
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 132 - 138
July 14-15, 2022 ©2022 Association for Computational Linguistics

Word-Label Alignment for Event Detection: A New Perspective via
Optimal Transport

Amir Pouran Ben Veyseh
Department of Computer and

Information Science
University of Oregon
Eugene, Oregon, USA

apouranb@cs.uoregon.edu

Thien Huu Nguyen
Department of Computer and

Information Science
University of Oregon
Eugene, Oregon, USA

thien@cs.uoregon.edu

Abstract
Event Detection (ED) aims to identify men-
tions/triggers of real world events in text. In the
literature, this task is modeled as a sequence-
labeling or word-prediction problem. In this
work, we present a novel formulation in which
ED is modeled as a word-label alignment task.
In particular, given the words in a sentence
and possible event types, the objective is to in-
fer an alignment matrix in which event trigger
words are aligned with the most likely event
types. Moreover, we show that this new per-
spective facilitates the incorporation of word-
label alignment biases to improve alignment
matrix for ED. Novel alignment biases and
Optimal Transport are introduced to solve our
alignment problem for ED. We conduct experi-
ments on a benchmark dataset to demonstrate
the effectiveness of the proposed model for ED.

1 Introduction

Event Detection (ED) is one of the critical tasks
in Information Extraction. Its goal is to identify
and classify event triggers, i.e., the words/phrases
that most clearly refer to the occurrence of an event
of some predefined types in text. For example, in
the sentence “Joe Biden was born on November 20,
1942”, an ED system should recognize the word
“born” as a trigger word of an event of type Birth.

A major challenge for ED is to assign an appro-
priate event type label for each word in a given
sentence. In this work, we introduce a new perspec-
tive to solve ED as a word-label alignment problem
that aims to align the set of words in the input sen-
tence with the set of possible event type labels to
represent correct label assignment for words. A key
requirement for ED models in this new perspective
involve inferring an alignment matrix to capture
an alignment likelihood score between each pair
of words and label types. The models can then
be trained by enforcing the similarity between the
predicted alignment matrix and the golden align-
ment matrix (computed from training data). In this

way, previous ED models can be seen as a way to
achieve the alignment matrix between words and
labels where label distributions computed by the
models serve as the alignment likelihood scores
(Nguyen and Grishman, 2015; Chen et al., 2015;
Wang et al., 2019; Cui et al., 2020; Ngo et al.,
2021). However, given the word-label alignment
perspective, previous ED models are suboptimal
in at least two ways. First, the alignment likeli-
hood scores in prior models are only used locally
for each word (i.e., to compute the cross-entropy
loss for each word to train models). The global
uses of alignment matrix (e.g., to compute an over-
all distance between words and labels for training
signals) are thus not yet explored in previous ED
models. Second, current ED models mainly obtain
alignment likelihood scores based on representa-
tion vectors for words and types, thus unable to
exploit assignment biases to improve quality of the
alignment matrix to train ED models. In particu-
lar, we propose two types of alignment biases that
can be helpful for ED: (1) Word Preference: words
with high likelihoods to be event triggers should be
more aligned with event type labels (i.e., not the
Other type for non-trigger words), and (2) Type
Preference: event types that have higher chance
to be appear in the input sentence should be asso-
ciated with greater alignment scores. In all, we
expect that global application and alignment biases
can provide complementary information to boost
current ED models in the new perspective.

To implement this idea, we propose to encode
event trigger likelihoods for words and appearance
likelihoods for event types as two distributions over
words and event type labels (respectively) that will
be induced from a deep learning architecture. Next,
to inject the alignment biases into our ED model,
we propose to feed the two distributions into Op-
timal Transport (OT) (Peyre and Cuturi, 2019) to
induce an alignment matrix between words and
event type labels. OT is an established framework
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to find the optimal alignment between two distribu-
tions, thus providing a decent solution to incorpo-
rate alignment biases to compute alignment matrix
in our ED problem. Finally, the induced alignment
matrix will be leveraged to obtain a distance be-
tween words and event type labels, serving as a
global application of the alignment matrix to in-
troduce new training signals for ED. We conduct
extensive experiments on a benchmark dataset to
deliver state-of-the-art performance for ED. In sum-
mary, our contributions include:

• A new perspective based on word-label align-
ment for event detection.

• Introduction of optimal transport to incorpo-
rate novel alignment biases for event detec-
tion.

• State-of-the-art performance for sequence-
labeling event detection.

