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Abstract

Mathematical reasoning is a fundamental as-
pect of human intelligence and is applicable in
various fields, including science, engineering,
finance, and everyday life. The development of
artificial intelligence (AI) systems capable of
solving math problems and proving theorems
in language has garnered significant interest
in the fields of machine learning and natural
language processing. For example, mathemat-
ics serves as a testbed for aspects of reasoning
that are challenging for powerful deep learning
models, driving new algorithmic and model-
ing advances. On the other hand, recent ad-
vances in large-scale neural language models
have opened up new benchmarks and oppor-
tunities to use deep learning for mathematical
reasoning. In this survey paper, we review the
key tasks, datasets, and methods at the inter-
section of mathematical reasoning and deep
learning over the past decade. We also evaluate
existing benchmarks and methods, and discuss
future research directions in this domain.

1 Introduction

“The study of mathematics, like the Nile, begins in
minuteness but ends in magnificence.”

— Charles Caleb Colton, English writer

Mathematical reasoning is a key aspect of hu-
man intelligence that enables us to comprehend and
make decisions based on numerical data and lan-
guage. It is applicable in various fields, including
science, engineering, finance, and everyday life,
and encompasses a range of abilities, from basic
skills such as pattern recognition and numerical
operations to more advanced skills like problem-
solving, logical reasoning, and abstract thinking.
The development of artificial intelligence (AI) sys-
tems capable of solving math problems and proving
theorems in language has been a long-standing fo-
cus of research in the fields of machine learning and

∗denotes co-senior authors.

natural language processing (NLP), dating back to
the 1960s (Feigenbaum et al., 1963; Bobrow, 1964).
In recent years, there has been a surge of interest
in this area: for instance, the number of papers
has grown from approximately 10 in 2018 to 66 in
2022 (see Figure 3 in the Appendix).

As deep learning continues to revolutionize NLP
tasks such as question answering and machine
translation (Sutskever et al., 2014; Devlin et al.,
2019), it has also made significant strides in the
field of mathematical reasoning (Wang et al., 2017;
Yang and Deng, 2019; Geva et al., 2020; Wei et al.,
2022). However, despite the impressive capabilities
of these models, there is still a lack of a clear tax-
onomy of the different types of mathematical rea-
soning tasks and the specific capabilities required
of deep learning models to solve them.

Previous literature has been limited to the dis-
cussion of specific aspects, such as solving math
word problems (Bhattacharya, 2017; Zhang et al.,
2019; Ughade and Kumbhar, 2019), representing
numbers representation (Thawani et al., 2021), or
solving informal problems (Meadows and Freitas,
2022). Additionally, with the recent advancements
in large language models like GPT-3 (Brown et al.,
2020), there is a growing need to understand the
capabilities and limitations of these models in the
context of mathematical reasoning. This is where
a comprehensive survey of this rapidly advanc-
ing domain becomes crucial, as it can provide an
overview of the current state and limitations of the
field, and indicate further research areas.

In this paper, we survey over 180 papers from the
NLP and AI communities in the field of deep learn-
ing for mathematical reasoning. We study various
types of mathematical reasoning problems, such
as math word problems, theorem proving, geome-
try problem solving, math question answering, and
other quantitative problems (§2, §A). Additionally,
we explore different deep learning architectures for
mathematical reasoning, including neural networks
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Tasks and
Datasets (§2)

Math Word Problem
Solving (§A.1)

Textual E.g., MathQA (Amini et al., 2019), SVAMP (Patel et al., 2021)

Multimodal E.g., IconQA (Lu et al., 2021b), TabMWP (Lu et al., 2022b)

Theorem Proving (§A.2)

Formal E.g., CoqGym (Yang and Deng, 2019)

Informal E.g., NaturalProofs (Welleck et al., 2021)

Formal + Informal E.g., miniF2F+informal (Jiang et al., 2022a)

Geometry Problem
Solving (§A.3)

Without Annotations E.g., GEOS (Seo et al., 2015), GEOS++ (Sachan et al., 2017)

With Annotations E.g., Geometry3K (Lu et al., 2021a), UniGeo (Chen et al., 2022a)

Math Question
Answering (§A.4)

Single Benchmark E.g., DROP (Dua et al., 2019), Mathematics (Saxton et al., 2020)

Unified Benchmark E.g., Lila (Mishra et al., 2022a), TheoremQA (Chen et al., 2023)

Other Quantitative
Problems (§A.5)

Diagram E.g., FigureQA (Kahou et al., 2018), DVQA (Kafle et al., 2018)

Finance E.g., ConvFinQA (Chen et al., 2022c)

Science E.g., ScienceQA (Lu et al., 2022a)

Programming E.g., P3 (Schuster et al., 2021)

Deep Learning
Methods

Neural Networks (§3)

Seq2Seq-based (§3.1) E.g., DNS (Wang et al., 2017), AnsRat (Ling et al., 2017)

Graph-based (§3.2) E.g., GTS (Xie and Sun, 2019), Graph2Tree (Li et al., 2020b)

Attention-based (§3.3) E.g., Math-EN (Wang et al., 2018a), GROUP-ATT (Li et al., 2019)

Other (§3.4) E.g., CNNTP (Loos et al., 2017), MathDQN (Wang et al., 2018b)

Pre-trained Language
Models (§4)

Self-Supervised Learning (§4.1) E.g., GenBERT (Geva et al., 2020), Minerva (Lewkowycz et al., 2022)

Task-specific Fine-tuning (§4.2) E.g., Scratchpad (Nye et al., 2021), Bhaskara (Mishra et al., 2022a)

In-context Learning (§5)
Example Selection (§5.1) E.g., Few-shot-CoT (Wei et al., 2022), PromptPG (Lu et al., 2022b)

High-quality Chains (§5.2) E.g., Self-Consistency (Wang et al., 2023), Least-to-most (Zhou et al., 2023)

Figure 1: Taxonomy of deep learning for mathematical reasoning. The associated tasks are elaborated in §2, with a
comprehensive dataset list found in §A. Deep learning methods are further discussed in §3, §4, and §5.

(§3), pre-trained language models (§4), and recent
in-context learning for large language models (§5).

We also analyze existing benchmarks and find
that there is less focus on multi-modal and low-
resource settings (§6.1). Our evidence-based stud-
ies suggest that current numeracy representations
are insufficient and deep learning methods are in-
consistent for mathematical reasoning (§6.2). Fol-
lowing this, we suggest future research directions
related to generalization and robustness, trustwor-
thy reasoning, learning from feedback, and multi-
modal mathematical reasoning (§7).

2 Mathematical Reasoning Tasks

In this section, we briefly introduce different tasks
for mathematical reasoning. A detailed summary
and discussion of commonly used datasets can be
found in Table 7 and Appendix A.
Math Word Problem Solving. Developing algo-
rithms to automatically solve math word problems
(MWPs) has been of interest to NLP researchers for
decades (Feigenbaum et al., 1963; Bobrow, 1964).
An example of a MWP is shown in Table 1. A ques-
tion involves four basic arithmetic operations with
single or multiple operation steps. The challenge
posed by MWPs lies in the need for language com-

Question: Bod has 2 apples and David has 5 apples.
How many apples do they have in total?

Rationale: x = 2 + 5

Solution: 7

Table 1: A typical math word problem.

prehension, semantic parsing, and the application
of multiple mathematical reasoning skills.
Theorem Proving. Automating theorem proving
is a long-standing challenge in AI (Newell et al.,
1957; Feigenbaum et al., 1963). The problem is
to demonstrate the truth of a mathematical claim
(a theorem) through a sequence of logical argu-
ments (a proof ). Theorem proving tests various
skills, such as choosing effective multi-step strate-
gies, using background knowledge, and performing
symbolic manipulations.
Geometry Problem Solving. Automated geome-
try problem solving (GPS) is also a long-standing
mathematical reasoning task (Gelernter et al., 1960;
Wen-Tsun, 1986). As shown in Figure 2, a geom-
etry problem consists of a textual description and
a diagram. The multimodal inputs describe the
entities, attributes, and relationships of geometric
elements, and the goal is to find the numeric solu-
tion to an unknown variable.
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A D B

C
Question: In triangle ABC, AD = 3 and 
BD = 14. Find CD.
Choices: (A) 6.0 (B) 6.5 (C) 7.0 (D) 8.5
Answer: (B) 6.5

Figure 2: An example of geometry problems.

