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Abstract

Direct speech-to-speech translation (S2ST), in
which all components can be optimized jointly,
is advantageous over cascaded approaches to
achieve fast inference with a simplified pipeline.
We present a novel two-pass direct S2ST archi-
tecture, UnitY, which first generates textual rep-
resentations and predicts discrete acoustic units
subsequently. We enhance the model perfor-
mance by subword prediction in the first-pass
decoder, advanced two-pass decoder architec-
ture design and search strategy, and better train-
ing regularization. To leverage large amounts
of unlabeled text data, we pre-train the first-
pass text decoder based on the self-supervised
denoising auto-encoding task. Experimental
evaluations on benchmark datasets at various
data scales demonstrate that UnitY outperforms
a single-pass speech-to-unit translation model
by 2.5-4.2 ASR-BLEU with 2.83× decoding
speed-up. We show that the proposed methods
boost the performance even when predicting
spectrogram in the second pass. However, pre-
dicting discrete units achieves 2.51× decoding
speed-up compared to that case.

1 Introduction

Automatic speech translation to another language
is an indispensable technology for international
communications, with the spread of social media
and virtual communications nowadays. A tradi-
tional approach of speech-to-speech translation
(S2ST) is to cascade automatic speech recogni-
tion (ASR), machine translation (MT), and text-
to-speech (TTS) components, each of which is op-
timized separately on different data (Lavie et al.,
1997; Nakamura et al., 2006; Wahlster, 2013).
With the emergence of sequence-to-sequence mod-
els (Sutskever et al., 2014; Cho et al., 2014; Bah-
danau et al., 2015), however, it is getting prevail-
ing to adopt a direct approach1. This approach

1Lee et al. (2022a) defines a direct S2ST model as a model
that does not use intermediate text representations while Jia

consists in translating input speech into the other
language based on a single architecture with fewer
components than the cascaded systems (Jia et al.,
2019b; Tjandra et al., 2019; Zhang et al., 2021).
The direct approach is attractive for building a low-
latency system with a simplified pipeline, thus re-
ducing developing costs. However, direct S2ST
models suffer from poor performance due to data
scarcity, similar to direct speech-to-text transla-
tion (S2TT) models (Bérard et al., 2016). In the
field of S2TT, data shortage has been addressed by
leveraging pre-training (Bérard et al., 2018; Wang
et al., 2021c; Tang et al., 2022), multi-task learn-
ing (Weiss et al., 2017; Tang et al., 2021), pseudo
labeling (Jia et al., 2019a; Pino et al., 2020), knowl-
edge distillation (Liu et al., 2019; Inaguma et al.,
2021b). Consequently, the translation quality of di-
rect S2TT models is approaching that of cascaded
S2TT models (Ansari et al., 2020; Anastasopoulos
et al., 2021). These techniques have also shown the
effectiveness for direct S2ST models and led to a
decent performance (Kano et al., 2021; Dong et al.,
2022; Jia et al., 2022a; Popuri et al., 2022).

Recent works (Lee et al., 2022a,b) propose to
model discrete acoustic units, extracted from Hu-
BERT (Hsu et al., 2021), instead of a continuous
speech signal that enables usage of a standard cross-
entropy loss during training. This speech-to-unit
translation (S2UT) model significantly shortens the
target sequence length and thus makes training and
inference more efficient. The discrete units are di-
rectly converted to the waveform with a unit-based
neural vocoder (Polyak et al., 2021) bypassing spec-
trogram representation. On the other hand, Trans-
latotron2 (Jia et al., 2022b) decomposes the target
representations into linguistic and acoustic coun-
terparts explicitly. The former predicts a phoneme

et al. (2022b) defines it as a model that directly predicts the
target spectrogram. In this paper, we use a more general
definition that the entire architecture is optimized jointly and
the translation is conducted in a more direct way. We do not
include a vocoder in the training pipeline of all direct models.
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sequence first, and the latter synthesizes the target
spectrogram conditioned on the continuous repre-
sentation of the linguistic part.

This paper presents a novel two-pass direct S2ST
architecture, dubbed UnitY , which takes the best of
both worlds of the S2UT model and Translatotron2.
Unlike Translatotron2, UnitY models linguistic
sequences using subwords (first pass) instead of
phonemes, and it models speech as a discrete se-
quence of acoustic units (second pass). To achieve
better translation quality and decoding efficiency,
UnitY consists of a deep text decoder and a shallow
unit decoder and enables better generalization to
the first-pass decoder. We further introduce a text-
to-unit (T2U) encoder between the two decoders
to bridge the gap between textual and acoustic rep-
resentations. Following the success of large-scale
pre-training, we leverage unlabeled text effectively
to pre-train the first pass text decoder with multi-
lingual BART (mBART) (Liu et al., 2020) at the
subword level.

Extensive experiments show the superiority
of the UnitY S2ST system measured by both
translation quality and runtime efficiency. First,
UnitY achieves 4.2, 3.7, and 2.5 ASR-BLEU im-
provements over the S2UT model on the Fisher
Es→En (Post et al., 2013), CVSS-C (Jia et al.,
2022c), and multi-domain En↔Es (Popuri et al.,
2022) corpora, respectively. The improvement
holds even with high-resource data and pre-training.
In addition, our proposed design improves Trans-
latotron2 as well, indicating its versatility for two-
pass direct S2ST architectures regardless of the
choice of the target. Second, UnitY achieves 2.83×
and 2.51× decoding speed-ups over the S2UT and
improved Translatotron2 models, respectively. A
combination of the aforementioned improvements
suggests the UnitY design as a starting point for
further improvements in direct S2ST. 2

2 UnitY
In this section, we propose UnitY , a two-pass di-
rect S2ST model that generates subwords and dis-
crete acoustic units subsequently. Hereafter, we
refer to discrete acoustic units as discrete units
for brevity. Let X denote a source speech input,
and Y = (y1, . . . , yM ) and U = (u1, . . . , uL) be
the corresponding reference text translation and dis-
crete unit sequences in the target language, respec-
tively. Note that there is no duration information

2Code will be available upon the paper acceptance.
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Figure 1: Model architecture of UnitY

for each discrete unit in U , because consecutive
units are collapsed (Lee et al., 2022a).

2.1 Architecture
The overall architecture of UnitY is shown in Fig-
ure 1. UnitY consists of four modules: speech en-
coder, first-pass text decoder, text-to-unit (T2U) en-
coder, and second-pass unit decoder. We build the
speech encoder based on Conformer (Gulati et al.,
2020), which augments Transformer (Vaswani
et al., 2017) with a convolution module, while im-
plementing the rest three modules based on Trans-
former. UnitY has five major architecture modifi-
cations from Translatotron2 (Jia et al., 2022b), (1)
generating subwords instead of phonemes in the
first pass, (2) generating discrete units instead of
spectrograms in the second pass to bypass duration
modeling, (3) replacing Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
layers with Transformer layers in both decoders,
(4) introducing a T2U encoder between the two
decoders, and (5) assigning more model capacities
to the first pass.

First-pass text decoder The first-pass text de-
coder TDec generates a sequence of subwords Y
autoregressively by attending the speech encoder
output H . The training objective of the first pass is
to minimize the direct S2TT loss Ls2t as:

Ls2t(Y |X) = − 1

M

M∑

i=1

logPs2t(yi|X,Y<i)

= − 1

M

M∑

i=1

logPs2t(yi|Dtext
i )

Dtext
i = TDec(H,Y<i),

where Dtext
i ∈ Rdmodel is the i-th continuous de-

coder state right before projecting it to the logit.
We consider that Dtext contains rich acoustic infor-
mation in addition to contextual information thanks
to multiple multi-head cross-attention over H .
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There are five advantages of generating sub-
words instead of phonemes. First, the sequence
length is considerably reduced, leading to better
training and inference efficiencies (Cherry et al.,
2018). Second, using large vocabularies improves
the translation quality of the first pass (Gowda and
May, 2020). Third, the text output helps the audi-
ence understand the translation content while lis-
tening to the audio. Fourth, our approach can eas-
ily scale to more target languages, as it is unnec-
essary to prepare separate grapheme-to-phoneme
(G2P) models for each target language. Last, read-
able text can be generated without any complicated
post-processing such as WFST (Mohri et al., 2002;
Bahdanau et al., 2016).

T2U encoder A bidirectional T2U encoder
T2UEnc transforms the continuous states of the
first-pass decoder Dtext ∈ RM×dmodel into Z ∈
RM×dmodel as Z = T2UEnc(Dtext). The T2U en-
coder bridges the gap in representations between
text and unit decoders without changing the se-
quence length.

Second-pass unit decoder The second-pass unit
decoder UDec generates a sequence of discrete
units U autoregressively by attending to only the
T2U encoder output Z. The training objective of
the second pass is to minimize Ls2u similar to the
S2UT task while being conditioned on Y as:

Ls2u(U |X,Y ) = − 1

L

L∑

i=1

logPs2u(ui|X,Y,U<i)

= − 1

L

L∑

i=1

logPs2u(ui|Dunit
i )

Dunit
i = UDec(Z,U<i) = UDec(H,Y,U<i),

where Dunit
i ∈ Rdmodel is the i-th continuous de-

coder state right before projecting it to the logit.
The unit decoder does not attend to H to synchro-
nize the text and unit outputs, similar to the motiva-
tion in (Jia et al., 2022b). In other words, we do not
expect that the second-pass decoder corrects trans-
lation errors from the first-pass decoder.3 Once
the unit generation finishes, a separate unit-based
vocoder (Polyak et al., 2021) converts the discrete
units to the waveform with duration prediction of
each discrete unit (Lee et al., 2022a). The total
training objective of UnitY, Ltotal, is formulated

3We also investigate attending to the speech encoder output
with an additional cross-attention, but it does not lead to an
improvement in ASR-BLEU. We discuss this in §5.1

as follows:

Ltotal = Ls2u(U |X,Y ) +ws2tLs2t(Y |X), (1)

where ws2t is a weight for the S2TT loss.

2.2 Text decoder pre-training
Similar to ASR and S2TT studies (Baevski et al.,
2020; Li et al., 2021), S2ST models also benefit
from self-supervised pre-training (Jia et al., 2022a;
Popuri et al., 2022), especially for the speech
encoder. In addition to the speech encoder pre-
training with wav2vec2.0 (Baevski et al., 2020),
Popuri et al. (2022) initializes the unit decoder
of the single-pass S2UT model with a unit-based
mBART (u-mBART), an encoder-decoder model
pre-trained with discrete units converted from a
large amount of unlabeled speech data. How-
ever, unlabeled text data cannot be leveraged for
the single-pass decoder pre-training, although it is
more accessible in many written languages.

To fully leverage the unlabeled text data, we
initialize the first-pass decoder of UnitY with a
text-based mBART (t-mBART) pre-trained with
unlabeled text data. Following Li et al. (2021);
Popuri et al. (2022), we freeze parameters in the
feed-forward network (FFN) of the text decoder
during S2ST fine-tuning. We initialize the T2U
encoder and second-pass unit decoder randomly.

2.3 Search algorithm
During inference, we perform two-pass beam
search decoding. First, we find the most probable
text hypothesis Ŷ in the first-pass decoder using
beam search with a beam size of B1st. We then
feed continuous decoder states Dtext correspond-
ing to Ŷ to the T2U encoder. Next, we generate
the most probable discrete unit sequence Û in the
second-pass decoder by another beam search with
a beam size of B2nd. Finally, Û is taken as input
to a separate unit-based vocoder to generate the
waveform. We find it more effective to assign a
larger beam size to the first pass, i.e., B1st > B2nd,
because there is more diversity among beam candi-
dates than the second pass. The computation time
is also reduced since the sequence length of text
is much shorter than that of discrete units. There-
fore, we use B2nd = 1 unless otherwise noted. We
present the pseudo algorithm in Appendix A.

2.4 Deep-shallow two-pass decoders
By increasing the number of layers, we assign more
model capacities to the first-pass decoder than the
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Figure 2: Direct S2ST architectures

second-pass decoder. We refer to this as deep-
shallow two-pass decoders. This capacity assign-
ment improves translation quality and inference
efficiency simultaneously because of a shorter se-
quence length in the first pass. A practical capacity
assignment for the MT task is studied in Kasai et al.
(2021) by trading the number of layers between the
encoder and decoder. In this work, we focus on the
two-pass decoders for the S2ST task.