2 Model

Given an input sentence S = [w1, w2, . . . , wn],
the goal of ED is to predict the label sequence
L = [l1, l2, . . . , ln] where li ∈ T is the label for
the word wi ∈ S. Here, the label set T involves the
BIO encoding tags for the event types in a given
event ontology (e.g., B_Birth, I_Birth, and Other).
In this work, we propose to model ED as a word-
label alignment problem where an alignment matrix
is formed to capture the assignment likelihood for
every pair of words in S and labels in T . We will
first discuss word/label representations, and align-
ment matrix computation for training afterward.
Word & Label Representation: To represent the
words in S, following prior work (Wang et al.,
2019), we employ the pre-trained BERT model
(Devlin et al., 2019). Concretely, the input sen-
tence [[CLS], w1, w2, . . . , wn] is fed into BERT
to compute the contextualized embedding vectors
E = [ecls, e1, e2, . . . , en]. We employ the average
of vectors in the last layer of BERT to produce E.
For the words with multiple word-pieces, we take
the average of their word-piece representations.

To represent the event type labels li, we employ
a randomly initialized embedding table T in which
every label is represented by a vector ti. The repre-
sentations of the labels are updated during training.
Alignment: To predict the label sequence L with
our alignment idea, for every word wi, an align-
ment likelihood score ai,j between wi and each

label lj is required (i.e., forming an alignment ma-
trix A). Using the scores ai,j , the label l̄i can be
predicted by l̄i = argmaxjai,j . Note that in prior
ED models, the alignment scores ai,j are directly
computed using the final task-specific feed-forward
networks (Wang et al., 2019; Veyseh et al., 2021b).
This approach is equivalent to computing the sim-
ilarity between the representation vectors wi and
tj , e.g., via dot-product. We call this approach
“Vanilla Alignment”. However, as discussed in
the introduction, vanilla alignment scores ai,j are
solely dependent on the learned representations ei
and tj . As such, they cannot incorporate the align-
ment biases into the alignment matrix for ED.

To this end, we introduce two alignment biases
that can be exploited to improve the word-label
alignment for ED. In particular, for an effective
ED model, we expect the words that are more
likely to be event triggers to have higher align-
ment scores with event types. In contrast, the other
words should be better aligned with the special
label Other. i.e., non-trigger. We call this bias
“Word Preference” for ED. In addition, among all
event types, it is expected that the event types that
have higher chance to be mentioned in the input
sentence to be associated with greater scores in
the alignment matrix A. We name this bias as
“Type Preference”. In this work, we aim to mod-
ify the vanilla alignment approach such that the
two aforementioned preferences are observed. The
quantification of Word and Type Preference and
their incorporation into alignment matrix will be
discussed in the following.

Word & Type Preference: To compute the word
preference and type preference in the input sen-
tence S, we consider two simpler versions of the
ED problem. Specifically, for word preference,
we utilize the Trigger Identification (TI) task that
seeks to recognize the event trigger words with-
out classifying them by event types. The event
trigger probability computed for TI can be used to
quantify the event trigger likelihood for each word
wi ∈ S. Concretely, the representation ei of wi

is fed into a feed-forward network with sigmoid
activation function to compute the trigger likeli-
hood pwi for wi: pwi = σ(FFw(ei)), where σ and
FFw are sigmoid and feed-forward layer, respec-
tively. To supervise the trigger likelihood scores,
we include the binary cross-entropy loss function
for TI into the overall loss for training: LTI =
− 1

n

∑n
i=1(y

w
i ∗ log(pwi )+(1−ywi )∗ log(1−pwi )),
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where ywi is a binary number to indicate whether if
wi is a trigger in S. The likelihood scores pwi are
employed to represent the word preference.

Next, for the type preference, we exploit the task
of Type Prediction (TP) for ED. In this task, the
objective is to predict which event types are men-
tioned in the sentence S (i.e., without predicting
the trigger words). For an event type label tj , we
predict the likelihood for tj to be mentioned in S
by concatenating the type representation tj with
the sentence representation ecls and feeding the re-
sult into a separate feed-forward network FFt with
sigmoid activation to obtain the appearance like-
lihood for tj : ptj = σ(FFt([tj , ecls])). To super-
vise the appearance likelihoods, the binary cross-
entropy loss function for TP is employed: LTP =

− 1
|T |

∑|T |
j=1(y

t
j ∗ log(ptj) + (1− ytj) ∗ log(1− ptj),

where ytj is a binary number to indicate the appear-
ance of the event type tj in S. The likelihood scores
ptj are utilized to represent the type preference.
Alignment Computation: Given the word and
type preference scores pwi and ptj , how can we com-
pute an alignment matrix A between the words
in S and the event type labels in T that can in-
corporate both word-label representation similar-
ity (as in vanilla alignment) and designed pref-
erence scores for ED? Note that the preference
scores can be modeled as two distributions over
words and event type labels by applying a soft-
max function over the word and type likelihoods:
DWP = softmax(pw1 , p

w
2 , . . . , p

w
n ) and DTP =

softmax(pt1, p
t
2, . . . , p

t
T ). As such, we propose to

employ Optimal Transport (OT) to elegantly com-
bine the information to produce the alignment ma-
trix A between S and T for ED.