Math Question Answering. There is a wide range
of question answering (QA) benchmarks that center
around mathematical reasoning, which we refer to
as math question answering (MathQA). For exam-
ple, DROP (Dua et al., 2019) is a MathQA dataset
that requires discrete reasoning to answer questions
such as “Which kicker kicked the most field goals?”
over the content of paragraphs.

3 Neural Networks for Mathematical
Reasoning

Neural networks have become a popular tool in
the field of mathematical reasoning, mirroring their
success in NLP. In recent years, a number of dif-
ferent neural network architectures have been pro-
posed for mathematical reasoning tasks, including
Seq2Seq-based networks, graph-based networks,
and attention-based networks. These methods are
outlined in more detail in Table 8 in the Appendix.

3.1 Seq2Seq-based Networks for Math

Sequence-to-sequence (Seq2Seq) (Sutskever et al.,
2014) neural networks have been successfully ap-
plied to mathematical reasoning tasks, such as math
word problem solving (Wang et al., 2017), theorem
proving (Yang and Deng, 2019), geometry prob-
lem solving (Robaidek et al., 2018), and math ques-
tion answering (Tafjord et al., 2019). A Seq2Seq
model uses an encoder-decoder architecture and
usually formalizes mathematical reasoning as a se-
quence generation task. The basic idea behind this
approach is to map an input sequence (e.g. a math-
ematical problem) to an output sequence (e.g. an
equation, program, and proof). Common encoders
and decoders include Long Short Term Memory
network (LSTM) (Hochreiter and Schmidhuber,
1997), Gated Recurrent Unit (GRU) (Cho et al.,
2014), and their bidirectional variants: BiLSTM
and BiGRU. A large amount of work has shown the
performance advantage of Seq2Seq models over
previous statistical learning approaches (Ling et al.,
2017; Wang et al., 2018a; Huang et al., 2018; Wang
et al., 2019; Li et al., 2019).

3.2 Graph-based Networks for Math

Seq2Seq approaches show their advantages of gen-
erating mathematical expressions without relying
on hand-crafted features. It is noteworthy that
mathematical expressions can be represented as
tree-based structures, such as abstract syntax trees
(ASTs) and graph-based structures, which capture
the structural information in the expressions. How-
ever, Seq2Seq methods do not explicitly this im-
portant information. To address this limitation,
graph-based neural networks have been developed
to explicitly model the structure within expres-
sions. Sequence-to-tree (Seq2Tree) models explic-
itly model the tree structure when encoding the
output sequences (Xie and Sun, 2019; Wu et al.,
2020; Zaporojets et al., 2021; Qin et al., 2021).
For example, Liu et al. (2019a) devise a Seq2Tree
model to better use information from an equation’s
AST. Seq2DAG (Cao et al., 2021), instead, applies
a sequence-to-graph (Seq2Graph) framework when
generating the equations since the graph decoder is
able to extract complex relationships among mul-
tiple variables. The graph-based information can
also be embedded when encoding the input mathe-
matical sequences (Zhang et al., 2020b; Shen and
Jin, 2020; Li et al., 2020b; Wu et al., 2021a).

3.3 Attention-based Networks for Math

The attention mechanism has been successfully ap-
plied to NLP (Bahdanau et al., 2015) and vision
problems (Xu et al., 2015; Woo et al., 2018), taking
into account the hidden vectors of the inputs dur-
ing the decoding processing. Recently, researchers
have been exploring its usefulness in mathematical
reasoning tasks, as it can be used to identify the
most important relationships between mathemati-
cal concepts. For instance, MATH-EN (Wang et al.,
2018a) is a math word problem solver which ben-
efits from long-distance dependency information
learned by self-attention. Attention-based meth-
ods have also been applied to other mathematical
reasoning tasks such as geometry problems solv-
ing (Robaidek et al., 2018; Chen et al., 2021a) and
theorem proving (Yang and Deng, 2019). Various
attention mechanisms have been studied to extract
better representations, such as Group-ATT (Li et al.,
2019) which uses different multi-head attention to
extract various types of MWP features, and graph
attention which is applied to extract knowledge-
aware information in (Wu et al., 2020).
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3.4 Other Neural Networks for Math

Deep learning approaches to mathematical rea-
soning tasks can also make use of other neural
networks, such as convolutional neural networks
(CNN) and multimodal networks. Some work en-
codes the input text using a convolutional neural
network architecture, giving the model the ability
to capture long-term relationships between sym-
bols in the input (Gehring et al., 2017; Wang et al.,
2018a,a; Robaidek et al., 2018; Alemi et al., 2016;
Loos et al., 2017). For example, the first applica-
tion of deep neural networks for theorem proving
is proposed in (Alemi et al., 2016), which relies on
convolutional networks for premise selection.

Multimodal mathematical reasoning tasks, such
as geometry problem solving and diagram-based
mathematical reasoning, are formalized as visual
question answer (VQA) problems (Kafle et al.,
2018; Chen et al., 2021a; Lu et al., 2021b). In this
domain, visual inputs are encoded using ResNet
(He et al., 2016) or Faster-RCNN (Ren et al., 2015),
while textual representations are obtained via GRU
or LTSM. Subsequently, the joint representation is
learned using multimodal fusion models, such as
BAN (Kim et al., 2018), FiLM (Perez et al., 2018),
and DAFA (Gao et al., 2019).

Other deep neural network structures can also be
used in mathematical reasoning. A Graph Neural
Network (GNN) is employed for geometry prob-
lem parsing in Zhang et al. (2022), taking advan-
tage of its success in spatial reasoning. WaveNet
has been applied to theorem proving (Loos et al.,
2017; Bansal et al., 2019), due to its ability to ad-
dress longitudinal time-series data. Furthermore,
Transformers are found to outperform GRU in gen-
erating mathematical equations in DDT (Meng and
Rumshisky, 2019). Finally, MathDQN (Wang et al.,
2018b) is the first work to explore reinforcement
learning for math word problem solving, taking
advantage of its strong search capabilities.

4 Pre-trained Language Models for
Mathematical Reasoning

Pre-trained language models (Devlin et al., 2019;
Radford et al., 2020; Brown et al., 2020) have
demonstrated remarkable performance gains on
a wide range of NLP tasks. By pre-training on
a large corpus of text, the models learn valuable
world knowledge (Guu et al., 2020), which could
be applied to downstream tasks. Similar ideas can
be applied to math-related problems, and previous

work has shown the promising performance of pre-
trained language models in answering math word
problems (Kim et al., 2020), assisting with theorem
proving (Wu et al., 2022b), as well as solving other
mathematical tasks (Charton, 2022).

However, though large language models excel
in modeling natural language, there are several
challenges to using them for mathematical reason-
ing. First, pre-trained language models are not
specifically trained on mathematical data. This
likely contributes to them being less proficient in
math-related tasks compared to natural language
tasks. There is also less mathematical or scien-
tific data available for large-scale pre-training com-
pared to text data. Second, the size of pre-trained
models continues to grow, making it expensive
to train the entire model from scratch for specific
downstream tasks. Additionally, downstream tasks
may deal with different input formats or modali-
ties, such as structured tables (Zhao et al., 2022)
or diagrams (Lu et al., 2021b). To address these
challenges, researchers have to adjust pre-trained
models by finetuning them on downstream tasks or
adapting the neural architectures.