3 Experimental setting

3.1 Data

We use three datasets: Fisher Es→En (Post et al.,
2013) (170 hours), CVSS-C (Jia et al., 2022c)
(547 hours), and mutli-domain En↔Es (Popuri
et al., 2022) (20k hours for En→Es, 14k hours for
Es→En) corpora. We combine all 21 language
directions to English in the CVSS-C corpus to
train a single X-to-En multilingual model. The
En→Es part in the multi-domain corpora consists
of Europarl-ST (Iranzo-Sánchez et al., 2020), Must-
C (Di Gangi et al., 2019), TEDLIUM3 (Rousseau
et al., 2012), Librispeech (Panayotov et al., 2015),
and Common Voice (Ardila et al., 2020). The
Es→En part consists of CoVoST2 (Wang et al.,
2021b), Europarl-ST, and mTEDx (Elizabeth et al.,
2021), Common Voice, and multilingual Lib-
rispeech (MLS) (Pratap et al., 2020). More details
are described in Appendix D.

3.2 Pre-processing

We follow the same pre-processing as (Lee et al.,
2022a,b; Popuri et al., 2022) for acoustic feature
extraction, discrete unit extraction, and text normal-
ization. We also discarded over-generated target
speech/unit by TTS/T2U models. More details are
described in Appendix E.

3.3 Pre-training
We use the same En/Es wav2vec2.0 and En-Es u-
mBART models as Popuri et al. (2022). We train a
multilingual w2v-BERT (Chung et al., 2021) model
trained on 51 languages with the same setting as Jia
et al. (2022a). For text decoder pre-training, we use
the same En-Es and 50-language t-mBART mod-
els as Wang et al. (2022) and Tang et al. (2020),
respectively. We describe the training details and
list model URLs in Appendix F.

3.4 Baseline
We build two cascaded S2ST systems and four
direct S2ST systems. All speech encoders are
based on Conformer. When pre-training the
speech encoder of direct S2ST systems with
wav2vec2.0/w2v-BERT, we pre-train ASR and
S2TT models in the cascaded systems with the
same wav2vec2.0/w2v-BERT for a fair compari-
son. We also pre-train the text decoder of the ASR
and S2TT models with t-mBART in that case.

Cascaded (ASR→MT→TTS) We combine a
Conformer ASR, a Transformer MT, and a Trans-
former TTS model. We set the reduction factor of
TTS models to 4.

Cascaded (S2TT→TTS) We combine a Con-
former direct S2TT model and a Transformer TTS
model.

S2SpecT We build a direct S2ST model that pre-
dicts spectrogram with a single Transformer de-
coder, similar to Lee et al. (2022a) (Figure 2a).
We refer to it as S2SpecT hereafter. We set the
reduction factor of the spectrogram decoder to 3.

S2SpecT2 We train S2SpecT2, an improved ver-
sion of Translatotron2, by enhancing the archi-
tecture and training with the proposed methods
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for UnitY. First, we replace phoneme targets with
subwords in the first pass (Figure 2b). Second,
we replace LSTM decoders with Transformer de-
coders. Third, we introduce an additional text-
to-spectrogram (T2S) encoder between text and
spectrogram decoders. The second-pass decoder
attends to the T2S encoder output only. Fourth,
we use an autoregressive Transformer decoder in-
stead of a non-attentive Tacotron (NAT) (Shen et al.,
2020) for the second-pass decoder. Last, we apply
R-Drop to the first-pass decoder. We use the same
reduction factor as S2SpecT.

S2UT We train a direct S2ST model that pre-
dicts discrete units with a single Transformer de-
coder (Lee et al., 2022a) (Figure 2c).

3.5 Architecture

Let N1st, N2nd, and Nt2u be the depth of
the first-pass decoder, second-pass decoder, and
T2U encoder of UnitY, respectively. We set
(N1st,N2nd,Nt2u) to (4,2,2) on Fisher and CVSS-
C. On the multi-domain corpus, we use (12,2,2)
when pre-training the first-pass decoder with t-
mBART. Otherwise, we use (6,6,2). We describe
the other configurations in Appendix G.

3.6 Training

We apply R-Drop (Wu et al., 2021) regularization
to all tasks that predict discrete symbols, except the
MT task. The training objective of each model with
R-Drop is defined in Appendix C. We implement
our models based on the Fairseq toolkit (Ott et al.,
2019; Wang et al., 2020). The detailed training
hyperparameters are described in Appendix H.

3.7 Decoding

We use a beam width of 10 for ASR, S2TT, and
S2UT models. For UnitY, we set B1st and B2nd to
10 and 1, respectively. We use a beam width of 10
for the first-pass decoder in S2SpecT2.

3.8 Vocoder

We use a HiFi-GAN vocoder (Kong et al., 2020) to
convert spectrograms to the waveform for TTS and
direct speech-to-spectrogram models. We use a
unit-based HiFi-GAN vocoder (Polyak et al., 2021)
to convert discrete units to the waveform for di-
rect speech-to-unit models. Both the vocoders are
trained separately.

ID Model
ASR-BLEU (↑)

Avg. High Mid Low

B0 Synthetic target♢ 91.1 88.4 89.5 93.0

Cascaded systems
B1 S2TT → TTS♢ 10.6 28.8 15.5 2.4
B2 + ASR pre-training 12.7 30.7 18.3 4.4
B3 S2TT → TTS 7.8 18.2 11.9 2.6
B4 + w2v-BERT + t-mBART 14.9 21.1 18.2 11.5

Direct speech-to-spectrogram systems
B5 Translatotron♢ 3.4 11.9 3.5 0.3
B6 S2SpecT 7.6 21.8 10.6 1.5
B7 + S2TT pre-training 9.6 23.9 13.8 3.2
B8 + w2v-BERT 16.6 30.5 21.9 9.8

B9 Translatotron2♢ 8.7 25.4 12.6 1.5
B10 + Transformer decoder♠ 10.1 26.9 14.2 2.8
B11 + S2TT pre-training♢ 12.0 29.7 16.6 4.2
B12 + w2v-BERT♠ 17.9 32.5 22.9 10.9
B13 + mSLAM♠ 19.3 33.2 24.6 12.5
B14 ++ TTS augmentation♠ 22.0 33.5 25.8 16.5

B15 S2SpecT2 11.3 29.1 16.9 3.1
B16 + S2TT pre-training 13.1 29.8 18.8 5.2
B17 + w2v-BERT + t-mBART 18.6 32.1 24.7 11.6

Direct speech-to-unit systems
B18 S2UT 9.1 25.9 12.9 1.9
B19 + S2TT pre-training 11.4 27.2 16.4 4.0
B20 + w2v-BERT + u-mBART 20.8 31.6 25.4 15.4

B21 UnitY 12.0 29.0 17.8 4.0
B22 + S2TT pre-training 13.0 30.4 18.7 4.8
B23 + w2v-BERT + t-mBART 24.5 34.6 28.9 19.3

Table 1: ASR-BLEU on CVSS-C corpus. ♢Results
from (Jia et al., 2022c), ♠Results from (Jia et al.,
2022a). We use the S2TT model in B3 for S2TT pre-
training. t-mBART and u-mBART stand for text-based
mBART and unit-based mBART, respectively. All w2v-
BERT and mSLAM encoders have 0.6B parameters.

3.9 Evaluation

Following Lee et al. (2022a), we use a pre-trained
ASR model to transcribe the generated target
speech and calculate BLEU scores (Papineni et al.,
2002), referred to as ASR-BLEU. The ASR model
is fine-tuned from a wav2vec2.0 with the con-
nectionist temporal classification (CTC) objec-
tive (Graves et al., 2006). We use the sacrebleu
toolkit (Post, 2018) to calculate the BLEU scores.

4 Experimental results

In this section, we present the experimental re-
sults on three corpora. We study various modeling
choices from the perspective of target representa-
tion (spectrogram v.s. discrete unit) and decoder ar-
chitectures (single pass v.s. two pass) in supervised
and semi-supervised settings. We also benchmark
the decoding efficiency of direct S2ST models.
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ID Model
ASR-BLEU (↑)

En→Es Es→En

Europarl-ST MuST-C Avg. CoVoST-2 Europarl-ST mTEDx Avg.

Cascaded systems
C1 ASR→MT→TTS♢ 28.8 34.2 31.5 33.8 29.1 32.4 31.5
C1’ ASR→MT→TTS 36.8 30.8 33.8 32.9 34.2 30.3 32.5

C2 S2TT→TTS♢ 32.6 30.1 31.4 28.4 23.6 21.5 24.5
C2’ S2TT→TTS 36.4 33.4 34.9 37.2 34.0 32.5 34.6

Direct speech-to-spectrogram systems
C3 S2SpecT2 (6L→6L) 35.6 33.5 34.6 37.0 23.4 31.3 30.6
C4 + t-mBART (12L→6L) 36.9 34.3 35.6 37.2 23.7 31.7 30.9

Direct speech-to-unit systems
C5 S2UT + u-mBART♢ 32.7 32.1 32.4 33.5 28.6 29.1 30.4
C5’ S2UT + u-mBART 33.5 33.3 33.4 34.5 29.9 29.9 31.4

C6 UnitY (6L→6L) 35.1 33.7 34.4 35.4 30.8 31.3 32.5
C7 + t-mBART (12L→2L) 35.3 34.1 34.7 36.4 33.1 32.2 33.9

Table 2: ASR-BLEU on multi-domain En↔Es. ♢Results from (Popuri et al., 2022). The encoder in all the models
is pre-trained with wav2vec2.0. t-mBART and u-mBART stand for text-based mBART and unit-based mBART,
respectively. N1stL→ N2ndL stands for an N1st-layer first-pass decoder with an N2nd-layer second-pass decoder.

4.1 CVSS-C

The results on CVSS-C are listed in Table 1. We
first compared four direct systems trained from
scratch (B6, B15, B18, B21), and UnitY (B21)
achieved the best ASR-BLEU. The encoder pre-
training with the S2TT model in the cascaded sys-
tem (B3) improved ASR-BLEU of all the direct
S2ST models (B7, B16, B19, B22), similar to Jia
et al. (2022c).4 In this case, S2SpecT2 (B16) also
achieved similar translation quality to UnitY (B22).
Still, UnitY outperformed the S2UT model (B19)
by 1.6 ASR-BLEU on average, indicating that the
two-pass decoding was the main factor of the im-
provements. S2SpecT2 (B16) outperformed Trans-
latotron2 (Jia et al., 2022b) (B11) by 1.1 ASR-
BLEU on average, from which we can confirm that
parts of the proposed methods can generalize to
the other S2ST architecture.5 Compared to the best
cascaded system (B2), the two-pass models (B16,
B19) showed better translation quality.

We also pre-trained the speech encoder of all
models with multilingual w2v-BERT, the first-pass
text decoder of two-pass models with text-based
mBART (t-mBART), and the decoder of the S2UT
model with unit-based mBART (u-mBART), re-
spectively. Among them (B4, B8, B12, B20,
B23), UnitY (B23) showed the best ASR-BLEU.

4Unlike Jia et al. (2022c), we trained the S2TT model with
an auxiliary ASR task from scratch instead of pre-training the
encoder with that of an ASR model.

5B9 predicts phonemes while B15 predicts subwords in
the first pass.

UnitY still outperformed Translatotron2 with a
joint speech-text pre-training with mSLAM (Bapna
et al., 2022) (B13) and TTS augmentation (B14)
by 5.2 and 2.5 ASR-BLEU on average, respectively.
The full results in each language direction are pre-
sented in Appendix I.

4.2 Multi-domain En↔Es

We present results on the multi-domain cor-
pora (Popuri et al., 2022) in Table 2. C1’, C2’,
and C5’ are our improved models of C1, C2,
and C5, respectively.6 We observed that UnitY
with first-pass decoder pre-training with t-mBART
(C7) improved the S2UT model with decoder pre-
training with u-mBART (C5’) by 1.3 and 2.5 ASR-
BLEU on average in En→Es and Es→En, respec-
tively. This confirms the effectiveness of the two-
pass modeling in the high-resource scenario. Fur-
thermore, UnitY without decoder pre-training (C6)
already outperformed C5’ and degraded from C7
only slightly. Comparing UnitY and S2SpecT2, we
cannot spot a clear winner. UnitY outperformed
S2SpecT2 in Es→En on Europarl-ST and mT-
EDx, but S2SpecT2 performed better in En→Es.
The proposed text decoder pre-training helped
S2SpecT2 performance too, especially in En→Es
(C4). Finally, we also confirmed that UnitY ap-
proached the performance of a strong cascaded
system and even outperformed it on Must-C.

