T H>RY

This text contains the same consonants as the
vocalized text, but it misses the vowel signs.
Finally, the corresponding verse in the
morphologically parsed output file looks as
follows:

3 For an electronic edition of the MT with all the
annotations, see:
https://github.com/ETCBC/bhsa.
4 A digitized version of the whole Peshitta can be found
here: https://github.com/ETCBC/peshitta.
5 For the texts, see also:
https://github.com/ETCBC/linksyr/tree/ma
ster/data.

25

Gen 1 1 B-R>CJT/ BR>[>LH(J(M/JM >T
H-CMJ(M/(JM W->T H->RY/:a

The output dataset contains the same consonantal
text as the input data, with a number of extra signs
which indicate the morphological structure of the
words:
The dash (-) separates different words within a
graphical unit.
A word can have different morphemes, which are
marked with special signs:
After “[“ follow verbal endings, and after “/”
follow nominal endings.
“+” initializes a pronominal suffix.
Between exclamation marks, one finds the verbal
preformative, e.g., !J! in a 3rd person masculine
singular yiqtol, !T! in a 2nd person masculine
singular yiqtol or !! in a qal infinitive or imperative.
Between closing square brackets one finds the
prefix that is characteristic for a verbal stem, e.g.
]HT] for hitpael,]N] for niphal, etc.
“~” initializes a univalent final, for example, a ~H
is a locative he.

The ETCBC approach of encoding morphology
distinguishes between a paradigmatic form and a
realized form of the morphemes. E.g., the
paradigmatic form of the masculine plural marker
is JM (ים- in Hebrew script). In several places in the
MT, it is spelled as M (ם). Here the J (י), which is
part of the paradigmatic form, is not written. This
is indicated in the encoding with an opening
parenthesis. E.g., in Genesis 17:20, one finds נשיאם
(“princes”), which has the morphological encoding
NFJ>/(JM, indicating that the J occurs in the
paradigmatic plural form, but it is not realized. The
opposite can also occur. If a character occurs in the
text, but not in the paradigmatic form, it is preceded
by “&”.
 In the morphological encoding, there are some
Latin letters preceded by a colon:
:a marks that a word is in absolute state.
:c marks that a word is in construct state.
:n marks the narrative vocalization of the waw.
:d marks the D-stem.
:u marks the u-a pattern of the passive.

The “=” sign is used to disambiguate consonantal
homographs, e.g., one distinguishes between KBD/
 /==and KBD ,(”liver“ ,כָּבֵד) /=KBD ,(”heavy“ ,כָּבֵד)
 .(”heaviness“ ,כֹּבֶד)

The alphabets of Syriac and Hebrew are identical,
also in the ETCBC transcription, except that the sin
 is lacking in Syriac. The Syriac dataset contains (שׂ)
three different Syriac diacritics: dots below and
above the text, and seyame.
 A limitation of the present dataset is that for
every word in the input, there is only one correct
parsing in the output. In some cases, the text is
ambiguous, and a word could be parsed correctly
in different ways. A possible improvement of the
dataset is to include alternative parsing options.

4 Data preparation

We start with texts that do not have any parsing,
which means that a text has not been segmented in
phrases, clauses, or sentences. All verses of a book
in the dataset are concatenated and split separately
in shorter sequences of n graphical units. n is one
of the required hyperparameters for training a
model. These shorter sequences are partly
overlapping and form a moving window. E.g., if
the text is:

BR>CJT BR> >LHJM >T HCMJM W>T H>RY

and n is 5, the text will be split in the following
three training inputs:

BR>CJT BR> >LHJM >T HCMJM
BR> >LHJM >T HCMJM W>T
>LHJM >T HCMJM W>T H>RY

When all the texts are split in partly overlapping
sequences and a subset is selected randomly as
Syriac test set, a problem is that part of the
sequences in the test set can also be found in the
training set, which means that training and test set
are not independent of each other. A possible
solution is to select a few complete books as test
set, but that leads to the problem that the language
of these books may not be representative of Syriac
in general. Therefore, we have used a different
solution. If n is 5, the texts of 5 consecutive verses
are grouped, and from all these groups of 5 verses,
the validation and test set are selected. With this
approach, it is guaranteed that the texts are long
enough to extract at least one sequence of 5
graphical units, and they are short enough to split a
book in many sequences, with the result that parts
of the book can be found in the training, validation
and test set, without overlap between these

26

datasets. After this split, each sequence of 5 verses
is split further in the partly overlapping shorter
sequences of 5 graphical units. All short sequences
that contain a case of ketiv/qere in the Hebrew
datasets are removed, because the consonantal text
that is written (the ketiv) and the morphological
analysis generally do not match. These words are
indicated with a “*” in the data files.