Formally, given the probability distributions p(x)
and q(y) over the domains X and Y , and the
cost/distance function C(x, y) : X × Y → R+ for
mapping X to Y , OT finds the optimal joint align-
ment/distribution π∗(x, y) with marginals p(x) and
q(y) that converts p(x) to q(y) (i.e., the cheapest
plan), by solving the following problem:

π∗(x, y) = min
π∈Π(x,y)

∑

Y

∑

X
π(x, y)C(x, y)

s.t. x ∼ p(x) and y ∼ q(y),

(1)

Here, Π(x, y) involves all joint distributions with
marginals p(x) and q(y). As such, the joint dis-
tribution π∗(x, y) is a matrix whose entry (x, y)
(x ∈ X , y ∈ Y) represents the probability of
transforming x to y in the optimal transport. We
use the Sinkhorn algorithm to approximately solve

OT (Peyre and Cuturi, 2019). Finally, given
π∗(x, y), one approach to employ its global infor-
mation is to compute the cost of optimal conver-
sion Dist(π∗) = Σx∈XΣy∈Yπ∗(x, y)C(x, y) to
measure the distance between X and Y (i.e., the
Wasserstein distance).

To apply OT in our model, the domains X and Y
are defined as the words wi ∈ S and types tj ∈ T ;
the distributions p(x) and q(y) are set to the pref-
erence distributions DWP and DTP ; and the cost
function C(wi, tj) is computed using the Euclidean
distance between the representations ei and tj . As
such, solving the OT equation leads to the opti-
mal alignment π∗(wi, tj), serving as our predicted
alignment matrix (i.e., ai,j = π∗(wi, tj)).

To train the ED model with word-label align-
ment, we propose two training signals obtained
from the predicted alignment π∗(ei, tj). First, by
treating the alignment score π∗(ei, tj) as the proba-
bility for wi to be assigned with label tj , we employ
the negative log-likelihood loss to train our model:
Ltask = − 1

n

∑n
i=1 log(π

∗(wi, li)), where li is the
golden label for wi in S. Second, we propose to
globally enforce the similarity between the pre-
dicted alignment matrix π∗(wi, tj) from OT and
the golden binary alignment matrix πg(wi, tj) (i.e.,
πg(wi, tj) = 1 if only if wi has the golden label tj).
As such, to aggregate the information in the align-
ment matrices, we first compute the Wasserstein
distances Dist(π∗) and Dist(πg) based on the pre-
dicted and golden alignments π∗ and πg. After-
ward, we seek to minimize the difference between
Dist(π∗) and Dist(πg) to achieve alignment ma-
trix similarity to train our ED models, leading to
the loss: LOT = |Dist(π∗)−Dist(πg)|. Finally,
the overall loss function for the entire model is
L = αtaskLtask+αOTLOT +αTILTI+αTPLTP .

3 Experiments

Datasets & Baselines: We evaluate the perfor-
mance of the proposed model (called OTED) on
the ACE 2005 dataset (Walker et al., 2006) that
annotates 599 documents for 33 event types in
English. We use the same data split and prepro-
cessing as prior work (Wang et al., 2019; Veyseh
et al., 2021b) for this dataset. The numbers of doc-
uments for the training/development/test data are
529/30/40 respectively. Following (Wang et al.,
2020a; Veyseh et al., 2021b), we use the sequence-
labeling setting for the ED task in ACE 2005 that
adheres to the original annotation to allow event
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Model ACE
P R F1

BiLSTM 77.20 74.90 75.40
DMBERT 71.49 76.95 74.12
BERT+CRF 71.30 77.10 74.10
ED3C 80.31 76.04 78.12
OTED (ours) 79.28 79.48 79.38

Table 1: Model performance on the test sets. OTED is
significantly better than the baselines with p < 0.05.