6We improved C1 and C2 by R-Drop and better hyperpa-
rameters. C5 was also improved by hyperparameter tuning
and checkpoint averaging.
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Figure 3: Runtime of direct S2ST models on multi-
domain Es→En corpus. X→Y at each data point repre-
sents the beam width in each decoder pass.

4.3 Decoding efficiency

We evaluated the decoding efficiency of direct
S2ST models. We measured the runtime and total
number of floating point operations (FLOPs) on an
Intel® Xeon® Gold 6230 CPU. We randomly sam-
pled 500 utterances from the multi-domain Es→En
dev set while keeping the ratio of the number of
samples per domain. Note that we also took the
vocoder inference into account.

The results in Figure 3 showed that UnitY
achieved 2.51× and 2.83× decoding speed-ups
over S2SpecT2 and S2UT models, respectively.
These confirms the efficiency of discrete unit pre-
diction and two-pass decoding, thanks to reduced
output sequence lengths. Deep-shallow two-pass
decoders also improved the decoding speed a lot.
We found that the translation quality of the two-
pass models improved by increasing the beam
width of the first-pass decoder up to 10. On the
other hand, the quality did not degrade significantly
by decreasing the beam width of the second-pass
decoder down to 1, i.e. greedy decoding. This in-
dicates that the first pass involves more challenges
in the modeling pipeline. Therefore, we can obtain
better translation quality and decoding speed by
assigning more computation time to the first pass.

We also present the results of FLOPs in Ap-
pendix I. To summarize, UnitY achieved 1.65×
and 3.19× FLOPs reduction over S2SpecT2 and
S2UT models, respectively.

4.4 Fisher

We also show the results on Fisher in Appendix I.
Although the trend was consistent with CVSS-C, a
notable exception was that S2SpecT2 outperformed
UnitY when pre-training the speech encoder with
wav2vec2.0. However, UnitY has an advantage of
decoding efficiency over S2SpecT2.

ID Model
(ASR-)BLEU (↑)

Text Speech

D1 S2SpecT2 35.0 30.8
D2 + w/o T2S encoder 34.9 25.0
D3 + w/o R-Drop 34.8 30.3

D5 UnitY 38.3 33.2
D6 + w/o T2U encoder 38.1 30.7
D7 + w/o R-Drop 37.7 32.1
D8 + Cross-attn to speech enc (sequential) 38.2 33.2
D9 + Cross-attn to speech enc (parallel) 38.1 33.1

Table 3: Ablation study for two-pass direct S2ST models
on multi-domain Es→En dev set. The first-pass decoder
in all the models is pre-trained with t-mBART.

5 Analysis

In this section, we conduct analyses to shed light
on the source of improvements in UnitY. We also
study whether the same techniques used for UnitY
are helpful for S2SpecT2. We use the multi-domain
Es→En corpus, but pseudo-labeled ASR data is
excluded for quick exploration, resulting in 196-
hour source speech. We report average dev scores
over three runs with different random seeds.7

5.1 Ablation study

We first conducted an ablation study for two-pass
direct S2ST models in Table 3. We evaluated the
translation quality of outputs from both decoders.
An additional T2U/T2S encoder was essential for
bridging the gap in representations between the
first-pass and second-pass decoders, especially for
S2SpecT2 (D2, D6). We attribute this to the fact
that the gap in representations between text and
spectrogram is larger than between text and dis-
crete units. R-Drop was also beneficial for boost-
ing the translation quality of the first-pass decoder,
which improved the final performance accordingly
(D3, D7). Moreover, we investigated adding an-
other cross-attention over the speech encoder out-
put to the unit decoder, as discussed in §2.1. We
expected that the first-pass decoder output lost use-
ful information to generate target speech faithful
to source speech. We explored parallel (parallel,
D8) and sequential (sequential, D9) cross-attention,
similar to (Zhu et al., 2019), but neither showed
any improvement. The first-pass decoder already
extracted source acoustic information well via mul-
tiple cross-attention modules. We also show the
results on Fisher in Appendix I.

7We removed three long utterances from the mTEDx dev
set to fit the GPU memory.
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ID Model
Output

unit
(ASR-)BLEU (↑) Speed-up

(×)
Text Speech

E1
S2SpecT2

Phoneme – 29.4 1.00
E2 Character 31.7 28.9 0.89
E3 Subword 33.0 30.0 1.12

E4
UnitY

Phoneme – 27.8 2.31
E5 Character 33.2 29.6 2.06
E6 Subword 34.1 30.1 2.86

Table 4: Results of output units for the first-pass de-
coder in two-pass direct S2ST models on multi-domain
Es→En dev set. The first-pass decoder in all the models
is initialized randomly.

ID

Decoder depth
#Params
(Billion)

(ASR-)BLEU (↑)
Speed-up

(×)First
pass
(text)

Second
pass
(unit)

Text Speech

G1 2 6 0.79 34.5 30.3 1.24
G2 4 6 0.82 34.5 30.5 1.20

G3 6 2 0.79 34.3 30.3 1.47
G4 6 4 0.82 33.9 29.9 1.19
G5 6 6 0.86 34.8 30.7 1.00
G6 6 8 0.89 34.2 30.2 0.69
G7 6 12♢ 0.96 33.7 29.8 0.68

G8 12 2 0.95 34.9 30.7 1.44
G9 12♠ 2 0.95 38.3 33.2 1.19
G10 12♠ 4 0.98 38.0 33.0 1.09
G11 12♠ 6 1.00 38.1 33.1 0.84
G12 12♠ 12♢ 1.12 36.2 32.2 0.60

Table 5: Results of capacity assignment to two-pass de-
coders in UnitY on multi-domain Es→En dev set. ♠Pre-
trained with t-mBART. ♢Pre-trained with u-mBART.
G1-G8 have a 2k subword vocabulary, and G9-G12
have a 65k subword vocabulary.

5.2 Output unit for first-pass decoder

We studied optimal granularity of the output unit
for the first-pass decoder in two-pass direct S2ST
models. We explored phonemes, characters, and 2k
subwords units. The results in Table 4 showed that
the subword unit (E6) was the most effective for
the first-pass decoder in both UnitY and S2SpecT2
thanks to a better translation quality. Moreover,
it gained the largest decoding speed-up. We also
show the results on Fisher in Appendix I.

5.3 Capacity assignment to two-pass decoders

We sought to effectively assign the model capac-
ity to the two decoders in UnitY to obtain a better
translation quality. The results in Table 5 showed
that a 12-layer text decoder with a two-layer unit
decoder (G8) was the best in translation quality
and decoding speed when initializing the first-pass
decoder randomly (G1-G6,G8). Pre-training the
first-pass decoder with t-mBART (G9) brought a

Figure 4: Dev ASR-BLEU at different data scales on
the multi-domain Es→En corpus. The amount of train-
ing data is measured by source speech. All and PL
represent all supervised data and pseudo-labeled data,
respectively.

large ASR-BLEU gain with a slight speed degra-
dation compared to G8.8 It was sufficient to have
a two-layer unit decoder in that case (G9-G11).
We also pre-trained the second-pass decoder with
u-mBART while initializing the text decoder ran-
domly (G7) or with t-mBART (G12), but neither
improved the performance further. Therefore, it is
most effective to pre-train the deep text decoder
only and keep the unit decoder shallow. Note that
G8 is faster than G9 because of the smaller sub-
word vocabulary size (2k v.s. 65k).

5.4 Data scale

Improving the translation quality of S2ST mod-
els on low-resource data is crucial since collect-
ing a large amount of training data is challeng-
ing. We compared translation quality of direct
S2ST models at various training data scales in Fig-
ure 4. We observed that UnitY consistently out-
performed the S2SpecT2 and S2UT models when
the data size was no less than 50 hours. The text
decoder pre-training became less effective as the
data size increased, consistent with an observation
in §4.2, where the improvement in En→Es (+1.3)
was smaller than Es→En (+2.5). However, pre-
training the text decoder of UnitY was essential for
obtaining decent performances in the low-resource
settings (≤ 50 hours).

6 Related works

Two-pass sequence generation Two-pass decod-
ing has advantages of maintaining the end-to-end
optimization capability while inheriting the ben-
efits of a cascading approach. Xia et al. (2017);
Hu et al. (2020) incorporate an additional search
process to find a better output. Dalmia et al. (2021)

8We set the depth of the first-pass decoder to 12 because
of the availability of the off-the-shelf t-mBART model.
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reranks the intermediate hypotheses using an exter-
nal module such as a language model. Zhao et al.
(2019) injects specific information in the interme-
diate decoder to bias the output toward the desired
domain. Sainath et al. (2019) provides an inter-
mediate output to users before generating the final
output for streaming applications. The two-pass
approach makes the optimization tractable, which
has advanced performance of speech translation
models (Anastasopoulos and Chiang, 2018; Sper-
ber et al., 2019; Sung et al., 2019; Dalmia et al.,
2021; Inaguma et al., 2021a; Yan et al., 2022; Jia
et al., 2022b).

Direct speech-to-spectrogram translation
Translatotron (Jia et al., 2019b) is the first direct
S2ST model but suffered from poor performance
even with auxiliary ASR and S2TT tasks. Kano
et al. (2021) subsequently pre-trains the com-
ponents with ASR and S2TT models, which
is more effective for distant language pairs.
Translatotron2 (Jia et al., 2022b) significantly
improves Translatotron by incorporating two-pass
decoding. We showed that our methods further
improved Translatotron2.

Direct speech-to-unit translation Direct speech-
to-unit translation models predict discrete units
rather than spectrogram. Tjandra et al. (2019)
uses vector-quantized variational autoencoder (Van
Den Oord et al., 2017) while Lee et al. (2022a) used
HuBERT (Hsu et al., 2021) to extract target dis-
crete units. Lee et al. (2022b) normalizes speaker
identity of real target speech using a CTC-based
speech-to-unit model. Huang et al. (2022) further
improves the normalization by considering rhythm,
pitch, and energy.

7 Conclusion

We proposed UnitY, a novel efficient two-pass
direct S2ST model that subsequently generates
both text and discrete unit outputs. We improved
the model performance by predicting subwords in
the first pass, bridging decoder representations by
an additional encoder, deep-shallow two-pass de-
coders, regularizing the training with R-Drop, and
pre-training the first-pass decoder with text-based
mBART. Experimental evaluations demonstrated
that UnitY outperformed a single-pass S2UT model
consistently in translation quality and inference
speed. We showed that the proposed methods im-
prove the two-pass direct speech-to-spectrogram
model as well, confirming their versatility. Still,

UnitY achieved 2.51× decoding speed-up over the
case.

8 Limitation

Since two-pass direct S2ST models require linguis-
tic units as the target for the first-pass decoder, they
cannot be used when the target language is unwrit-
ten. Compared to cascaded S2ST systems, direct
S2ST systems require more data preparation steps,
including training a HuBERT model, synthesizing
target speech with a TTS model, extracting dis-
crete units with the HuBERT model, and training
a unit-based vocoder, etc. Moreover, the target au-
dio quality of direct speech-to-unit systems relies
on the quality of discrete units generated by self-
supervised discrete models. It further depends on
the availability of speech data to train HuBERT
models for the target languages.

Because S2ST systems could generate speech
that does not necessarily represent the source
speech’s content, there is a potential risk of convey-
ing wrong information.

Acknowledgement

We would like to thank Justine Kao and Carleigh
Wood for the help on human evaluation.

References
Antonios Anastasopoulos, Ondřej Bojar, Jacob Bremer-
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Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. FINDINGS OF THE IWSLT 2020 EVAL-
UATION CAMPAIGN. In Proceedings of IWSLT,
pages 1–34.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben

15663



Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common Voice: A massively-
multilingual speech corpus. In Proceedings of LREC,
pages 4218–4222.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat,
Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin
Cherry, et al. 2019. Massively multilingual neural
machine translation in the wild: Findings and chal-
lenges. arXiv preprint arXiv:1907.05019.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
In Proceedings of NeurIPS, volume 33, pages 12449–
12460.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philemon Brakel, and Yoshua Bengio. 2016. End-to-
end attention-based large vocabulary speech recogni-
tion. In Proceedings of ICASSP, pages 4945–4949.