4.1 Self-Supervised Learning for Math

Self-supervised learning is a machine learning ap-
proach in which an algorithm learns to perform a
task without being explicitly provided with labeled
training data. Table 2 provides a list of language
models pre-trained with self-supervised tasks for
mathematical reasoning.
Model scale. There is a clear trend that pre-trained
language models have become increasingly larger
in the past few years (Devlin et al., 2019; Lewis
et al., 2020; Raffel et al., 2020; Radford et al., 2020;
Brown et al., 2020). A recent study (Liang et al.,
2022a) shows that model scale within a model fam-
ily reliably predicts model accuracy. The study
also mentions an interesting thresholding effect:
“all models that win head-to-head model compar-
isons for accuracy at a rate well above chance are
at least 50B parameters”. A similar size-growing
trend can be observed in the field of mathemat-
ical reasoning with pre-trained language models.
For example, MWP-BERT (Liang et al., 2022b)
uses a backbone of BERT (110M) (Devlin et al.,
2019) and RoBERTa (123M) (Liu et al., 2019b)
for Math Word Problems. Most recently, Min-
erva (Lewkowycz et al., 2022), which is based on
the PaLM (Chowdhery et al., 2022) pre-trained
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Paper Backbone Size Corpus Pre-training task

GPT-f (Polu and Sutskever, 2020) Transformer (2017) 774M Math Causal language modeling
LISA (Jiang et al., 2021) Transformer (2017) 163M Math Causal language modeling
MATH-PLM (Hendrycks et al., 2021b) GPT-2 (2020) 1.5B Math Causal language modeling
MWP-BERT (Liang et al., 2022b) RoBERTa (2019b) 123M Math 8 numeracy augmented tasks
TaPEx (Liu et al., 2022b) BART (2020) 406M SQL Query result generation
HTPS (Lample et al., 2022) Transformer (2017) 600M Math Masked Seq2Seq modeling
Thor (Jiang et al., 2022b) Transformer (2017) 700M Github, arXiv Causal language modeling
PACT (Han et al., 2022) Transformer (2017) 837M Math Masked/Causal language modeling
Minerva (Lewkowycz et al., 2022) PaLM (2022) 540B Science & Math Causal language modeling

GenBERT (Geva et al., 2020) BERT (2019) 110M Number, Text Masked/Causal language modeling
NF-NSM (Feng et al., 2021) RoBERTa (2019b) 110M Number Number prediction
LIME (Wu et al., 2021d) Transformer (2017) 11B Math Causal language modeling
Set (Wu et al., 2022c) T5 (2020) 60M Math Unique token generation

Table 2: Comparison of pre-training language models for mathematical reasoning.

language model, has a size up to 540B parameters.

Pre-training corpus. There are generally two
types of pre-training corpus for mathematical lan-
guage models. (i) Curated datasets from openly
accessible sources. For example, Hendrycks et al.
(2021b) present the first large-scale mathematics
pre-training dataset with step-by-step solutions
in natural language and LATEX, called the Auxil-
iary Mathematics Problems and Solutions (AMPS).
AMPS consists of Khan Academy and Mathemat-
ica data. Minerva (Lewkowycz et al., 2022) col-
lects a high-quality dataset containing scientific and
mathematical data, which contains 38.5B tokens
from webpages filtered for mathematical content
and from papers submitted to the arXiv preprint
server. Thor (Jiang et al., 2022b) pre-trains a lan-
guage model on the GitHub + arXiv subsets of
The Pile (Gao et al., 2020). (ii) Synthetic datasets
based on templates or interaction with engines. Re-
cent work (Wu et al., 2021d; Krishna et al., 2021;
Ri and Tsuruoka, 2022; Anderson and Farrell,
2022; Wu et al., 2022c) shows that pre-training on
data that is fully synthetically generated—synthetic
pre-training can actually provide substantial gains.
Representative work includes TaPEX (Liu et al.,
2022b), which obtains a pre-training corpus by au-
tomatically synthesizing executable SQL queries
and their execution outputs. LISA (Jiang et al.,
2021) extracts lemmas and theorems by interacting
with the Isabelle standard library and the Archive of
Formal Proofs. GenBERT (Geva et al., 2020) gen-
erates numerical and textual pre-training datasets
based on manually crafted and extracted templates.

Pre-training tasks. General pre-training language
models have two typical self-supervised learning
tasks: (i) Masked Language Modeling (MLM),
where it randomly masks a portion of words in each
sequence to predict the outcome; (ii) Causal Lan-

Paper Backbone Task

EPT (2020) ALBERT (2019) MWP
Generate & Rank (2021) BART (2020) MWP
RPKHS (2021b) RoBERTa (2019b) MWP
PatchTRM (2021b) ResNet+BERT (2019) MWP
GSM8K-PLM (2021) GPT-3 (2020) MWP
BERT-TD+CL (2022b) BERT (2019) MWP
DeductReasoner (2022) RoBERTa (2019b) MWP
Self-Sampling (2023) GPT-Neo (2020) MWP
Bhaskara (2022a) GPT-Neo (2020) MWP

miniF2F-PLM (2022) GPT-f (2020) TP
NaturalProver (2022a) GPT-3 (2020) TP

Inter-GPS (2021a) BART (2020) GPS
UniGeo (2022a) VL-T5 (2021) GPS
DPE-NGS (2022) RoBERTa (2019b) GPS

Aristo (2020) RoBERTa (2019b) MathQA
FinQANet (2021c) RoBERTa (2019b) MathQA
TAGOP (2021) RoBERTa (2019b) MathQA
MT2Net (2022) RoBERTa (2019b) MathQA

Scratchpad (2021) Transformer (2017) Mixed
LAMT (2022) Transformer (2017) Mixed

Table 3: Finetuned pre-trained language models for
downstream mathematical reasoning tasks.

guage Modeling (CLM), where the model is trained
to predict the next token in a sequence of tokens.
Following the same paradigm, researchers pre-train
language models with MLM and CLM tasks on
mathematical or scientific corpora for downstream
tasks (Polu and Sutskever, 2020; Hendrycks et al.,
2021b; Han et al., 2022; Jiang et al., 2022b).

There is also recent work that designs cus-
tomized tasks to inject mathematical reasoning
capabilities into language models. For instance,
Liang et al. (2022b) pre-train language models with
a suite of 8 numeracy-augmented tasks with consid-
eration of reasoning logic and numerical properties.
LIME (Wu et al., 2021d) proposes synthetic pre-
training tasks to learn three reasoning primitives:
deduction, induction, and abduction before learn-
ing more complex reasoning skills, which also be
regarded as a form of curriculum learning.
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4.2 Task-specific Fine-tuning for Math

Task-specific fine-tuning is a technique to improve
the performance of a pre-trained language model
on a specific task. This is also a common prac-
tice when there is not enough data for training the
large models from scratch. As shown in Table 3,
existing work fine-tunes pre-trained language mod-
els on a variety of downstream tasks, such as math
word problems (Kim et al., 2020; Shen et al., 2021),
MathQA (Zhao et al., 2022), geometry problem
solving (Lu et al., 2021a), linear algebra (Charton,
2022), and theorem proving (Welleck et al., 2022a).
Apart from fine-tuning the model parameters, some
work also uses pre-trained language models as en-
coders and ensembles them with other modules for
downstream tasks (Lu et al., 2021b).

5 In-context Learning for Mathematical
Reasoning

Large language models (LLMs), such as GPT-
3 (Brown et al., 2020), have recently revolutionized
the field of natural language processing (NLP), es-
pecially on account of their powerful few-shot in-
context learning capabilities (Brown et al., 2020).
In-context Learning (ICL) enables LLMs to per-
form target tasks by providing some task examples
as conditions at inference time, without updating
model parameters (Radford et al., 2020; Brown
et al., 2020). ICL allows users to quickly build
models for new use cases without worrying about
fine-tuning and storing a large amount of new pa-
rameters for each task, so it is widely used in few-
shot settings nowadays (Min et al., 2022).