5 The model

The morphological analysis is approached here as
a sequence to sequence (seq2seq) problem, for
which we use a Transformer model 6 . The
Transformer is the state-of-the-art model for
numerous NLP tasks (Vaswani et al. 2017) and is
also the basis of Large Language Models like
ChatGPT and GPT4. The Transformer seq2seq
model has an encoder/decoder architecture. The
encoder consists of a stack of encoder layers, in
which the output of one layer serves as the input of
the next one. Each layer consists of two
components: multi-head attention and a
feedforward network. Fundamental for the
transformer model is the concept of self-attention,
with which a word is related to all other words in a
text sequence. In the self-attention mechanism, the
embedding matrix of a sentence is multiplied with
three randomly initialized matrices WQ, WK, and
WV, thus forming three new matrices Q (Query), K
(Key) and V (Value). From these matrices, the
attention matrix Z1 is calculated as follows:

𝑍ଵ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾்

ඥ(𝑑௞)
ቇ 𝑉ଵ

Z1 has the index 1, because this is the first attention
head. There can be an arbitrary number of heads
that are concatenated:

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑍ଵ , 𝑍ଶ, 𝑍ଷ, …)𝑊଴

in which W0 is a new weight matrix.
 After that, information of the word order in a
sentence is added using positional encoding. The
resulting matrix is fed to a feedforward network
consisting of two dense layers with ReLU
activation.

6 The code for the model can be found in the file
model_transformer.py in the scr folder in the GitHub
repository.

 Just like the encoder, the decoder consists of a
number of layers, one layer giving its output to the
next one.
 The decoder of the transformer model starts with
a start symbol and the representation of the
sentence produced by the encoder, and from that
the first word of the output after the start symbol is
generated. Then, the representation, the start
symbol and the first word together are fed to the
encoder, after which the second word is generated.
This is done until a stop symbol is generated.
 In the present implementation, various
hyperparameters can be tweaked, which can be
found in the README of the GitHub repo. The
only thing that we vary in the experiments
described here are the number of epochs and the
training datasets.
 The model is trained from scratch, which makes
it possible to get a good impression of what the
difference is between a model trained on Syriac
data alone, and a model that is trained on Hebrew
and Syriac data.
 In all our experiments, the number of heads in
the encoder is 8, and the number of encoder layers
and decoder layers is 3. The feedforward hidden
dimension is 512. During decoding we used beam
search, with a beam size of 3. The length of the
partly overlapping text sequences is 7 graphical
units.

6 Results

The model was trained with five different training
strategies:

1. The model was trained on Syriac data.
2. The model was trained on a mix of unvocalized
Hebrew and Syriac data.
3. The model was trained on a mix of vocalized
Hebrew and Syriac data.
4. The model was trained first on unvocalized
Hebrew data (10 epochs), and after that trained
further on Syriac data.
5. The model was trained first on vocalized Hebrew
data (10 epochs), and trained further on Syriac
data.

 The approach of two experiments is called
transfer learning. In transfer learning, a model is

27

trained first on a large dataset, after which the
model is trained further on a smaller dataset for a
specialized task. This is generally beneficial if
there is only a small training dataset available for
the specialized task, like in our case.
 In all the experiments, we varied the number of
epochs in the main training loop (20, 25, 30, 35,
and 40 epochs).
 We checked the accuracy of the predictions on
the Syriac test set, which is identical for each
experiment. The accuracy is defined as the
percentage of graphical units that is predicted fully
correctly at a specific index of the test sequences.
These test sequences are partly overlapping, just
like the training sequences. Therefore, for most
words in the test set multiple predictions are made.
 The results can be found in figure 1, which
shows the results of the index with the highest
accuracy.