Ankur Bapna, Colin Cherry, Yu Zhang, Ye Jia, Melvin
Johnson, Yong Cheng, Simran Khanuja, Jason Riesa,
and Alexis Conneau. 2022. mSLAM: Massively mul-
tilingual joint pre-training for speech and text. arXiv
preprint arXiv:2202.01374.

Alexandre Bérard, Laurent Besacier, Ali Can Ko-
cabiyikoglu, and Olivier Pietquin. 2018. End-to-end
automatic speech translation of audiobooks. In Pro-
ceedings of ICASSP, pages 6224–6228. IEEE.

Alexandre Bérard, Olivier Pietquin, Christophe Servan,
and Laurent Besacier. 2016. Listen and translate: A
proof of concept for end-to-end speech-to-text trans-
lation. In Proceedings of NIPS 2016 End-to-end
Learning for Speech and Audio Processing Work-
shop.

William Chan, Daniel Park, Chris Lee, Yu Zhang, Quoc
Le, and Mohammad Norouzi. 2021. Speechstew:
Simply mix all available speech recognition data
to train one large neural network. arXiv preprint
arXiv:2104.02133.

Colin Cherry, George Foster, Ankur Bapna, Orhan Firat,
and Wolfgang Macherey. 2018. Revisiting character-
based neural machine translation with capacity and
compression. In Proceedings of EMNLP, pages 4295–
4305.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng
Chiu, James Qin, Ruoming Pang, and Yonghui Wu.
2021. w2v-BERT: Combining contrastive learning
and masked language modeling for self-supervised
speech pre-training. In Proceedings of ASRU.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of ACL, pages 8440–8451.

Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian
Metze, and Shinji Watanabe. 2021. Searchable hid-
den intermediates for end-to-end models of decom-
posable sequence tasks. In Proceedings of NAACL-
HLT, pages 1882–1896.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019. MuST-C: a
Multilingual Speech Translation Corpus. In Proceed-
ings of NAACL-HLT, pages 2012–2017.

Qianqian Dong, Fengpeng Yue, Tom Ko, Mingxuan
Wang, Qibing Bai, and Yu Zhang. 2022. Leverag-
ing pseudo-labeled data to improve direct speech-to-
speech translation. arXiv preprint arXiv:2205.08993.

Salesky Elizabeth, Wiesner Matthew, Bremerman Jacob,
Roldano Cattoni, Matteo Negri, Marco Turchi, Dou-
glas W Oard, and Post Matt. 2021. The multilingual
TEDx corpus for speech recognition and translation.
In Proceedings of Interspeech, pages 3655–3659.

Mark JF Gales, Kate M Knill, Anton Ragni, and
Shakti P Rath. 2014. Speech recognition and key-
word spotting for low-resource languages: Babel
project research at CUED. In Proceedings of SLTU,
pages 16–23.

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. In Findings of EMNLP, pages 3955–3964.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of
ICML, pages 369–376.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented Trans-
former for speech recognition. In Proceedings of
Interspeech, pages 5036–5040.

Mary Harper et al. IARPA Babel Program. https:
//www.iarpa.gov/research-programs/
babel. [Online].

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

15664

https://www.iarpa.gov/research-programs/babel
https://www.iarpa.gov/research-programs/babel
https://www.iarpa.gov/research-programs/babel


Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. HuBERT: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:3451–3460.

Ke Hu, Tara N Sainath, Ruoming Pang, and Rohit Prab-
havalkar. 2020. Deliberation model based two-pass
end-to-end speech recognition. In Proceedings of
ICASSP, pages 7799–7803.

Rongjie Huang, Zhou Zhao, Jinglin Liu, Huadai Liu,
Yi Ren, Lichao Zhang, and Jinzheng He. 2022.
TranSpeech: Speech-to-speech translation with bilat-
eral perturbation. arXiv preprint arXiv:2205.12523.

Hirofumi Inaguma, Siddharth Dalmia, Brian Yan, and
Shinji Watanabe. 2021a. Fast-MD: Fast multi-
decoder end-to-end speech translation with non-
autoregressive hidden intermediates. In Proceedings
of ASRU, pages 922–929.

Hirofumi Inaguma, Tatsuya Kawahara, and Shinji
Watanabe. 2021b. Source and target bidirectional
knowledge distillation for end-to-end speech trans-
lation. In Proceedings of NAACL-HLT, pages 1872–
1881.

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerda,
Javier Jorge, Nahuel Roselló, Adria Giménez, Al-
bert Sanchis, Jorge Civera, and Alfons Juan. 2020.
Europarl-ST: A multilingual corpus for speech trans-
lation of parliamentary debates. In Proceedings of
ICASSP, pages 8229–8233.

Keith Ito and Linda Johnson. 2017. The lj
speech dataset. https://keithito.com/
LJ-Speech-Dataset/.

Ye Jia, Yifan Ding, Ankur Bapna, Colin Cherry,
Yu Zhang, Alexis Conneau, and Nobuyuki Morioka.
2022a. Leveraging unsupervised and weakly-
supervised data to improve direct speech-to-speech
translation. In Proceedings of Interspeech, pages
1721–1725.

Ye Jia, Melvin Johnson, Wolfgang Macherey, Ron J
Weiss, Yuan Cao, Chung-Cheng Chiu, Naveen Ari,
Stella Laurenzo, and Yonghui Wu. 2019a. Leverag-
ing weakly supervised data to improve end-to-end
speech-to-text translation. In Proceedings of ICASSP,
pages 7180–7184.

Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, and
Roi Pomerantz. 2022b. Translatotron 2: High-quality
direct speech-to-speech translation with voice preser-
vation. In Proceedings of ICML.

Ye Jia, Michelle Tadmor Ramanovich, Quan Wang, and
Heiga Zen. 2022c. CVSS corpus and massively mul-
tilingual speech-to-speech translation. In Proceed-
ings of LREC, pages 6691–6703.

Ye Jia, Ron J Weiss, Fadi Biadsy, Wolfgang Macherey,
Melvin Johnson, Zhifeng Chen, and Yonghui Wu.
2019b. Direct speech-to-speech translation with a
sequence-to-sequence model. In Proceedings of In-
terspeech, pages 1123–1127.

Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny
Kharitonov, Qiantong Xu, Pierre-Emmanuel Mazaré,
Julien Karadayi, Vitaliy Liptchinsky, Ronan Col-
lobert, Christian Fuegen, et al. 2020. Libri-Light:
A benchmark for asr with limited or no supervision.
In Proceedings of ICASSP, pages 7669–7673.

Takatomo Kano, Sakriani Sakti, and Satoshi Nakamura.
2021. Transformer-based direct speech-to-speech
translation with transcoder. In Proceedings of SLT,
pages 958–965.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2021. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In Proceedings of ICLR.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–
86.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.
HiFi-GAN: Generative adversarial networks for effi-
cient and high fidelity speech synthesis. In Proceed-
ings of NeurIPS, volume 33, pages 17022–17033.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of ACL, pages
66–75.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
In Proceedings of EMNLP: System Demonstrations,
pages 66–71.

Alon Lavie, Alex Waibel, Lori Levin, Michael Finke,
Donna Gates, Marsal Gavalda, Torsten Zeppenfeld,
and Puming Zhan. 1997. JANUS-III: Speech-to-
speech translation in multiple languages. In Pro-
ceedings of ICASSP, pages 99–102.

Ann Lee, Peng-Jen Chen, Changhan Wang, Jiatao Gu,
Xutai Ma, Adam Polyak, Yossi Adi, Qing He, Yun
Tang, Juan Pino, et al. 2022a. Direct speech-to-
speech translation with discrete units. In Proceedings
of ACL, pages 3327–3339.

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne,
Holger Schwenk, Peng-Jen Chen, Changhan Wang,
Sravya Popuri, Juan Pino, Jiatao Gu, and Wei-Ning
Hsu. 2022b. Textless speech-to-speech translation
on real data. In Proceedings of NAACL-HLT, pages
860–872.

Naihan Li, Shujie Liu, Yanqing Liu, Sheng Zhao, and
Ming Liu. 2019. Neural speech synthesis with Trans-
former network. In Proceedings of AAAI, volume 33,
pages 6706–6713.

15665

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/


Xian Li, Changhan Wang, Yun Tang, Chau Tran, Yuqing
Tang, Juan Pino, Alexei Baevski, Alexis Conneau,
and Michael Auli. 2021. Multilingual speech trans-
lation from efficient finetuning of pretrained models.
In Proceedings of ACL, pages 827–838.

Xinjian Li, Ye Jia, and Chung-Cheng Chiu. 2022.
Textless direct speech-to-speech translation with
discrete speech representation. arXiv preprint
arXiv:2211.00115.

Daniel Licht, Cynthia Gao, Janice Lam, Francisco Guz-
man, Mona Diab, and Philipp Koehn. 2022. Consis-
tent human evaluation of machine translation across
language pairs. In Proceedings of AMTA, pages 309–
321.

Pierre Lison, Jörg Tiedemann, and Milen Kouylekov.
2018. OpenSubtitles2018: Statistical rescoring of
sentence alignments in large, noisy parallel corpora.
In Proceedings of LREC.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Yuchen Liu, Hao Xiong, Zhongjun He, Jiajun Zhang,
Hua Wu, Haifeng Wang, and Chengqing Zong. 2019.
End-to-end speech translation with knowledge distil-
lation. In Proceedings of Interspeech, pages 1128–
1132.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed precision train-
ing. In Proceedings of ICLR.

Mehryar Mohri, Fernando Pereira, and Michael Ri-
ley. 2002. Weighted finite-state transducers in
speech recognition. Computer Speech & Language,
16(1):69–88.

Satoshi Nakamura, Konstantin Markov, Hiromi
Nakaiwa, Gen-ichiro Kikui, Hisashi Kawai,
Takatoshi Jitsuhiro, J-S Zhang, Hirofumi Yamamoto,
Eiichiro Sumita, and Seiichi Yamamoto. 2006.
The ATR multilingual speech-to-speech translation
system. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 14(2):365–376.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An ASR corpus
based on public domain audio books. In Proceedings
of ICASSP, pages 5206–5210.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL,
pages 311–318.

Kyubyong Park and Thomas Mulc. 2019. CSS10: A
collection of single speaker speech datasets for 10
languages. In Proceedings of Interspeech, pages
1566–1570.

Juan Pino, Qiantong Xu, Xutai Ma, Mohammad Javad
Dousti, and Yun Tang. 2020. Self-training for end-
to-end speech translation. In Proceedings of Inter-
speech, pages 1476–1480.

Adam Polyak, Yossi Adi, Jade Copet, Eugene
Kharitonov, Kushal Lakhotia, Wei-Ning Hsu, Ab-
delrahman Mohamed, and Emmanuel Dupoux. 2021.
Speech resynthesis from discrete disentangled self-
supervised representations. In Proceedings of Inter-
speech, pages 3615–3619.

Sravya Popuri, Peng-Jen Chen, Changhan Wang, Juan
Pino, Yossi Adi, Jiatao Gu, Wei-Ning Hsu, and Ann
Lee. 2022. Enhanced direct speech-to-speech transla-
tion using self-supervised pre-training and data aug-
mentation. In Proceedings of Interspeech, pages
5195–5199.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191.

Matt Post, Gaurav Kumar, Adam Lopez, Damianos
Karakos, Chris Callison-Burch, and Sanjeev Khudan-
pur. 2013. Improved speech-to-text translation with
the Fisher and Callhome Spanish–English speech
translation corpus. In Proceedings of IWSLT.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel
Synnaeve, and Ronan Collobert. 2020. MLS: A large-
scale multilingual dataset for speech research. In
Proceedings of Interspeech, pages 2757–2761.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual using
knowledge distillation. In Proceedings of EMNLP,
pages 4512–4525.

Anthony Rousseau, Paul Deléglise, and Yannick Estève.
2012. TED-LIUM: An automatic speech recognition
dedicated corpus. In Proceedings of LREC, pages
125–129.

Tara N Sainath, Ruoming Pang, David Rybach,
Yanzhang He, Rohit Prabhavalkar, Wei Li, Mirkó
Visontai, Qiao Liang, Trevor Strohman, Yonghui Wu,
et al. 2019. Two-pass end-to-end speech recognition.
In Proceedings of Interspeech, pages 2773–2777.

Elizabeth Salesky, Julian Mäder, and Severin Klinger.
2021. Assessing evaluation metrics for speech-to-
speech translation. In Proceedings of ASRU, pages
733–740.