An in-context example typically contains an
input-output pair with some prompt words, e.g.,
Please select the largest number from the list. In-
put: [2, 4, 1, 5, 8]. Output: 8, and few-shot works
by giving multiple examples, and then a final in-
put example, where the model is expected to pre-
dict the output. However, such standard few-shot
promptings, in which the LLM is given in-context
examples of input–output pairs in front of test-time
examples, have not yet proved sufficient to achieve
high performance on challenging tasks such as
mathematical reasoning (Rae et al., 2021).

Chain-of-thought prompting (CoT) (Wei et al.,
2022) leverages intermediate natural language ra-
tionales as prompts to enable LLMs to first generate
reasoning chains and then predict an answer for
an input question. For example, a CoT prompt for
solving the math word problem could be

Question: Roger has 5 tennis balls. He
buys 2 more cans of tennis balls. Each
can has 3 tennis balls. Then, how many
tennis balls does Roger have now?
Answer: Roger started with 5 balls. 2
cans of 3 tennis balls each are 6 tennis
balls. 5 + 6 = 11. The answer is 11.

Apart from Kojima et al. (2022) showing that
LLMs are decent zero-shot reasoners when given
the “Let’s think step by step!” prompt, most of the
recent work has focused on how to improve chain-
of-thought reasoning under the few-shot setting.
This work is mainly divided into two parts, (i) se-
lecting better in-context examples and (ii) creating
better reasoning chains.

5.1 In-context Example Selection

Early chain-of-thought work randomly or heuris-
tically selects in-context examples. However, re-
cent studies have shown that this type of few-shot
learning can be highly unstable across different
selections of in-context examples (Rubin et al.,
2022; Liu et al., 2022a). Therefore, which in-
context reasoning examples make the most effec-
tive prompts is still an unknown problem in the
literature. To address the limitation, recent work
has investigated various methods to optimize the
in-context examples selection process (Rubin et al.,
2022; Zhang et al., 2023; Lu et al., 2022b; Yu et al.,
2023; Fu et al., 2023). For example, Rubin et al.
(2022) attempt to address this issue by retrieving
semantically similar examples. In addition, Fu
et al. (2023) propose complexity-based prompting,
which chooses examples with complex reasoning
chains, i.e., chains with more reasoning steps, as
the prompt. PromptPG (Lu et al., 2022b) learns to
select optimal in-context examples via reinforce-
ment learning (RL) from a candidate pool.

5.2 High-quality Reasoning Chains

Early chain of thought work (e.g., Wei et al. (2022))
mainly relies on a single human-annotated reason-
ing chain as a prompt. However, manually creating
reasoning chains has two disadvantages. First, as
tasks become more complex, current models may
not be sufficient to learn to perform all necessary
reasoning steps and cannot easily generalize to dif-
ferent tasks. Second, a single decoding process
is vulnerable to incorrect inference steps, leading
to an incorrect prediction as the final answer. To
address this limitation, recent studies mainly fo-
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Models
Engine ICL Rationale Rationale

Post method(best performed) source type source

Few-shot-CoT (Wei et al., 2022) PaLM (540B) Random Language Hand-crafted -
Self-Consistency-CoT (Wang et al., 2023) Codex (175B) Random Language Hand-crafted Self-consistency
Least-to-most CoT (Zhou et al., 2023) Codex (175B) Random Language Hand-crafted -
PromptPG-CoT (Lu et al., 2022b) GPT-3 (175B) RL Language Hand-crafted -
Retrieval-CoT (Zhang et al., 2023) GPT-3 (175B) Retrival Language Auto-generated -
Auto-CoT (Zhang et al., 2023) Codex (175B) Clustering Language Auto-generated -
Complexity-CoT (Fu et al., 2023) GPT-3 (175B) Complexity Language Hand-crafted Self-consistency
Few-shot-PoT (Chen et al., 2022b) GPT-3 (175B) Random Code Hand-crafted -

Table 4: In-context learning with large language models for mathematical reasoning. For GPT-3, all papers use the
text-davinci-002 version; for Codex, all papers use the code-davinci-002. RL is short for reinforcement learning.

cus on two aspects, (i) hand-crafting more complex
demonstrations, which we refer to as process-based
approaches (Zhou et al., 2023; Chen et al., 2022b),
(ii) leveraging ensemble-like methods, which we
refer to as outcome-based approaches (Wang et al.,
2023; Li et al., 2022a).

Process-based approaches aim to improve the
chain-of-thought reasoning quality, especially for
complex reasoning tasks. In least-to-most prompt-
ing (Zhou et al., 2023), the problem-solving pro-
cess is implemented through two-stage prompting:
(i) reducing a complex problem into a list of sub-
problems; (ii) solving these sub-problems sequen-
tially, so that solving a given sub-problem is fa-
cilitated by the answers to previously solved sub-
problems. Similarly, Khot et al. (2022) leverage
diverse decomposition structures and use differ-
ent prompts to answer each sub-question. Apart
from these multi-step reasoning methods, Chen
et al. (2022b); Gao et al. (2022) propose program-
of-thoughts (PoT), an alternative solution that uses
large language models to express the reasoning
process as a program. The computation is then
relegated to an external computer, which executes
the generated programs to derive the answer. A
more recent work, Chameleon (Lu et al., 2023),
integrates different tools to enhance the abilities of
LLMs for compositional reasoning.

Outcome-based approaches acknowledge the
potential incorrectness of an individual reason-
ing path, and instead use multiple reasoning
paths (Wang et al., 2023; Li et al., 2022a). Self-
consistency (Wang et al., 2023) generates a set of
reasoning paths by sampling from the language
model, and marginalizes out the reasoning paths
by choosing the most common answer. In addi-
tion to using sampling with a single prompt to pro-
duce multiple reasoning paths, Li et al. (2022a)
propose to introduce diverse prompts through “self-
teaching”, as a complementary solution to produce

a higher degree of diversity.

6 Discussion and Findings

6.1 Analysis of Benchmarks
The multi-modal setting is underexplored but
is gaining increasing attention. Most existing
benchmarks for mathematical reasoning have tar-
geted the textual-only modality. However, visual
elements can provide a rich source of quantitative
information, making multi-modal datasets bene-
ficial for reasoning over quantitative relations in
natural images (Lu et al., 2022a), abstract diagrams
(Lu et al., 2021b), figures (Kahou et al., 2018), and
charts (Kafle et al., 2018). Tables, which are com-
monly found in daily documents and contain hierar-
chically structured information, have also been the
focus of tasks that require quantitative reasoning
over textual and tabular context (Chen et al., 2021c;
Zhu et al., 2021; Zhao et al., 2022; Lu et al., 2022b).
In addition, recent datasets have been developed for
mathematical reasoning grounded on conversations
(Sun et al., 2019; Zhang et al., 2021; Chen et al.,
2022c), as well as reports (Chen et al., 2022c).

Pioneering work is emerging in the exploration
of low-resource settings. Despite the creation of
various datasets, mathematical reasoning in low-
resource settings remains largely under-explored.
Pioneering research has developed mathematical
reasoning benchmarks for financial (Chen et al.,
2021c; Zhu et al., 2021; Zhao et al., 2022) and
scientific domains (Lu et al., 2022a). Addition-
ally, there have been attempts to build non-English
datasets for Chinese (Wang et al., 2017; Qin et al.,
2020; Yu et al., 2021a) and Arabic (Alghamdi et al.,
2022) for mathematical reasoning.