The accuracy of the model trained on Syriac data
increases with the number of epochs from 87.3%
for 20 epochs to 89.3% for 30 or more epochs. The
accuracy of the predictions of the models trained
on Hebrew and Syriac data vary somewhat
between 89.8% (20 epochs) and 90.8% (35
epochs), both achieved by the model trained
simultaneously on unvocalized Hebrew and Syriac
data.
 The models trained on Hebrew and Syriac data
perform consistently better than the models trained
on Syriac data only. Even though the accuracy of
the latter models is only 1-2% higher, this is quite
substantial, and it is hard to achieve this result by
tuning hyperparameters.

7 This is the file evaluation_syriac.ipynb in the folder
badness_analysis.

 The Hebrew datasets consisting of 22946 verses
are substantially bigger than the Syriac datasets
(5596 verses) we used. Therefore, training a model
with Hebrew data takes substantially longer, which
may be a disadvantage for including this dataset,
especially if one wants to optimize the model
further by tuning the hyperparameters. So, as is
often the case, there is a tradeoff between speed and
performance.

7 Error analysis

In the predictions on the test set, the model can
make different kinds of mistakes. We provide a
notebook in the GitHub repository7 , with which
each mistaken prediction is classified as one of six
error categories, with the goal of further improving
the model. The following kinds of mistakes are
distinguished:

0. Parse errors in the encoding. In this case, the
prediction is ungrammatical according to the
parsing conventions.
1. The consonantal form of the prediction and the
true surface form differ.
2. Ungrammatical morpheme type combinations.
This is the case if there is, e.g., a combination of
verbal and nominal morphemes that do not match.
3. Unparadigmatic morphemes. In this case the
model predicts a morpheme that falls outside of the
ETCBC inventory of paradigmatic Syriac
morphemes.
4. Difference in number of analytical words with
the true form. In this case, the number of “-” signs
in the graphical unit is incorrect.
5. Difference in morphemes with the true form. In
this case, the analysis of the word is grammatically
correct, but not within the given context, there
could for instance be an incorrect number of “=”
signs at the end of the lexeme.

Figure 1. The accuracy of predictions on the
Syriac test set with five different training
strategies.

28

 The results are shown in figure 2. It shows the
results for the number of epochs with the highest
accuracy.

In general, the models show similar patterns. For
every model, the most frequent type of error is 5,
which means that the parsing is grammatically
correct, but not in the given context. The error
types 0 and 2 hardly occur.
 In most error categories, the model which was
trained on Syriac only has more errors than the
other models. An important difference between this
model and the other models is found in error type
1, indicating errors in the surface text, where the
model trained on Syriac has 2-3 times more errors
than the models trained on both Hebrew and Syriac
data. The consonantal text of the input and output
should be identical, and this is language
independent. This is a clear sign that adding the
Hebrew data helps here, simply because the
volume increases. The same may be true for the
error categories 3, 4, and 5. Here and there, the
Hebrew may help because a morpheme is the same
as in Syriac, but it is likely that it helps mostly
because it adds volume to the dataset, which helps
to make the model more consistent in analyzing
morphemes.

8 Conclusions

In this paper we trained a Transformer model from
scratch with the goal of analyzing Syriac
morphology. An important part of the research was
to see if adding Hebrew to the training set would
improve the accuracy of the predictions on the
Syriac test set. We compared results of the models

that were trained on Syriac data alone, models that
were trained on (un)vocalized Hebrew and then
trained on Syriac, and models that were trained on
(un)vocalized Hebrew and Syriac simultaneously.
The highest accuracy of the model trained on
Syriac data was 89.3%. The best model overall was
trained on unvocalized Hebrew and Syriac
simultaneously with an accuracy of 90.8%, which
outperforms the best “Syriac only” model with
1.5%.
 Further improvements can possibly be achieved
by optimizing the hyperparameters of the models,
but it is clear that adding Hebrew data to the
training set helps with improving the performance
on the Syriac test set. The same effect may be
expected with a larger Syriac dataset, but as long
as that dataset is relatively small, adding Hebrew
data is a good solution. Another way to expand the
dataset is to use data augmentation, which we are
considering for future experiments.
 It has been shown in other tasks that a model
trained on a variety of data can be very useful to be
trained further for specialized tasks. In our project
we see the same phenomenon. The experiment
could be broadened in various ways. One could for
instance use one of our models and train it further
on data from other languages than Hebrew and
Syriac, such as Akkadian or Arabic, or train models
to parse Syriac texts syntactically.