15666



Holger Schwenk, Guillaume Wenzek, Sergey Edunov,
Edouard Grave, Armand Joulin, and Angela Fan.
2021. CCMatrix: Mining billions of high-quality
parallel sentences on the web. In Proceedings of
ACL, pages 6490–6500.

Jonathan Shen, Ye Jia, Mike Chrzanowski, Yu Zhang,
Isaac Elias, Heiga Zen, and Yonghui Wu. 2020. Non-
Attentive Tacotron: Robust and controllable neural
TTS synthesis including unsupervised duration mod-
eling. arXiv preprint arXiv:2010.04301.

Raivis Skadin, š, Jörg Tiedemann, Roberts Rozis, and
Daiga Deksne. 2014. Billions of parallel words for
free: Building and using the EU bookshop corpus. In
Proceedings of LREC, pages 1850–1855.

Matthias Sperber, Graham Neubig, Jan Niehues, and
Alex Waibel. 2019. Attention-passing models for ro-
bust and data-efficient end-to-end speech translation.
Transactions of the Association for Computational
Linguistics, 7:313–325.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Tzu-Wei Sung, Jun-You Liu, Hung-yi Lee, and Lin-
shan Lee. 2019. Towards end-to-end speech-to-text
translation with two-pass decoding. In Proceedings
of ICASSP, pages 7175–7179.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of NIPS, volume 27.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of CVPR, pages 2818–2826.

Yun Tang, Hongyu Gong, Ning Dong, Changhan Wang,
Wei-Ning Hsu, Jiatao Gu, Alexei Baevski, Xian Li,
Abdelrahman Mohamed, Michael Auli, and Juan
Pino. 2022. Unified speech-text pre-training for
speech translation and recognition. In Proceedings
of ACL, pages 1488–1499.

Yun Tang, Juan Pino, Xian Li, Changhan Wang, and
Dmitriy Genzel. 2021. Improving speech translation
by understanding and learning from the auxiliary text
translation task. In Proceedings of ACL, pages 4252–
4261.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura.
2019. Speech-to-speech translation between un-
transcribed unknown languages. In Proceedings of
ASRU, pages 593–600.

Jörgen Valk and Tanel Alumäe. 2021. VoxLingua107: a
dataset for spoken language recognition. In Proceed-
ings of SLT, pages 652–658.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural
discrete representation learning. In Proceedings of
NIPS, volume 30.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NIPS, volume 30.

Wolfgang Wahlster. 2013. Verbmobil: foundations of
speech-to-speech translation. Springer Science &
Business Media.

Changhan Wang, Hirofumi Inaguma, Peng-Jen Chen,
Ilia Kulikov, Yun Tang, Wei-Ning Hsu, Michael
Auli, and Juan Pino. 2022. Simple and effective
unsupervised speech translation. arXiv preprint
arXiv:2210.10191.

Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu,
Chaitanya Talnikar, Daniel Haziza, Mary Williamson,
Juan Pino, and Emmanuel Dupoux. 2021a. VoxPop-
uli: A large-scale multilingual speech corpus for rep-
resentation learning, semi-supervised learning and
interpretation. In Proceedings of ACL, pages 993–
1003.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu,
Dmytro Okhonko, and Juan Pino. 2020. Fairseq
S2T: Fast speech-to-text modeling with Fairseq. In
Proceedings of AACL: System Demonstrations, pages
33–39.

Changhan Wang, Anne Wu, Jiatao Gu, and Juan Pino.
2021b. CoVoST 2 and massively multilingual speech
translation. In Proceedings of Interspeech, pages
2247–2251.

Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski,
Michael Auli, and Alexis Conneau. 2021c. Large-
scale self- and semi-supervised learning for speech
translation. In Proceedings of Interspeech, pages
2242–2246.

Ron J Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-sequence
models can directly translate foreign speech. In Pro-
ceedings of Interspeech, pages 2625–2629.

Krzysztof Wołk and Krzysztof Marasek. 2014. Building
subject-aligned comparable corpora and mining it for
truly parallel sentence pairs. Procedia Technology,
18:126–132.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin,
Wei Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-
Drop: Regularized dropout for neural networks. In
Proceedings off NeurIPS, volume 34, pages 10890–
10905.

15667



Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin,
Nenghai Yu, and Tie-Yan Liu. 2017. Deliberation
networks: Sequence generation beyond one-pass de-
coding. In Proceedings of NIPS, volume 30.

Brian Yan, Patrick Fernandes, Siddharth Dalmia, Jia-
tong Shi, Yifan Peng, Dan Berrebbi, Xinyi Wang,
Graham Neubig, and Shinji Watanabe. 2022. CMU’s
IWSLT 2022 dialect speech translation system. In
Proceedings of IWSLT, pages 298–307.

Chen Zhang, Xu Tan, Yi Ren, Tao Qin, Kejun Zhang,
and Tie-Yan Liu. 2021. Uwspeech: Speech to speech
translation for unwritten languages. In Proceedings
of AAAI, pages 14319–14327.

Ding Zhao, Tara N. Sainath, David Rybach, Pat Ron-
don, Deepti Bhatia, Bo Li, and Ruoming Pang. 2019.
Shallow-fusion end-to-end contextual biasing. In
Proceedings of Interspeech, pages 1418–1422.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tieyan Liu. 2019.
Incorporating BERT into neural machine translation.
In Proceedings of ICLR.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel corpus
v1.0. In Proceedings of LREC, pages 3530–3534.

15668



Algorithm 1 Two-pass beam search decoding
1: function TWOPASSBEAMSEARCH(X,B1st,B2nd)
2: H ← SpeechEnc(X) ▷ H : (T ′, dmodel)
3:
4: // First-pass beam search
5: Ω1st ← {}
6: Ω1st ← BeamSearch1(H,B1st,Ω1st)

7: Ŷ ← argmax(Ω1st) ▷ |Ω1st| = B1st

8:
9: Dtext ← GetHiddenStateFromCache(Ŷ ) ▷

Dtext : (M,dmodel)
10: Z ← T2UEnc(Dtext) ▷ Z : (M,dmodel)
11:
12: // Second-pass beam search
13: Ω2nd ← {}
14: Ω2nd ← BeamSearch2(Z,B2nd,Ω2nd)

15: Û ← argmax(Ω2nd) ▷ |Ω2nd| = B2nd

16:
17: // Convert discrete units to

waveform
18: Ŵ ← UnitVocoder(Û)

19: return Ŵ
20: end function

A Pseudo algorithm for two-pass beam
search decoding

Algorithm 1 shows the two-pass beam serach de-
coding algorithm of UnitY as discussed in §2.3.
We first encode a source speech X with the speech
encoder SpeechEnc and map it to the encoder
output H .

The first-pass decoder takes H as input and gen-
erates a text sequence. BeamSearch1 is a first-pass
beam search function that takes an empty hypoth-
esis set Ω1st and returns the beam candidates. We
take the best text hypothesis Ŷ and get the corre-
sponding decoder output Dtext from a cache via
the GetHiddenStateFromCache function. Next, the
T2U encoder T2UEnc takes Dtext as input and
maps it to the output Z.

The second-pass decoder takes H and Z as
inputs and generates a discrete unit sequence.
BeamSearch2 is a second-pass beam search func-
tion that takes an empty hypothesis set Ω2nd and
returns the beam candidates. We take the best dis-
crete unit hypothesis Û . Finally, the unit-based
vocoder UnitVocoder converts Û to the wave-
form Ŵ .

B Training with R-Drop

UnitY introduces an intermediate S2TT sub-task
to make the optimization tractable while maintain-
ing the end-to-end differentiability. However, the
easier S2TT task is more likely to overfit than
the primary S2UT task. To tackle this problem,

we apply a more effective regularization based
on R-Drop (Wu et al., 2021) to the first-pass de-
coder in addition to standard regularization such as
dropout (Srivastava et al., 2014) and label smooth-
ing (Szegedy et al., 2016). Theoretically, R-Drop
reduces the inconsistency of model predictions be-
tween training and inference by dropout, thus im-
proving the generalization ability. R-Drop dupli-
cates the network input during training and cal-
culates two output probability distributions with
different dropout masks. Then, a constraint is intro-
duced by minimizing the Kullback–Leibler (KL)
divergence loss between the two probability distri-
butions. We apply R-Drop to both text and unit
decoders. The total training objective of UnitY
with R-Drop, Ltotal, is modified from Eq. (1) as
follows:

Ltotal =
2∑

i=1

Ls2u(U |Xi, Y ) +αLs2u
kl (X1,X2)

+ws2t(

2∑

i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2)), (2)

where Xi is a duplicated input from X , Ls2u
kl and

Ls2t
kl are KL losses for the unit and text decoders,

ws2t is a weight for the S2TT loss, and α and β
are weights for the KL losses, respectively. We
implement R-Drop by duplicating inputs instead of
feeding them to the network twice.

Given a set of unique inputs X, the general KL
loss Lkl in R-Drop is formulated as follows:

Lkl(X1,X2) =
1

2
(Dkl(P (·|X1)||P (·|X2)

+Dkl(P (·|X2))||P (·|X1))),

where Xi is a duplicated input from X, Dkl is a
KL divergence, and P is a categorical probability
distribution.

C Training objective

In this section, we describe training objectives
for the baseline S2ST models. In addition to the
primary S2ST/S2UT task, we introduce auxiliary
S2TT and ASR tasks. We adopted an auxiliary
character-level ASR task for the direct S2ST mod-
els trained from scratch on Fisher, regardless of the
choice of the output unit in the first-pass decoder.
We did not use the ASR task in the rest settings.
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S2SpecT The architecture of S2SpecT is shown
in Figure 2a. Given the target spectrogram S, trans-
lation Y , and transcription Ysrc, corresponding to a
source speech X , the training objective of S2SpecT
is formulated as:

Ltotal = Ls2s(S|X)

+ws2tLs2t(Y |X) +wasrLasr(Ysrc|X), (3)

where Ls2s is the primary S2ST loss, Ls2t is the
auxiliary S2TT loss, Lasr is the auxiliary ASR loss,
ws2t is a weight for the S2TT loss, and wasr is a
weight for the ASR loss, respectively. Note that R-
Drop is not used because the output of the primary
S2ST task is continuous.

We adopt the autoregressive decoder of Trans-
former TTS (Li et al., 2019) as the spectrogram
decoder. Therefore, Ls2s is defined as a sum of the
L1 loss L1, L2 loss L2, and end-of-sentence (EOS)
prediction loss Leos as follows:

Ls2s(S|X) = L1 +L2 +Leos.

S2SpecT2 The architecture of S2SpecT2 is
shown in Figure 2b. The training objective of
S2SpecT2 is formulated as:

Ltotal =

2∑

i=1

Ls2s(S|Xi, Y )

+ws2t(
2∑

i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2))

+wasr(
2∑

i=1

Lasr(Ysrc|Xi) + γLasr
kl (X1,X2)),

(4)

where Xi is a duplicated input from X , Ls2t
kl is

the R-Drop’s KL loss for the first-pass decoder,
Ls2t
kl is the R-Drop’s KL loss for the auxiliary ASR

decoder, and β and γ are the corresponding weights
for the R-Drop’s KL losses, respectively. Unlike
Eq. (3), the primary S2ST task depends on the
output from the first-pass decoder. We apply R-
Drop to the S2TT and ASR tasks only. We also
investigated applying R-Drop to the second-pass
spectrogram decoder by minimizing the difference
of two outputs in the continuous space, but the
training was unstable.

S2UT The architecture of S2UT is shown in Fig-
ure 2c. In addition to the primary S2UT loss and
auxiliary S2TT and ASR losses, we use a CTC

loss on top of the unit decoder following Lee et al.
(2022a). The training objective of the S2UT model
is formulated as:

Ltotal =
2∑

i=1

Ls2u(U |Xi) +αLs2u
kl (X1,X2)

+wctc

2∑

i=1

Lctc(Y |Dunit
i )

+ws2t(
2∑

i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2))

+wasr(

2∑

i=1

Lasr(Ysrc|Xi) + γLasr
kl (X1,X2)),

(5)

where Ls2u is the primary S2UT loss, Ls2u
kl is the

R-Drop’s KL loss for the unit decoder, Lctc is the
CTC loss, Dunit

i is the unit decoder output for the
i-th forward pass, α is a weight for the R-Drop’s
KL loss, and wctc is a weight for the CTC loss,
respectively. Unlike Eq. (2), there is no dependency
between the primary S2UT task and auxiliary S2TT
task except for sharing the same encoder.