Diverse rationale annotations have been widely
explored. Complex reasoning usually involves
multiple steps to arrive at the final answer. To
bridge this gap, datasets annotated with interme-
diate rationales such as logic forms (Tafjord et al.,
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T5 UnifiedQA GPT-3 GPT-3
(Large) (Large) (davinci-002) (davinci-003)

3 balls + 5 balls = ✗ 5 balls 8 balls 8 balls
23 balls + 145 balls = ✗ ✗ 58 balls 168 balls
23 balls + 1,855 balls = ✗ ✗ 2,878 balls 2,988 balls

Table 5: Language models struggle with large numbers.

2019; Lu et al., 2021a), programs (Amini et al.,
2019; Chen et al., 2021c,a; Cao and Xiao, 2022;
Chen et al., 2022a), and reasoning graphs (Zhang
et al., 2021) have been proposed to train models
for complex reasoning tasks. Python programs
are used as reasoning annotations in (Austin et al.,
2021; Mishra et al., 2022a) due to their enhanced
accessibility and readability. To imitate the rea-
soning process of a human, a more recent trend
is to annotate solutions in natural language (Ling
et al., 2017; Cobbe et al., 2021; Lu et al., 2022b;
Hendrycks et al., 2021b; Lu et al., 2022a).

6.2 Analysis of Deep Learning Methods

Is the current representation of numeracy suf-
ficient? The standard practice for deep learning
techniques is to treat numbers in the same way as
words. Early neural network methods create a vo-
cabulary that maps input words and numbers to
token IDs, resulting in less frequent numbers being
collapsed into an “UNK” token. Recent language
models use subword tokenization techniques (Wu
et al., 2016; Sennrich et al., 2016) to split numbers
into atomic tokens. Recent studies have shown
that these tokenization approaches are suboptimal
(Wallace et al., 2019; Lin et al., 2020; Zhang et al.,
2020d; Thawani et al., 2022).

Two numbers on the same or close number line
could have surface forms with no shared common
tokens. For example, a number like 1598 is tok-
enized as “15” and “98” in GPT-3, while another
format like 1, 598 is split as three different tokens:
“1”, “,”, and “598”. This lack of consistent represen-
tation can make it difficult for deep learning mod-
els to effectively process numbers, especially when
compared to pure text. The insufficient represen-
tations of numbers can lead to out-of-distribution
(OOD) problems. Table 5 provides examples of
where language models tend to struggle with large
numbers. Although increasing model scales could
help, even the state-of-the-art large language model
GPT-3 performs poorly when reasoning over large
numbers. Some recent work suggests that using
scientific notation (Zhang et al., 2020d) and digit-
level decomposition (Geva et al., 2020) may be
helpful in improving numeracy representation, but

Problems GPT-3 (text-davinci-002)

John had 8 balls and he gave 3 to Mary.
How many balls does John have now?

John has 5 balls.

John had 3 apples. John had 8 balls and
he gave 3 to Mary. How many balls
does Mary have now?

Mary has 5 balls.

John had 8 balls and he gave 3 to Mary.
Who has more balls now?

John has more balls.

John had 8 balls and he gave 3 to Mary.
Does John have more balls now?

No, John has 5 balls now.

John had 8 balls and he gave 4 to Mary.
Does John have more balls now?

No, John has 4 balls now.

John had 8 balls and he gave 4 to Mary.
Who has more balls now?

John has more balls.

Table 6: Examples where large language models are not
consistent for mathematical reasoning.

this remains an open problem.

Are deep learning methods consistent for mathe-
matical reasoning? Recent developments in deep
learning have led to impressive results on vari-
ous mathematical reasoning tasks. The zero-shot-
CoT Minerva 540B achieves a score of 75.0% on
the MMLU-STEM benchmark (Hendrycks et al.,
2021a), which assesses multitask reasoning abil-
ity in the fields of science, technology, engineer-
ing, and mathematics (STEM) at both high school
and college levels. Similarly, few-shot-CoT GPT-3
175B achieves a high accuracy of 93.0% on the
MultiArith task. However, the question remains as
to whether these methods are sufficiently advanced
to tackle more complex problems.

There is strong evidence that deep learning meth-
ods for mathematical reasoning are not robust and
susceptible to adversarial attacks (Lin et al., 2020;
Patel et al., 2021; Mishra et al., 2022b,a; Welleck
et al., 2022b). The SVAMP (Patel et al., 2021)
dataset is a collection of one-unknown arithmetic
word problems up to grade 4, with slight word vari-
ations from previous datasets. It is surprising that
current state-of-the-art (SOTA) methods perform
poorly on this dataset, with Graph2Tree achieving
only a 43.8% accuracy and zero-shot-CoT GPT-3
(175B) only reaching 63.7%, which is just above
an “F” grade. Table 6 also shows the inconsistent
performance of the zero-shot GPT-3 model in sce-
narios with slightly different descriptions, while
human performance remains unchanged. This in-
dicates a lack of consistency in the mathematical
reasoning ability of SOTA large language models.

7 Future Work

7.1 Generalization and Robustness
Despite impressive progress, neural models com-
monly display generalization and robustness fail-
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ures on reasoning tasks. For example, above we dis-
cussed difficulties in generalizing to larger numbers
(Table 5) or remaining robust to nearby problems
(Table 6), while others identify failures in gener-
alizing to longer problems than those observed in
training (e.g., Anil et al. (2022)). One direction is
to explore new inference-time (Jung et al., 2022;
Mitchell et al., 2022) or fine-tuning (Anil et al.,
2022) strategies.

Another aspect of generalization relates to the
role of memorization. For example, is the ability to
produce a complex solution dependent on seeing
many similar solutions during training, or even on
memorizing the solution? Term frequency in the
pretraining corpus is known to impact accuracy in
simple arithmetic tasks (Razeghi et al., 2022) or
factual question answering (Kandpal et al., 2022).
On the other hand, Lewkowycz et al. (2022) did not
find evidence of memorization in complex outputs,
yet their training set and model are not available
for inspection. Gaining a full understanding of
these factors for complex problems and outputs
(e.g., multi-step solutions or proofs) requires more
analysis, as well as accessible datasets and models.

7.2 Trustworthy Reasoning
Recent advances in language models have demon-
strated their powerful capabilities for mathematical
reasoning. However, due to the potential for gen-
erating ungrounded answers (Nakano et al., 2021),
users can’t always trust the predicted outcomes or
have to verify then with extra efforts. Even with
recent prompting strategies that provide rationales
before making predictions (Wei et al., 2022), lan-
guage models can still hallucinate statements, pro-
duce flawed reasoning, and output wrong answers.
Consequently, novel approaches that enable more
reliable reasoning are needed urgently. Some poten-
tial directions for this include: (i) using language
models to provide evidence, such as theorems, to
support the reasoning process; (ii) incorporating a
mechanism that makes a judgment when the model
is unsure of the answer; and (iii) using a model it-
self or another module to detect and locate mistakes
in a model’s reasoning.

7.3 Learning from Feedback
Another important direction to further improve lan-
guage models for mathematical reasoning is to let
the model learn from feedback. Such a process
makes the continual improvement of models’ out-
put quality and safety possible. An example is us-

ing reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022) to align language
models with instructions. The idea is to let humans
rank the generated outputs of language models and
use the learned reward function to finetune the lan-
guage model with policy gradient (Ouyang et al.,
2022; Glaese et al., 2022; Qiu et al., 2022a). In the
context of mathematical reasoning, feedback does
not necessarily come from humans directly. The
outcome of a theorem-proof engine (Jiang et al.,
2021; Wu et al., 2021d, 2022c) or the execution
result of model-generated scripts can also be used
as the reward source (Polu and Sutskever, 2020).