Acknowledgments

We thank Martin Ehrensvärd for proofreading the
manuscript and the Netherlands eScience Center
for their support in this project.

References

Shihadeh Alqrainy and Muhammed Alawairdhi. 2020.
Towards Developing a Comprehensive Tag Set for
the Arabic Language. Journal of Intelligent Systems
30:287–296.
https://doi.org/10.1515/jisys-2019-0256.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2021.
AraBERT: Transformer-based Model for Arabic
Language Understanding. Proceedings of the 4th
Workshop on Open-Source Arabic Corpora and
Processing Tools, with a Shared Task on Offensive
Language Detection, 9–15.
https://aclanthology.org/2020.osact-1.2.

Roy Bar-Haim, Khalil Sima'an, and Yoad Winter.
 2008. Part-of-speech tagging of Modern Hebrew
 text. Natural Language Engineering 14(2):223–
 251.
 https://doi.org/10.1017/S135132490700455X.

Figure 2. Frequencies of different types of errors
made by the five models.

29

Ezra Daya, Dan Roth, and Shuly Wintner. 2004.

Learning Hebrew Roots: Machine Learnng with
Linguistic Constraints. Proceedings of the 2004
Conference on Empirical Methods in Natural
Language Processing, 357–364.

Emiliano Giovannetti, Davide Albanesi, Andrea
Bellandi, Simone Marchi, and Alessandra Pecchioli.
2018. Constructing an Annotated Resource for Part-
Of-Speech Tagging of Mishnaic Hebrew.
Proceedings of the Fifth Italian Conference on
Computational Linguistics CLiC-it 2018: 10–12
December 2018, Torino. Torino: Accademia
University.
https://doi.org/10.4000/books.aaccademia.3394.

Moshe Koppel and Avi Shmidman. 2020. Torah Study
and the Digital Revolution, a Glimpse of the Future.
https://thelehrhaus.com/commentary/torah-study-
and-the-digital-revolution-a-glimpse-of-the-future.

Sandra Kübler and Emad Mohamed. 2012. Part of
speech tagging for Arabic. Natural Language
Engineering 18(4):521–548.
https://doi.org/10.1017/S1351324911000325.

Gennadi Lembersky, Danny Shacham, and Shuly
Wintner. 2012. Morphological disambiguation of
Hebrew: A case study in classifier combination,
Natural Language Engineering 20(1):69–97.
https://doi.org/10.1017/S1351324912000216.

Amit Seker, Elron Bandel, Dan Bareket, Idan
Brusilovsky, Refael Shaked Greenfeld, and Reut
Tsarfaty. 2021. AlephBERT: A Hebrew Large Pre-
Trained Language Model to Start-off your Hebrew
NLP Application.
https://arxiv.org/abs/2104.04052.

Avi Shmidman, Shaltiel Shmidman, Moshe Koppel,
and Yoav Goldberg. 2020. Nakdan: Professional
Hebrew Diacritizer. Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations, Association
for Computational Linguistics 197–203.
https://doi.org/10.18653/v1/2020.acl-demos.23.

Martha Y. Tachbelie, Solomon T. Abate, and Laurent
Besacier. 2011. Part-of-Speech Tagging for Under-
Resourced and Morphologically Rich Languages–
The Case of Amharic. Conference on Human
Language Technology for Development,
Alexandria, Egypt, 2–5 May 2011.
https://www.cle.org.pk/hltd/pdf/HLTD201109.pdf.

Bas Ter Haar Romeny and Willem Th. Van Peursen
(eds.). 1966–. The Old Testament in Syriac
according to the Peshiṭta Version. Leiden: Brill.

Sebastian Ruder. 2022. The State of Multilingual AI.
https://www.ruder.io/state-of-multilingual-ai.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information
Processing Systems, 6000–6010.
https://arxiv.org/pdf/1706.03762.pdf.

Amir Zeldes. 2018. A Characterwise Windowed
Approach to Hebrew Morphological Segmentation.
Proceedings of the 15th SIGMORPHON Workshop
on Computational Research in Phonetics,
Phonology, and Morphology, 101–110.
http://dx.doi.org/10.18653/v1/W18-5811.