S2TT, ASR We also apply R-Drop to S2TT and
ASR tasks. The training objective of the S2TT
model is formulated as:

Ltotal =
2∑

i=1

Ls2t(Y |Xi) + βLs2t
kl (X1,X2). (6)

Similarly, the training objective of the ASR model
is formulated as:

Ltotal =

2∑

i=1

Lasr(Ysrc|Xi) + γLasr
kl (X1,X2).

(7)

D Data

Fisher Es→En (Post et al., 2013) This cor-
pus contains 170-hour Spanish conversational tele-
phone speech with the corresponding transcrip-
tions as well as the English translations. The
target speech is synthesized by a high-quality in-
house TTS model trained with a single female
speaker (Lee et al., 2022a).

CVSS-C (Jia et al., 2022c) CVSS is a pub-
lic multilingual S2ST corpus based on CoV-
oST2 (Wang et al., 2021b). It covers 21 language
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Corpus
Language direction

En→Es Es→En

S2TT
Europarl-ST [75.6 hours] (Iranzo-Sánchez et al., 2020)

Must-C [495 hours] (Di Gangi et al., 2019)

CoVoST2 [112 hours] (Wang et al., 2021b)
Europarl-ST [20.6 hours]
mTEDx [63.4 hours] (Elizabeth et al., 2021)

ASR
Librispeech [960 hours] (Panayotov et al., 2015)
TEDLIUM3 [452 hours] (Rousseau et al., 2012)

Common Voice v7 [1203 hours] (Ardila et al., 2020)

MLS [918 hours] (Pratap et al., 2020)
Common Voice v7 [290 hours]

MT
Supervised MT1 CCMatrix [86.3M sentences] (Schwenk et al., 2021) –

Supervised MT2
(Cascaded S2ST)

OpenSubtitle2018 [60M sentences] (Lison et al., 2018)
UNCorpus [21.8M sentences] (Ziemski et al., 2016)

EUBookshop v2 [5.2M sentences] (Skadin, š et al., 2014)
Europarl v10 [1.9M sentences] (Koehn, 2005)

Wikipedia v1.0 [1.8M sentences] (Wołk and Marasek, 2014)
TED2020 v1 [0.4M sentences] (Reimers and Gurevych, 2020)

Europarl-ST [32k sentences]
Must-C [260k sentences]
mTEDx [3.6k sentences]

CoVosST2 [79k sentences]

T2U/TTS CSS100 [23.8 hours] (Park and Mulc, 2019) LJSpeech [24 hours] (Ito and Johnson, 2017)

Unlabeled text
t-mBART CC100 [5.6B tokens] (Conneau et al., 2020)

Unlabeled speech
wav2vec2.0 Libri-Light [60k hours] (Kahn et al., 2020) VoxPopuli Es [16k hours] (Wang et al., 2021a)

u-mBART
VoxPopuli En [14k hours]
VoxPopuli Es [16k hours]
Libri-Light [60k hours]

mHuBERT
VoxPopuli En [4.5k hours]
VoxPopuli Es [4.5k hours]
VoxPopuli Fr [4.5k hours]

Table 6: Statistics for the multi-domain En↔Es corpora

Model URL

En wav2vec2.0 https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md#wav2vec-20

Es wav2vec2.0 https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md#wav2vec-20

En HuBERT https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/direct_s2st_discrete_units.md

mHuBERT https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/textless_s2st_real_data.md

En-Es u-mBART https://dl.fbaipublicfiles.com/fairseq/speech_to_speech/s2st_finetuning/unit_mBART/checkpoint.pt

En Transformer TTS https://huggingface.co/facebook/tts_transformer-en-ljspeech

Es Transformer TTS https://huggingface.co/facebook/tts_transformer-es-css10

Table 7: Links to pre-trained self-supervised models and TTS models

directions to English. We use the CVSS-C part of
the CVSS corpus, in which a single-speaker female
TTS synthesizes the target speech. We combine
all language directions to train a single X-to-En
multilingual model.

Multi-domain En↔Es (Popuri et al., 2022) Fol-
lowing Popuri et al. (2022), we use all samples
from multiple public S2TT corpora in each di-
rection to improve the robustness of model train-
ing (Jia et al., 2022b; Chan et al., 2021). We also
use all samples from validation sets in all domains
for checkpoint selection. We further augment the
S2ST training data by pseudo-labeling ASR cor-
pora with MT and T2U/TTS models. We use the
TTS model in the cascaded system to synthesize

the target speech for direct speech-to-spectrogram
models. For direct speech-to-unit models, we use a
T2U model (Lee et al., 2022b) to generate discrete
units on the ASR corpora and the TTS+HuBERT
pipeline for the S2T corpora. Both T2U and TTS
models are based on Transformer. We train En
and Es T2U/TTS models on the LJSpeech (Ito and
Johnson, 2017) and CSS10 (Park and Mulc, 2019)
corpora, respectively.

For En→Es, we use all samples from Europarl-
ST (Iranzo-Sánchez et al., 2020) and Must-
C (Di Gangi et al., 2019) and augment the train-
ing data by TEDLIUM3 (Rousseau et al., 2012),
Librispeech (Panayotov et al., 2015), and Com-
mon Voice (Ardila et al., 2020), resulting in 3180-
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hour source speech. We removed samples over-
lapped with mtedx dev/test sets from TEDLIUM3.
For Es→En, we use all samples from CoVoST2,
Europarl-ST, and mTEDx (Elizabeth et al., 2021),
and augment the training data by Common Voice
and multilingual Librispeech (MLS) (Pratap et al.,
2020), resulting in 1404-hour source speech. In
Table 6, we list all the datasets used in each task.

E Pre-processing

Speech We convert source audio to 16kHz and
generate target speech with 22kHz. When extract-
ing discrete units, we downsample the target speech
to 16kHz. For filterbank features, we extract 80-
dimensional coefficients on both the source and tar-
get sides. We apply utterance-level cepstral mean-
variance normalization to both inputs.

Discrete units We extract discrete units with an
English HuBERT trained on Librispeech after per-
forming k-means clustering with 100 clusters on
Fisher (Lee et al., 2022a). For the rest corpora, we
extract discrete units with a multilingual HuBERT
(mHuBERT) (Popuri et al., 2022) trained on En,
En, and Fr parts of VoxPopuli (Wang et al., 2021a)
with the number of k-means clusters of 1000.

Text We lowercase text data and remove all punc-
tuation marks except for apostrophes. When ini-
tializing the text decoder in two-pass direct S2ST
models randomly, we build vocabularies of 1k, 6k,
and 2k unigram subword units (Kudo, 2018) with
the SentencePiece toolkit (Kudo and Richardson,
2018) for the Fisher, CVSS-C, and multi-domain
corpora, respectively. When pre-training the text
decoder with t-mBART, we use the same vocab-
ulary as t-mBART. The reference target transla-
tion to calculate ASR-BLEU is normalized with
lowercasing, removal of punctuation marks, con-
version of digits to spoken forms, and removal of
non-verbal words in parentheses like “(Applause)”
or “(Music).”

Data filtering For discrete unit generation with
a T2U model, we found that target discrete units
were over-generated in long-form samples. We
filtered out such samples by thresholding with a
ratio of the sequence length of the discrete units
over the number of corresponding source speech
frames. We used a threshold of 0.7 for the multi-
domain En→Es corpus while using ∞ for the rest.
We used the same number of samples for all direct
S2ST models for a fair comparison.

F Pre-training

In Table 7, we list all the pre-trained self-supervised
models and TTS models used in §4.

wav2vec2.0 We use 24-layer Conformer
wav2vec2.0 (Baevski et al., 2020) models trained
on Libri-Light (Kahn et al., 2020) for En and
VoxPopuli for Es, respectively.

w2v-BERT Same as Jia et al. (2019a), we pre-
train the w2v-BERT (Chung et al., 2021) on ap-
proximately 430k hours of unlabeled speech data
in 51 languages spanning from VoxPopuli, Com-
mon Voice, MLS, BABEL (Harper et al.; Gales
et al., 2014), and VoxLingua107 (Valk and Alumäe,
2021). The w2v-BERT was composed of 24 Con-
former layers with 0.6 billions of parameters.

Text-based mBART (t-mBART) We train a t-
mBART model with En and Es unlabeled text
on CC100 (Conneau et al., 2020). We use of
a 65k unigram subword unit for the vocabulary.
For multilingual experiments on CVSS-C, we use
mBART50 (Tang et al., 2020) with multilingual
fine-tuning to En. The vocabulary size is a 250k
subword unit.

Unit-based mBART (u-mBART) We use a u-
mBART model trained with En and Es unlabeled
speech on VoxPopuli. The unit vocabulary is the
same as that of the mHuBERT model.

G Architecture details

Let dmodel be a model dimension of Transformer,
dff be an inner dimension of the FFN layers, and
Nhead be the number of attention heads.

Speech encoder We used a 16-layer Conformer
encoder stacked on 2-dimensional convolution
blocks when training models from scratch. The
convolution blocks reduced the input sequence
length by a factor of 4. We set (dmodel, dff ,Nhead)
to (256,2048,4). We set the kernel size of the
depthwise convolution in the convolution module
of each Conformer block to 31. When pre-training
the encoder with wav2vec2.0 and w2v-BERT, we
used a 24-layer Conformer encoder and stacked
a one-layer length adaptor (Li et al., 2021) on it.
Because an output frame of wav2vec2.0 and w2v-
BERT corresponds to 20ms and the length adaptor
halved the sequence length, the frame rate of every
final encoder output corresponds to 40ms in both
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ID #GPU
# of frames ×

gradient accumulation
Learning

rate Warmup Dropout Label
smoothing

Loss weight R-Drop

wasr ws2t wctc γ β α

A6 4 40k×1 1.3e-3

10k

0.2

0.2

– – – – 8.6 –
A7 16 2k×4 1.0e-3 0.1 – – – – 8.6 –
A11 16 20k×1 1.0e-3 0.3 0.1 0.1 – 0.0 0.0 –
A12 16 4k×2 1.0e-3 0.1 – – – – – –
A15 16 20k×1 1.5e-3 0.3 0.1 0.1 – 3.0 3.0 –
A16 16 4k×2 1.0e-3 0.1 – 0.1 – – 3.0 –
A18 4 20k×1 8.6e-4 0.3 8.0 8.0 1.6 1.0 1.0 1.0
A19 16 2k×4 1.0e-3 0.1 – – – – – 1.0
A20 4 20k×1 6.0e-4 0.3 8.0 8.0 – 3.0 3.0 1.0
A21 16 2k×4 1.0e-3 0.1 – 8.0 – – 3.0 1.0

B3 8 35k×4 2.1e-3

10k

0.1 0.1 0.6 – – 4.6 4.6 –
B4 32 2k×24 1.0e-3 0.1 0.2 0.0 – – 5.0 5.0 –
B6 32 40k×1 1.0e-3 0.1 0.2 – 0.1 – – 0.0 –
B7 32 40k×1 1.0e-3 0.1 0.2 – 0.1 – – 0.0 –
B8 32 2k×24 1.0e-3 0.1 0.2 – – – – – –
B15 32 40k×1 1.1e-3 0.1 0.2 – 0.1 – – 10.0 –
B16 32 40k×1 1.0e-3 0.1 0.2 – 0.1 – – 10.0 –
B17 32 2k×24 1.0e-3 0.1 0.2 – 0.1 – – 5.0 –
B18 32 20k×2 8.6e-4 0.3 0.2 – 8.0 1.6 – 0.5 0.5
B19 32 20k×2 7.0e-4 0.3 0.2 – 8.0 1.6 – 0.5 0.5
B20 32 2k×24 1.0e-3 0.1 0.2 – – – – – 0.5
B21 32 20k×2 1.5e-3 0.3 0.2 – 8.0 – – 1.5 1.5
B22 32 20k×2 7.0e-4 0.3 0.2 – 8.0 – – 5.0 1.5
B23 32 2k×24 1.0e-3 0.1 0.2 – 8.0 – – 5.0 1.5

C1’

32 2k×30 5.0e-4

1k

0.1

0.1 – – – – 10.0 –
C2’ 1k 0.2 – – – – 10.0 –
C3 5k 0.2 – 8.0 – – 10.0 –
C4 5k 0.2 – 8.0 – – 10.0 –
C5’ 1k 0.2 – – – – – 0.0
C6 1k 0.2 – 8.0 – – 10.0 0.0
C7 1k 0.2 – 8.0 – – 10.0 0.0

Table 8: Training hyperparameters

cases. In this case, we set (dmodel, dff ,Nhead) to
(1024,4096,16).