7.4 Multi-modal Mathematical Reasoning

In recent years, there has been growing interest
in multi-modal mathematical reasoning, which in-
volves using multiple sources of information, such
as text, tables, natural images, and diagrams (Ka-
hou et al., 2018; Kafle et al., 2018; Lu et al., 2021b,
2022b). However, currently available datasets in
this domain tend to be small (Zhao et al., 2022),
generated from templates (Kahou et al., 2018), or
focus on specific topics (Lu et al., 2021a; Chen
et al., 2022a). One line of current research involves
applying VQA-based frameworks to analyze fig-
ures and plots, but this approach can result in sig-
nificant semantic gaps due to the fact that most
VQA models are trained on natural images. One
potential direction for future work is to enhance
the ability of multi-modal mathematical reasoning
systems to tackle more complex and realistic prob-
lems. This may involve creating unified models for
interpreting and integrating different modalities, as
well as developing better evaluation benchmarks to
assess the performance of these systems.

8 Conclusion

In this paper, we present a comprehensive survey of
deep learning for mathematical reasoning. We re-
view the various tasks, datasets, and deep learning
approaches. We also identify several gaps in the
existing datasets and methods. Finally, we outline
directions for future research and highlight the po-
tential for further exploration in this field. Our goal
with this paper is to provide a comprehensive and
useful resource for readers interested in the devel-
opment of deep learning for mathematical reason-
ing. To aid in this effort, we have created a reading
list that will be continually updated in a GitHub
repository at https://github.com/lupantech/dl4math.
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Limitations

One limitation of our survey work is that it is fo-
cused on the intersection of mathematical reason-
ing and deep learning over the past decade, which
may not encompass the entire field and its his-
tory. Additionally, our evaluation of existing bench-
marks and methods is based on a curated set of
papers and may not fully represent the state of the
art in the field. Furthermore, due to the fast-paced
nature of the field, our survey may not reflect the
latest developments and advancements which may
have come out close to or after the survey was con-
ducted. Despite these limitations, our survey still
provides a valuable overview of the current state
and key trends in the field of mathematical reason-
ing and deep learning, and can serve as a valuable
resource for researchers and practitioners working
in this field.

Broader Impact

Our survey paper on the intersection of mathemat-
ical reasoning and deep learning has the potential
to significantly impact the field of artificial intelli-
gence. By providing a comprehensive overview of
the key tasks, datasets, and methods that have been
developed in the past decade, we give researchers
and practitioners a clear understanding of the cur-
rent state-of-the-art and help them make informed
decisions about their own research. Additionally,
by evaluating existing benchmarks and methods
and discussing future research directions, we aim
to identify gaps in the current state of the art and
guide future research and development efforts to-
wards more advanced and effective mathematical
reasoning systems. Overall, our survey has the
potential to contribute to the advancement of math-
ematical reasoning and deep learning, and have a
profound impact on machine learning and natural
language processing.
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Figure 3: Estimated counts of annually published papers
on deep learning for mathematical reasoning. This field
has been experiencing rapid growth since 2018.

A Mathematical Reasoning Datasets

In this section, we will examine the various datasets
currently available for the study of mathematical
reasoning using deep learning methods. A sum-
mary of the commonly used datasets in this field
can be found in Table 7.

A.1 Math Word Problem Solving

Developing algorithms to solve math word prob-
lems (MWPs) automatically has been an interest
of NLP researchers for decades (Feigenbaum et al.,
1963; Bobrow, 1964). A math word problem (also
termed an algebraic or arithmetic word problem)
describes a brief narrative that involves characters,
entities, and quantities. The mathematical rela-
tionship of an MWP can be modeled with a set of
equations whose solution reveals the final answer
to the question. A typical example is shown in Ta-
ble 1. A question involves the four basic arithmetic
operations of addition, subtraction, multiplication,
and division with single or multiple operation steps.
The challenge of MWPs for NLP systems lies in the
need for language comprehension, semantic pars-
ing, and multiple mathematical reasoning skills.

Existing MWP datasets cover grade school prob-
lems, which are crawled from online learning web-
sites (Koncel-Kedziorski et al., 2015), collected
from textbooks, or manually annotated by human
workers (Patel et al., 2021). Early math word prob-
lem datasets are relatively small or limited to a
small number of operation steps (Hosseini et al.,
2014; Kushman et al., 2014; Roy et al., 2015).
Some recently curated datasets aim to increase
problem diversity and difficulty levels. For ex-
ample, Ape210K (Zhao et al., 2020) consists of
210k elementary math word problems, which is the
largest publicly available. The problems in GSM8K
(Cobbe et al., 2021) can involve up to 8 steps to

solve. SVAMP (Patel et al., 2021) is a benchmark
that tests the robustness of deep learning models to
math word problems with simple variations. More
recently built datasets involve modalities beyond
text. For example, IconQA (Lu et al., 2021b) pro-
vides an abstract diagram as a visual context, while
TabMWP (Lu et al., 2022b) provides a tabular con-
text for each problem.

Most MWP datasets provide annotated equations
as a rationale for the solution (e.g., Table 1). To
improve the performance and interpretability of
the learned solvers, MathQA (Tafjord et al., 2019)
is annotated with precise operation programs, and
MathQA-Python (Austin et al., 2021) is provided
with specific Python programs instead. Another
line of datasets annotates the problems with multi-
step natural language solutions that are regarded
as more human-readable (Ling et al., 2017; Cobbe
et al., 2021; Lu et al., 2022b). Lila (Mishra et al.,
2022a) annotates many of the previously mentioned
MWP datasets with Python program rationales.

A.2 Theorem Proving

Recently, there has been increased interest in using
language models for theorem proving in formal
interactive theorem provers (ITP) (e.g., Polu and
Sutskever (2020); Han et al. (2022); Polu et al.
(2023); Jiang et al. (2022b,a); Lample et al. (2022)).
Example ITPs include Lean (Moura et al., 2015),
Isabelle (Paulson, 1994), Coq (Barras et al., 1999),
and Metamath (Megill and Wheeler, 2019). To
prove a theorem in an ITP, the theorem is stated in
the ITP’s programming language, then simplified
by generating “proof steps” until it is reduced to
known facts. The result is a sequence of steps that
constitutes a verified proof.

Data sources for neural theorem proving in ITPs
include interactive learning environments that in-
terface with ITPs, and datasets derived from proofs
in ITP libraries. For example, CoqGym (Yang and
Deng, 2019) provides an interactive environment
and 71K human-written proofs for the Coq ITP. For
Isabelle, PISA (Jiang et al., 2021) enables interac-
tion and provides a dataset of 183k proofs mined
from the Isabelle standard library and Archive of
Formal Proofs. For Lean, LeanStep (Han et al.,
2022) provides a dataset of proof-steps from Lean’s
mathematical library along with auxiliary tasks,
while Lean-Gym (Polu et al., 2023) provides an in-
teractive REPL. The miniF2F (Zheng et al., 2022)
benchmark aims to provide a shared benchmark
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across ITPs, consisting of 488 problem statements
sourced from mathematical competitions.

Other resources provide proxy environments or
tasks. For example, INT (Wu et al., 2021c) pro-
vide a synthetic proving environment to measure
six different types of generalization. Li et al. con-
struct IsarStep using the Isabelle Archive of Formal
Proofs, and propose a task of filling in a missing in-
termediate proposition. Early applications of deep
learning for formal theorem proving focus on se-
lecting relevant premises (Alemi et al., 2016).

Informal theorem proving presents an alternative
medium for theorem proving, in which statements
and proofs are written in the mixture of natural lan-
guage and symbols used in “standard” mathematics
(e.g., in LATEX), and are checked for correctness by
humans. Early work focuses on selecting relevant
premises (Ferreira and Freitas, 2020b,a). Welleck
et al. (2021) develop NaturalProofs, a large-scale
dataset of 32k informal mathematical theorems,
definitions, and proofs, and provide a benchmark
for premise selection via retrieval and generation
tasks. Welleck et al. (2022a) adapt NaturalProofs
for full proof generation, and provide a human eval-
uation protocol and proxy automatic metrics.