S2SpecT We used a six-layer Transformer spec-
trogram decoder. We set (dmodel, dff ,Nhead) to
(512,2048,8). When pre-training the speech en-
coder with wav2vec2.0 or w2v-BERT, we doubled
these three values. We set the pre-net dimension
and reduction factor of the spectrogram decoder to
32 and 3, respectively.

S2SpecT2 Let Nt2s be the depth of the T2S en-
coder. We set (N1st,N2nd,Nt2s) to (4,6,2) on
Fisher and CVSS-C. On the multi-domain corpus,
we set (N1st,N2nd,Nt2s) to (12,6,2) when pre-
training the first-pass decoder with t-mBART. Oth-
erwise, we set (N1st,N2nd,Nt2s) to (6,6,2). We
used the same dmodel, dff , and Nhead as S2SpecT
in all the settings.

S2UT We used a six-layer Transformer
unit decoder. When training models from
scratch on Fisher, we set (dmodel, dff ,Nhead)
to (256,2048,4). We set (dmodel, dff ,Nhead) to
(512,2048,8) on CVSS-C. When pre-training the
speech encoder with wav2vec2.0 or w2v-BERT,
we set (dmodel, dff ,Nhead) to (1024,4096,16).

UnitY We used the same first-pass decoder as
S2SpecT2 in all the settings. We set (N2nd,Nt2u)
to (2,2). We used the same dmodel, dff , and Nhead

as the S2UT model in all the settings.

S2TT We used a six-layer Transformer decoder.
When initializing it with t-mBART, we set the
depth to 12.

ASR We used the same architecture as the S2TT
model except for the vocabulary in all the settings.

H Training details

We optimized all models with the mixed precision
training using 32GB V100 GPUs (Micikevicius
et al., 2018). When fine-tuning the speech encoder
from wav2vec2.0 and w2v-BERT, we updated all
parameters in the speech encoder. For multilingual
training with speech encoder pre-training with w2v-
BERT on CVSS-C, we over-sampled training data
of low-resource directions with an inverse temper-
ature of 0.6, following (Arivazhagan et al., 2019).
We list the training hyperparameters in Table 8.
The training of A*, B*, and C* models converged
within approximately 1, 3, and 5 days, respectively.
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ID Model Encoder
ASR-BLEU (↑)

dev dev2 test

A0 Synthetic target (Lee et al., 2022a) 88.5 89.4 90.5

Cascaded systems
A1 ASR → MT → TTS LSTM (Lee et al., 2022a) 42.1 43.5 43.9

A2

S2TT → TTS

LSTM (Jia et al., 2019b) 39.4 41.2 41.4
A3 LSTM (Jia et al., 2022b) – – 43.3
A4 LSTM (Lee et al., 2022a) 38.5 39.9 40.2
A5 Transformer (Dong et al., 2022) 44.3 45.4 45.1
A6 Conformer 47.8 48.9 48.3
A7 Conformer wav2vec2.0 51.0 52.2 52.1

Direct speech-to-spectrogram systems
A8

S2SpecT

Transformer (Jia et al., 2019b) 30.1 31.5 31.1
A9 Transformer (Lee et al., 2022a) – – 33.2
A10 Transformer (Dong et al., 2022) 42.4 43.3 43.6
A11 Conformer 43.9 44.4 43.8
A12 Conformer wav2vec2.0 45.5 47.6 46.3

A13
Translatotron2

Conformer (Jia et al., 2022b) – – 42.4
A14 Conformer w2v-BERT (Li et al., 2022) – – 52.2

A15
S2SpecT2

Conformer 50.4 51.1 50.8
A16 Conformer wav2vec2.0 58.4 59.5 58.6

Direct speech-to-unit systems
A17

S2UT
Transformer (Lee et al., 2022a) – – 39.9

A18 Conformer 46.2 47.6 47.4
A19 Conformer wav2vec2.0 53.4 53.9 53.7

A20
UnitY

Conformer 50.5 51.6 51.4
A21 Conformer wav2vec2.0 55.1 56.5 55.9

Table 9: ASR-BLEU on Fisher Es→En corpus. The decoder in all the models is initialized randomly. S2SpecT2
is our improved version of Translatotron2. Note that A10 uses pseudo labeled external resources with a cascaded
S2ST system, and A13 uses data augmentation by concatenating multiple utterances.

Figure 5: FLOPs of direct S2ST models on multi-
domain Es→En corpus. The beam width of two-pass
models corresponds to the first-pass decoder.

I Additional experimental results

In this section, we present additional experimental
results in §4.

FLOPs In Figure 5, we show the results of
FLOPs measured with a subset of the multi-domain
Es→En dev set, as discussed in §4.3. UnitY
achieved 1.65× and 3.19× FLOPs reduction over
S2SpecT2 and S2UT models, respectively.

Fisher Es→En The results on Fisher are shown
in Table 9. We report average scores over three
runs with different random seeds. Among our four

direct systems trained from scratch (A11, A15,
A18, A20), UnitY (A20) achieved the best ASR-
BLEU. Our S2UT (A18) and S2SpecT2 (A15) out-
performed the previous studies (A13, A17) by a
large margin.9 Because S2SpecT2 outperformed
S2UT, the two-pass decoding was the main fac-
tor of the improvements although it was comple-
mentary to targeting discrete units. Moreover, the
two-pass direct models (A15, A20) outperformed
a cascaded system (A6).

Next, we pre-trained the speech encoder with
wav2vec2.0 (A12, A16, A19, A21).10 We con-
firmed that all the models benefited from the pre-
training, but the gain was small for S2SpecT.
Unlike when training the models from scratch,
S2SpecT2 gained the most and achieved the best
test ASR-BLEU, 58.3. To the best of our knowl-
edge, this is the new state-of-the-art S2ST result

9A15 predicts phonemes while A16 predicts subwords in
the first pass.

10We did not pre-train the text decoder with t-mBART be-
cause it was not helpful on this corpus. This is because Fisher
is a conversational domain, which is very different from text
data used for t-mBART pre-training. We could make the text
decoder pre-training effective by including conversational data
during t-mBART pre-training, which we leave future work.
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ID Model
ASR-BLEU (↑)

Avg.
High Mid Low

fr de ca es fa it ru zh pt nl tr et mn ar lv sl sv cy ta ja id

B0 Synthetic target♢ 91.1 84.6 88.4 92.0 88.6 91.7 89.5 94.0 77.8 93.1 90.6 92.7 89.3 92.4 94.2 94.8 94.9 94.1 92.0 90.6 95.3 92.6

Cascaded systems
B1 S2TT → TTS♢ 10.6 31.2 23.9 26.8 33.3 3.4 28.1 24.4 6.8 14.8 9.8 5.1 1.7 0.3 4.1 2.3 0.6 1.4 2.1 0.2 0.7 0.9
B2 + ASR pre-training 12.7 32.9 26.2 28.6 34.9 5.6 30.2 27.1 8.7 19.8 14.4 10.7 3.2 0.6 7.8 2.8 2.0 3.4 5.0 0.2 0.9 1.6
B3 S2TT → TTS 7.8 18.3 16.1 18.5 19.9 4.2 18.1 17.6 3.7 15.8 11.5 6.5 2.1 0.2 2.2 1.3 2.3 1.0 2.9 0.2 0.3 0.3
B4 + w2v-BERT + t-mBART 14.9 20.5 20.0 21.6 22.1 8.5 21.8 27.6 5.5 27.6 21.6 13.6 13.2 1.7 12.7 10.6 17.4 18.5 11.5 1.3 3.7 12.0

Direct speech-to-spectrogram systems
B5 Translatotron♢ 3.4 15.5 6.9 11.0 14.1 1.4 9.3 4.3 1.5 2.2 2.1 1.2 0.1 0.1 0.1 0.2 0.3 0.4 0.3 0.1 0.2 0.1
B6 S2SpecT 7.6 24.1 17.8 20.3 25.1 1.8 20.3 18.7 2.5 9.8 9.0 3.8 0.5 0.1 0.5 1.2 0.8 1.3 0.7 0.1 0.2 0.2
B7 + S2TT pre-training 9.6 26.3 20.1 21.8 27.5 6.2 22.3 21.9 5.7 12.6 11.4 9.1 2.7 0.3 4.3 1.3 1.8 1.5 4.0 0.3 0.6 0.7
B8 + w2v-BERT 16.6 31.8 27.3 28.4 34.4 8.9 30.0 34.1 5.0 31.6 23.3 11.5 10.0 0.3 10.8 14.4 14.5 22.4 4.8 0.1 0.6 5.3

B9 Translatotron2♢ 8.7 28.3 19.7 23.5 30.1 2.4 24.1 19.6 4.5 12.5 6.5 3.8 0.6 0.2 1.7 1.5 0.4 1.3 0.9 0.1 0.5 0.4
B10 + Transformer decoder♠ 10.1 29.5 22.3 25.0 30.8 3.4 26.0 21.7 5.5 14.3 10.5 6.6 1.1 0.2 3.8 3.0 2.3 2.8 1.6 0.1 0.5 0.8
B11 + S2TT pre-training♢ 12.0 32.4 24.8 28.2 33.4 6.3 28.6 23.2 6.3 18.3 15.8 10.6 2.5 0.4 5.4 2.3 3.1 3.2 4.5 0.1 1.0 1.0
B12 + w2v-BERT♠ 17.9 33.6 30.6 30.1 35.9 6.0 32.5 38.9 5.2 31.9 29.3 9.2 16.0 0.2 10.4 15.6 17.8 25.9 4.2 0.3 0.9 1.5
B13 + mSLAM♠ 19.3 33.9 31.5 30.6 36.8 7.2 33.7 41.6 6.4 34.1 31.1 16.1 17.1 0.3 10.0 14.4 22.9 28.4 5.4 0.2 1.3 2.5
B14 ++ TTS augmentation♠ 22.0 34.5 32.0 30.7 37.1 8.2 33.8 42.6 10.6 34.0 31.8 23.9 17.2 1.1 22.4 15.6 23.3 31.1 7.6 0.6 5.5 18.5

B15 S2SpecT2 11.3 31.7 25.9 27.4 32.8 4.6 28.4 27.5 7.0 18.0 15.4 9.2 1.7 0.3 1.7 2.5 1.3 1.8 1.9 0.2 0.7 1.0
B16 + S2TT pre-training 13.1 31.9 26.1 28.0 33.3 7.9 28.8 28.6 8.5 20.3 17.8 13.9 4.6 0.6 6.4 2.6 4.8 2.4 7.4 0.4 0.6 1.2
B17 + w2v-BERT + t-mBART 18.6 32.5 30.9 31.0 34.1 13.9 30.7 36.9 10.6 31.2 26.1 18.4 11.6 1.9 14.7 10.4 15.1 16.2 10.6 1.1 3.9 9.7

Direct speech-to-unit systems
B18 S2UT 9.1 28.3 21.7 24.6 29.0 2.5 25.2 21.7 4.0 11.1 10.2 4.9 0.8 0.1 0.9 1.8 1.4 1.2 0.5 0.1 0.4 0.7
B19 + S2TT pre-training 11.4 29.4 23.3 25.7 30.5 7.4 26.5 24.6 6.9 16.7 15.6 10.6 3.3 0.5 4.6 2.2 2.6 1.4 4.7 0.3 0.9 1.0
B20 + w2v-BERT + u-mBART 20.8 32.7 28.5 30.6 34.8 12.8 31.7 37.5 7.6 37.2 27.2 18.2 15.0 1.8 18.6 18.5 20.5 29.8 13.1 1.3 4.0 16.2

B21 UnitY 12.0 30.9 25.5 27.2 32.3 5.1 28.2 28.2 7.2 20.3 17.1 9.1 2.5 0.4 2.2 3.7 6.1 1.8 2.3 0.1 1.2 1.0
B22 + S2TT pre-training 13.0 32.1 26.8 29.1 33.4 8.3 29.4 27.6 7.9 20.3 19.7 12.1 3.5 0.6 4.6 2.5 4.9 1.9 5.8 0.3 1.0 1.0
B23 + w2v-BERT + t-mBART 24.5 35.2 32.6 33.3 37.2 14.9 35.0 42.3 10.8 41.7 32.5 22.2 18.7 2.7 24.6 21.3 26.6 34.1 16.5 1.8 8.0 22.9

Table 10: Full results of ASR-BLEU on CVSS-C corpus. ♢Results from (Jia et al., 2022c), ♠Results from (Jia
et al., 2022a). We use the S2TT model in B3 for S2TT pre-training. t-mBART and u-mBART stand for text-based
mBART and unit-based mBART, respectively. All w2v-BERT and mSLAM encoders have 0.6B parameters.

ID Model Initialization of
first-pass decoder

(ASR-)BLEU (↑)

Text Speech

F1

UnitY

Random 34.8 30.7
F2 t-mBART 38.3 33.2
F3 Unsupervised MT 38.2 33.2
F4 Supervised MT1 36.6 33.0
F5 Supervised MT2 37.5 33.3
F6 S2TT (F7) 37.8 32.5

F7 S2TT t-mBART 38.0 –

Table 11: Results of pre-training strategies for the first-
pass decoder in UnitY on multi-domain Es→En dev set

on this corpus. However, UnitY has an advantage
of decoding efficiency over S2SpecT2 as discussed
in §4.3. All direct models (A16, A19, A21) ex-
cept for S2SpecT outperformed the corresponding
cascaded system (A7).

CVSS-C We show the full results of each lan-
guage direction on CVSS-C in Table 10.

Pre-training first-pass decoder We explored a
better pre-training strategy for the first-pass text
decoder in UnitY. We investigated pre-training it
with an MT model trained with bitext data from
scratch (Supervised MT1, Supervised MT2). Super-
vised MT1 used CCMatrix (Schwenk et al., 2021)
while Supervised MT2 is the MT model in the

cascaded system11. Moreover, we fine-tuned the
t-mBART model to the MT task in an unsupervised
MT way via online back translation (Liu et al.,
2020) on CC100 (unsupervised MT). Furthermore,
we studied initializing the speech encoder and the
text decoder with a separate direct S2TT model.
The S2TT model was fine-tuned from wav2vec2.0
and t-mBART models on the same corpus. After
the initialization, we fine-tuned the whole param-
eters of UnitY except FFN layers in the first-pass
text decoder (S2TT).

The results in Table 11 showed that pre-training
the first-pass decoder with the vanilla t-mBART
(F2) or the unsupervised MT model (F3) was the
most effective. Pre-training with supervised MT
models (F4, F5) did not improve performance,
even for the first pass. This is consistent with a find-
ing in Jia et al. (2022a) although they pre-train the
first-pass phoneme decoder of Translatotron2 with
a phoneme-based supervised MT model. There-
fore, leveraging a separate MT system is effective
for generating weak supervisions (Popuri et al.,
2022) rather than parameter initialization. Pre-
training a part of UnitY with an independent S2TT
model (F7) was not helpful either. Surprisingly, the
BLEU score from the text decoder in UnitY was

11We used OpenSubtitle2018, UNCorpus, EUBookshop v2,
Europarl v10, Wikipedia v1.0, and TED2020 v1 for training.
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better than that of F7. Therefore, training signals
from the unit decoder never affect the text decoder.

Ablation study In Table 12, we show full results
of the ablation study presented in §5.1. An auxil-
iary CTC objective for the unit decoder, as used
for the S2UT model (Lee et al., 2022a), was not
helpful for UnitY (D10). This was because the
introduction of the first-pass decoder already eased
for the second-pass decoder to learn monotonic
alignments.

Output unit for first-pass decoder In Table 13,
we show full results of the comparison of the output
units for the first-pass decoder in two-pass direct
S2ST models presented in §5.2. The results showed
that the subword unit was the best for UnitY re-
gardless of pre-training the speech encoder with
wav2vec2.0. In contrast, in the case of S2SpecT2,
the best output unit differed according to whether
we pre-trained the speech encoder or not. The
phoneme unit was best when training the model
from scratch (E1) while the subword unit was best
when pre-training the encoder (E3’). However,
predicting subwords in the first pass led to the best
BLEU score for the text output in all the settings.

ASR-chrF Following a finding that ASR-chrF is
a more robust evaluation metric than ASR-BLEU
in Salesky et al. (2021), we also calculated ASR-
chrF on Fisher, CVSS-C, and multi-domain corpora
in Table 14, Table 15, and Table 16, respectively.
Overall, we confirmed the similar trends to ASR-
BLEU.

I.1 Human evaluation

Finally, we conducted an audio-only human evalua-
tion to assess the translation quality while removing
the necessity of ASR systems. We adopted cross-
lingual semantic textual similarity (XSTS) (Licht
et al., 2022) and percent acceptable translations.

Mean translation score We used XSTS, which
emphasizes adequacy rather than fluency, as the
most appropriate human evaluation protocol. An-
notators judged the semantic similarity between
the source and the translated sentence. As a result,
whether a translation conveys the original meaning
is more important than whether it has perfect syn-
tax, wording, and grammar. Annotators assigned
each item a score from one to five. A score of
no less than three means the meaning is at least
“mostly equivalent.” We treat a translation that re-

Figure 6: Results of human evaluation on multi-domain
Es→En corpus

ceived a score of no less than three as having “ac-
ceptable” quality. Annotators need to be bilingual,
as they compare the source and translated sentences
directly. Since XSTS is an audio-only evaluation
metric, it also considers the audio quality.

For each system, we computed the average
XSTS score across items. We set a target of over
four average XSTS for systems where we expect
or desire high-quality translations. We set a target
of over three average XSTS for systems where we
expect a medium level of quality.

Percent acceptable translations For each sys-
tem, we also computed the percentage of items that
received an XSTS score of three or above. We
refer to this as the percent acceptable translations.
This metric helps us understand what percentage of
translations produced by the system can preserve
meaning adequately and what percentage has very
low and unacceptable quality. This metric tends
to be more stable and less sensitive to annotator
agreement than the average XSTS score.

Evaluation setting We used the mTEDx test set
(989 samples) and generated the target audio from
the S2ST systems. Moreover, we randomly sam-
pled 495 samples and generated the target audio
from the reference translation followed by TTS.
The reference translations serve as a reference point
and a ceiling against which to compare our systems.
Three bilingual annotators evaluated each item and
assigned it a score from one to five. The median
score was taken per item.

Results The results are presented in Figure 6.12

We confirmed that UnitY consistently outper-
formed the cascaded and S2UT models in both
metrics.

12The models used here are early versions and slightly dif-
ferent from the models in Table 2.
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ID Model

(ASR-)BLEU (↑)

Fisher Multi-domain
Es→En

Text Speech Text Speech

D1 S2SpecT2 54.4 49.2 35.0 30.8
D2 + w/o T2S encoder 54.3 17.4 34.9 25.0
D3 + w/o R-Drop 51.6 45.9 34.8 30.3

D5 UnitY 55.4 50.5 38.3 33.2
D6 + w/o T2U encoder 55.0 49.1 38.1 30.7
D7 + w/o R-Drop 53.2 48.2 37.7 32.1
D8 + Cross-attention to speech encoder (sequential) 55.4 50.3 38.2 33.2
D9 + Cross-attention to speech encoder (parallel) 55.3 50.4 38.1 33.1
D10 + CTC on unit decoder 55.3 50.2 n/a n/a

Table 12: Ablation study for two-pass direct S2ST models on Fisher Es→En and multi-domain Es→En dev sets.
The first-pass decoder in all the models on Fisher is initialized randomly while it is pre-trained with t-mBART on
multi-domain corpora.

ID Encoder
pre-training Model

Output
unit

(ASR-)BLEU (↑)

Fisher Multi-domain
Es→En

Text Speech Text Speech

E1
S2SpecT2

Phoneme – 50.4 – –
E2 Character 54.0 50.2 – –
E3 Subword 54.4 49.2 – –

E1’
✓ S2SpecT2

Phoneme – 58.1 – 29.4
E2’ Character 61.5 58.1 31.7 28.9
E3’ Subword 62.0 58.4 33.0 30.0

E4
UnitY

Phoneme – 49.8 – –
E5 Character 53.7 48.9 – –
E6 Subword 55.4 50.5 – –

E4’
✓ UnitY

Phoneme – 54.7 – 27.8
E5’ Character 60.9 55.0 33.2 29.6
E6’ Subword 61.2 55.1 34.1 30.1

Table 13: Results of output units for the first-pass decoder in two-pass direct S2ST models on Fisher Es→En and
multi-domain Es→En dev sets. We use 1k and 2k units for the subword vocabulary on Fisher and multi-domain
Es→En corpora, respectively. The first-pass decoder in all the models is initialized randomly.
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ID Model Encoder
ASR-chrF (↑)

dev dev2 test

Cascaded systems
A6

S2TT → TTS
Conformer 0.642 0.652 0.649

A7 Conformer wav2vec2.0 0.671 0.684 0.680

Direct speech-to-spectrogram systems
A11

S2SpecT
Conformer 0.612 0.621 0.618

A12 Conformer wav2vec2.0 0.638 0.655 0.649

A15
S2SpecT2

Conformer 0.649 0.661 0.657
A16 Conformer wav2vec2.0 0.695 0.708 0.702

Direct speech-to-unit systems
A18

S2UT
Conformer 0.626 0.642 0.643

A19 Conformer wav2vec2.0 0.677 0.688 0.685

A20
UnitY

Conformer 0.646 0.658 0.658
A21 Conformer wav2vec2.0 0.678 0.692 0.687

Table 14: ASR-chrF on Fisher Es→En corpus. The decoder in all the models is initialized randomly. S2SpecT2 is
our improved version of Translatotron2.

ID Model
ASR-chrF (↑)

Avg. High Mid Low

Cascaded systems
B3 S2TT → TTS 0.304 0.504 0.384 0.204
B4 + w2v-BERT + t-mBART 0.420 0.533 0.463 0.365

Direct speech-to-spectrogram systems
B6 S2SpecT 0.273 0.498 0.328 0.175
B7 + S2TT pre-training 0.311 0.521 0.377 0.213
B8 + w2v-BERT 0.395 0.582 0.461 0.306

B15 S2SpecT2 0.306 0.560 0.389 0.187
B16 + S2TT pre-training 0.336 0.566 0.417 0.226
B17 + w2v-BERT + t-mBART 0.419 0.592 0.492 0.331

Direct speech-to-unit systems
B18 S2UT 0.294 0.536 0.356 0.188
B19 + S2TT pre-training 0.329 0.550 0.405 0.224
B20 + w2v-BERT + u-mBART 0.445 0.588 0.495 0.377

B21 UnitY 0.312 0.564 0.396 0.192
B22 + S2TT pre-training 0.333 0.572 0.415 0.220
B23 + w2v-BERT + t-mBART 0.474 0.607 0.521 0.410

Table 15: ASR-chrF on CVSS-C corpus. We use the S2TT model in B3 for S2TT pre-training. t-mBART and
u-mBART stand for text-based mBART and unit-based mBART, respectively. All w2v-BERT encoders have 0.6B
parameters.

ID Model
ASR-chrF (↑)

En→Es Es→En

Europarl-ST MuST-C Avg. CoVoST-2 Europarl-ST mTEDx Avg.

Cascaded systems
C1’ ASR→MT→TTS 0.634 0.587 0.611 0.611 0.618 0.569 0.599
C2’ S2TT→TTS 0.639 0.613 0.626 0.642 0.620 0.588 0.620

Direct speech-to-spectrogram systems
C3 S2SpecT2 (6L→6L) 0.634 0.606 0.620 0.642 0.484 0.578 0.568
C4 + t-mBART (12L→6L) 0.642 0.611 0.627 0.642 0.485 0.583 0.570

Direct speech-to-unit systems
C5’ S2UT + u-mBART 0.610 0.615 0.613 0.621 0.587 0.568 0.592

C6 UnitY (6L→6L) 0.643 0.618 0.631 0.628 0.591 0.575 0.598
C7 + t-mBART (12L→2L) 0.641 0.622 0.632 0.633 0.606 0.583 0.607

Table 16: ASR-chrF on multi-domain En↔Es. The encoder in all the models is pre-trained with wav2vec2.0.
t-mBART and u-mBART stand for text-based mBART and unit-based mBART, respectively. N1stL→ N2ndL stands
for an N1st-layer first-pass decoder with an N2nd-layer second-pass decoder.
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