An emerging area of research aims to combine
elements of informal and formal theorem proving.
For example, Wu et al. (2022b) explore translat-
ing informal statements into formal statements,
while Jiang et al. (2022a) release a new version
of the miniF2F benchmark augmented with infor-
mal statements and proofs, which we refer to as
miniF2F+informal. Jiang et al. (2022a) explore
translating provided (or generated) informal proofs
into formal proofs.

A.3 Geometry Problem Solving

Automated geometry problem solving (GPS) is also
a long-standing AI task in mathematical reasoning
research (Gelernter et al., 1960; Wen-Tsun, 1986;
Chou et al., 1996; Ye et al., 2008) and has attracted
much attention in recent years. Different from a
math word problem, a geometry problem consists
of a textual description in natural language and a
geometric diagram. As shown in Figure 2, the mul-
timodal inputs describe the entities, attributes, and
relationships of geometric elements, and the goal
is to find the numeric solution to an unknown vari-
able. GPS is a challenging task for deep learning
methods due to the complex skills it requires. It
involves the ability to parse multimodal informa-

tion, perform symbolic abstraction, utilize theorem
knowledge, and conduct quantitative reasoning.

Some early datasets are proposed to facilitate
research in this domain (Seo et al., 2015; Alvin
et al., 2017; Sachan et al., 2017; Sachan and Xing,
2017). However, these datasets are relatively small
or not publicly available, which limits the devel-
opment of deep learning methods. In response to
this limitation, Lu et al. create the Geometry3K
dataset, which consists of 3,002 multi-choice geom-
etry problems with unified logic form annotations
for the multimodal inputs. More recently, larger-
scale datasets such as GeoQA (Chen et al., 2021a),
GeoQA+ (Cao and Xiao, 2022), and UniGeo (Chen
et al., 2022a) have been introduced and are anno-
tated with programs that can be learned by neural
solvers and executed to obtain the final answers.

A.4 Math Question Answering

Numerical reasoning is a core ability within human
intelligence and plays an important role in many
NLP tasks. Aside from theorem proving and grade-
level math word problem solving, there is a wide
range of question answering (QA) benchmarks
that center around mathematical reasoning. In this
work, we refer to these tasks as math question an-
swering (MathQA). A large number of datasets
have been presented recently. For example, QuaRel
(Tafjord et al., 2019) is a dataset of diverse story
questions that involve 19 different types of quan-
tities. McTaco (Zhou et al., 2019) studies tempo-
ral commonsense problems, while Fermi (Kalyan
et al., 2021) studies Fermi problems whose answers
can only be approximately estimated.

Recent studies have shown that state-of-the-art
mathematical reasoning systems might suffer from
brittleness in reasoning, in that the models rely on
spurious signals and plug-and-chug calculations in
the specific dataset to achieve “satisfactory” per-
formance (Hendrycks et al., 2021b; Mishra et al.,
2022b). To address this issue, new benchmarks
are proposed from various aspects. The Mathemat-
ics dataset (Saxton et al., 2020) consists of many
different types of mathematics problems, cover-
ing arithmetic, algebra, probability, and calculus.
The dataset allows for measuring the algebraic gen-
eralization ability of a model. Similarly, MATH
(Hendrycks et al., 2021b) consists of challenging
competition mathematics to measure the problem-
solving ability of models in complex scenarios.

Some work incorporates tabular contexts in the
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question inputs. For example, FinQA (Chen et al.,
2021c), TAT-QA (Zhu et al., 2021), and MultiHiertt
(Zhao et al., 2022) collect questions that require
both table understanding and numeric reasoning to
answer. Others, instead, present large-scale unified
benchmarks for mathematical reasoning (Mishra
et al., 2022b,a; Chen et al., 2023). NumGLUE
(Mishra et al., 2022b) is a multi-task benchmark
with the goal of evaluating the performance of mod-
els on eight different tasks. Mishra et al. 2022a
push this direction further and presents Lila, which
consists of 23 mathematical reasoning tasks, span-
ning a wide range of mathematics topics, linguis-
tic complexity, question formats, and background
knowledge requirements.

A.5 Other Quantitative Problems
Numbers are an integral part of our daily lives, and
we humans reason with numbers in a variety of
tasks, such as understanding news, reports, elec-
tions, and markets. This has led many in the com-
munity to question whether AI systems can effec-
tively perform quantitative reasoning in everyday
scenarios. To this end, various benchmarks have
been developed to evaluate the capabilities of AI
systems in this area.

Diagrams, such as figures, charts, and plots, are
essential media that convey large amounts of infor-
mation in a concise way. FigureQA (Kahou et al.,
2018), DVQA (Kafle et al., 2018), MNS (Zhang
et al., 2020c), PGDP5K (Hao et al., 2022), and
GeoRE (Yu et al., 2021a), are released to investi-
gate models’ abilities to reason about quantitative
relationships among entities grounded in diagrams.
NumerSense (Lin et al., 2020), instead, examines
whether and to what extent existing pre-trained lan-
guage models can induce numerical commonsense
knowledge. EQUATE (Ravichander et al., 2019)
formalizes aspects of quantitative reasoning in a
natural language inference framework. Quantita-
tive reasoning can appear frequently in specific
domains like finance, science, and programming.
For instance, the ConvFinQA (Chen et al., 2022c)
targets numerical reasoning over financial reports
in a conversational question answering format. Sci-
enceQA (Lu et al., 2022a) involves numerical rea-
soning in scientific domains, while P3 (Schuster
et al., 2021) studies the function inference ability
of deep learning models to find a valid input which
makes the given program return True.
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Dataset Task Size Input Output Rationale Domain

Verb395 (2014) MWP 395 Question Number Equation Math
Alg514 (2014) MWP 514 Question Number Equation Math
IL (2015) MWP - Question Number Equation Math
SingleEQ (2015) MWP 508 Question Number Equation Math
DRAW (2015) MWP 1,000 Question Number Equation Math
Dolphin1878 (2015) MWP 1,878 Question Number Equation Math
Dolphin18K (2016) MWP 18,460 Question Number Equation Math
MAWPS (2016) MWP 3,320 Question Number Equation Math
AllArith (2017) MWP 831 Question Number Equation Math
DRAW-1K (2017) MWP 1,000 Question Number Equation Math
Math23K (2017) MWP 23,162 Question Number Equation Math
AQuA (2017) MWP 100,000 Question Option Natural language Math
Aggregate (2018) MWP 1,492 Question Number Equation Math
MathQA (2019) MWP 37,297 Question Number Program Math
ASDiv (2020) MWP 2,305 Question Number Equation Math
HMWP (2020) MWP 5,470 Question Number Equation Math
Ape210K (2020) MWP 210,488 Question Number Equation Math
SVAMP (2021) MWP 1,000 Question Number Equation Math
GSM8K (2021) MWP 8,792 Question Number Natural language Math
IconQA (2021b) MWP 107,439 Figure+Question Option+Text span ✗ Math
MathQA-Python (2021) MWP 23,914 Question Number Python program Math
ArMATH (2022) MWP 6,000 Question Number Equation Math
TabMWP (2022b) MWP 38,431 Table+Question Option+Number Natural language Math

MML (2015) TP 57,882 Statement Proof steps ✗ Math
HolStep (2017) TP 2,209,076 Statement Proof steps ✗ Math
Gamepad (2019) TP - Statement Proof steps ✗ Math
CoqGym (2019) TP 71,000 Statement Proof steps ✗ Math
HOList (2019) TP 29,462 Statement Proof steps ✗ Math
IsarStep (2021) TP 860,000 Statement Proof steps ✗ Math
PISA (2021) TP 183,000 Statement Proof steps ✗ Math
INT (2021c) TP - Statement Proof steps ✗ Math
NaturalProofs (2021) TP 32,000 Statement Proof steps ✗ Math
NaturalProofs-Gen (2022a) TP 14,500 Statement Proof steps ✗ Math
miniF2F (2022) TP 488 Statement Proof steps ✗ Math
miniF2F+informal (2022a) TP 488 Statement Proof steps ✗ Math
LeanStep (2022) TP 21,606,000 Statement Proof steps ✗ Math

GEOS (2015) GPS 186 Figure+Question Option ✗ Geometry
GeoShader (2017) GPS 102 Figure+Question Number ✗ Geometry
GEOS++ (2017) GPS 1,406 Figure+Question Number ✗ Geometry
GEOS-OS (2017) GPS 2,235 Figure+Question Option Demonstration Geometry
Geometry3K (2021a) GPS 3,002 Figure+Question Option Logical form Geometry
GeoQA (2021a) GPS 4,998 Figure+Question Option Program Geometry
GeoQA+ (2022) GPS 12,054 Figure+Question Option Program Geometry
UniGeo (2022a) GPS/TP 14,541 Figure+Question Option Program Geometry

Quarel (2019) MathQA 2,771 Question Option Logical form Math
McTaco (2019) MathQA 13,225 Text+Question Option ✗ Time
DROP (2019) MathQA 96,567 Passage+Question Number+Text span ✗ Math
Mathematics (2020) MathQA 2,010,000 Question Free-form Number Math
FinQA (2021c) MathQA 8,281 Text+Table+Q Number Program Finance
Fermi (2021) MathQA 11,000 Question Number Program+Fact Math
MATH (2021b) MathQA 12,500 Question Number Natural language Math
TAT-QA (2021) MathQA 16,552 Text+Table+Q Number+Text span ✗ Finance
AMPS (2021b) MathQA 5,000,000 Question - LATEX Math
MultiHiertt (2022) MathQA 10,440 Text+Table+Q Number+Text span Expression Finance
NumGLUE (2022b) MathQA 101,835 Text+Question Number+Text span ✗ Math
Lila (2022a) MathQA 134,000 Text+Question Free-form Python program Math

FigureQA (2018) VQA 1,000,000+ Figure+Question Binary ✗ Math
DVQA (2018) VQA 3,487,194 Figure+Question Text span Number+Text span Math
DREAM (2019) ConvQA 10,197 Dialog+Question Option ✗ Math
EQUATE (2019) NLI - Premise+Hypothesis Binary ✗ Math
NumerSense (2020) Filling 13,600 Masked question Word ✗ Math
MNS (2020c) IQ Test - Figure Number ✗ Math
P3 (2021) Puzzle 397 Text Program ✗ Math
NOAHQA (2021) ConvQA 21,347 Dialog+Question Text span Reasoning graph Math
ConvFinQA (2022c) ConvQA 3,892 Report+Dialog+Q Number Expression Math
PGDP5K (2022) Parsing 5,000 Figure+Question Number ✗ Geometry
GeoRE (2022a) Parsing 12,901 Figure+Question Number ✗ Geometry
ScienceQA (2022a) VQA 21,208 Context+Question Option Natural language Science

Table 7: A summarization of mathematical reasoning datasets.
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Paper Task Problem Network Encod Decod ATT Description

DNS (Wang et al., 2017) MWP Generation Seq2Seq GRU LSTM ✗ The first deep MWP solver
AnsRat (Ling et al., 2017) MWP Generation Seq2Seq LSTM LSTM ✗ Trained with staged back-propagation
Math-EN (Wang et al., 2018a) MWP Generation Seq2Seq BiLSTM LSTM ✔ A standard Seq2Seq model with attention
CASS (Huang et al., 2018) MWP Generation Seq2Seq BiGRU BiGRU ✔ Copy and alignment with RL
S-Aligned (Chiang and Chen, 2019) MWP Generation Seq2Seq BiLSTM LSTM ✔ Operating symbols
T-RNN (Wang et al., 2019) MWP Generation Seq2Seq BiLSTM BiLSTM ✔ Predicting a tree-structure math template
GROUP-ATT (Li et al., 2019) MWP Generation Seq2Seq BiLSTM LSTM ✔ Group attention
SMART (Hong et al., 2021b) MWP Generation Seq2Seq - - ✗ Explicitly incorporating values
SelfAtt (Robaidek et al., 2018) GPS Classification Seq2Seq BiLSTM - ✔ Multi-hop self-attention
QuaSP+ (Tafjord et al., 2019) MathQA Generation Seq2Seq BiLSTM LSTM ✗ Adopting attributed grammar

AST-Dec (Liu et al., 2019a) MWP Generation Seq2Tree BiLSTM Tree ✔ Using prefix order decoding
GTS (Xie and Sun, 2019) MWP Generation Seq2Tree BiGRU Tree ✔ A goal-driven tree-structured approach
KA-S2T (Wu et al., 2020) MWP Generation Seq2Tree BiLSTM Tree ✔ A knowledge-aware method
TSN-MD (Zhang et al., 2020a) MWP Generation Seq2Tree BiGRU Tree ✔ A teacher-student network
T-LSTM (Zaporojets et al., 2021) MWP Generation Seq2Tree BiLSTM Tree ✗ A child-sum tree-LSTM model
NT-LSTM (Zaporojets et al., 2021) MWP Generation Seq2Tree BiLSTM Tree ✗ An N-ary tree-LSTM model
NS-Solver (Qin et al., 2021) MWP Generation Seq2Tree BiGRU Tree ✔ A neural-symbolic solver with programs
NumS2T (Wu et al., 2021b) MWP Generation Seq2Tree BiLSTM Tree ✔ Explicitly incorporating values
HMS (Lin et al., 2021) MWP Generation Seq2Tree GRU Tree ✔ A word-clause-problem encoder
LBF (Hong et al., 2021a) MWP Generation Seq2Tree BiGRU Tree ✔ A learning-by-fixing (LBF) framework
Seq2DAG (Cao et al., 2021) MWP Generation Seq2Graph GRU Graph ✗ A direct acyclic graph (DAG) structure
Graph2Tree (Zhang et al., 2020b) MWP Generation Graph2Tree Graph Tree ✗ Generating better solution expressions
Multi-E/D (Shen and Jin, 2020) MWP Generation Graph2Tree Graph Tree ✔ A graph encoder and a tree-bad decoder
Graph2Tree (Li et al., 2020b) MWP Generation Graph2Tree Graph Tree ✔ A graph-to-tree neural network
EEH-G2T (Wu et al., 2021a) MWP Generation Graph2Tree Graph Tree ✗ A hierarchical graph-to-tree model
ASTactic (Yang and Deng, 2019) TP Generation Tree2Seq TreeLSTM GRU ✔ Generating tactics as programs

MathDQN (Wang et al., 2018b) MWP Search DQN - - ✗ RL with a deep Q-network (DQN)
DDT (Meng and Rumshisky, 2019) MWP Generation Transformer Trm Trm ✔ A Transformer-based model
DeepMath (Alemi et al., 2016) TP Classification CNN CNN - ✗ The first deep large scale theorem prover
Holophrasm (Whalen, 2016) TP Classification BiGRU BiGRU - ✗ A neural prover for higher-order logic
CNNTP (Loos et al., 2017) TP Classification CNN CNN - ✗ A CNN-based theorem prover
WaveNetTP (Loos et al., 2017) TP Classification WaveNet WaveNet - ✗ A WaveNet-based theorem prover
DeepHOL (Bansal et al., 2019) TP Generation WaveNet WaveNet - ✗ A neural theorem prover with RL
NGS (Chen et al., 2021a) GPS Generation VQA LSTM* LSTM ✔ The first deep geometry solver
PGDPNet (Zhang et al., 2022) Parsing Generation GNN - - ✗ A neural diagram parser with GNN

Table 8: A summarization of deep neural network models for mathematical reasoning. Encod: encoder, Decod:
decoder, ATT: Attention. LSTM*: ResNet + LSTM, Trm: Transformer
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