triggers to span multiple words.
As the baselines, we compare with the typical se-

quence labeling models for ED, i.e., BiLSTM, DM-
BERT (BERT with dynamic multi-pooling), and
BERT+CRF in (Wang et al., 2020a), and the prior
state-of-the-art (SOTA) model reported for ACE
2005, i.e., ED3C (Veyseh et al., 2021b). For all
the models, we use the same version of pre-trained
BERTbase to achieve a fair comparison. Follow-
ing prior work (Wang et al., 2020b; Veyseh et al.,
2021b), we use span-based precision, recall and
F1 scores for correctly predicting the boundaries
and types of event triggers as the performance met-
rics. Finally, we fine-tune the hyper-parameters for
OTED using the development data of ACE 2005.
In our model we use the BERTbase model to en-
code data; 2 layers for all the feed-forward neural
networks with 200 hidden dimensions in the layers.
The trade-off parameters αtask, αOT , αTI and αTP

are set to 1.0, 0.01, 0.05, and 0.01 respectively. The
learning rate is set to 3e-5 for the Adam optimizer
and the batch size of 8 is employed during training.
Results: The model performance is presented in
Table 1. This table shows that OTED significantly
outperforms the baseline models on ACE 2005. We
attribute the superiority of OTED to its capability
to incorporate alignment biases, i.e., word and type
preference, into alignment-based ED. The better
performance of OTED over ED3C is important as
unlike this baseline OTED does not require addi-
tional document context or supervision from other
related tasks.
Ablation Study: We conduct an ablation study for
the components of OTED over the ACE 2005 de-
velopment set. Table 2 presents the performance
of three groups of ablated models for OTED. In
the first group (lines 2-4), we exclude one or both
alignment biases, i.e., WP and TP, from OTED.
Concretely, to remove a preference, its correspond-
ing distribution in the OT (i.e., DWP and DTP )

Line Model P R F1
1 OTED (full) 79.12 79.94 79.53
2 OTED - WP 75.14 81.39 78.14
3 OTED - TP 77.32 78.55 77.93
4 OTED - WP- TP 76.90 76.92 76.91
5 OTED - Ltask 75.24 77.02 76.12
6 OTED - LOT 75.92 80.28 78.04
7 OTED - LTI 78.91 75.60 77.22
8 OTED - LTP 78.21 76.05 77.12
9 Distance 76.66 78.03 77.34
10 Alignment 77.98 78.93 78.45

Table 2: Model performance on the ACE 2005 dev set.

is replaced with the uniform distribution in the
OT computation for OTED. It is clear from the
table that both alignment biases are beneficial for
OTED as removing any of them would hurt the
performance significantly. Next, the second group
(lines 5-8), we exclude each loss component (i.e.,
Ltask, LOT , LTP , and LTI ) from the overall loss
L to train OTED. As can be seen, all the designed
losses contribute significantly to the performance
of OTED, thus testifying to their effectiveness in
alignment-based ED. Also, in the third group (lines
9-10), we explore two variants of OTED to jus-
tify the design of the loss LOT to incorporate OT
into the model. In one variant (called Distance
in line 9), instead of minimizing the difference
LOT between the Wasserstein distances based on
predicted and golden alignments, we directly mini-
mize the predicted Wasserstein distance Dist(π∗)
between words and labels. Moreover, in the Align-
ment variant in line 10, instead of employing the
Wasserstein distance, we directly minimize the
distance between the predicted and golden align-
ment π∗(wi, tj) and πg(wi, tj) (i.e., evaluated by∑

i,j |π∗(wi, tj)− πg(wi, tj)|/(n|T |)). As can be
seen, both Distance and Alignment lead to inferior
performance for OTED, thereby showing the effec-
tiveness of LOT for ED. As such, we attribute the
poor performance of Distance to the lack of super-
vision from the golden alignment-based distance
πg(wi, tj), and the worse performance of Align-
ment to the missing of contextual similarity (i.e.,
the cost C(wi, tj)) in the distance computation.
Analysis: In this section, we present a qualitative
analysis to shed more light on the superiority of
the proposed model OTED to the prior sequence
labeling methods. Specifically, we compare our
model with the BERT+CRF baseline by analyzing
the examples in which BERT+CRF fails to recog-
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ID Example BERT+CRF
Prediction

OTED
Prediction

Gold Event
Trigger & Type

1
These are the reasons that none of these
mothereffers should ever see the light of day ...
they need to be all lined up and shot.

Trigger: “shot”,
Event Type:
Contact:Meet

Trigger: “shot”,
Event Type:
Justice:Execute

Trigger: “shot”,
Event Type:
Justice:Execute

2
Well , John, given all that you’ve said, we know
that there’s an American retired general
waiting in Kuwait.

Trigger:
“waiting”,
Event Type:
Personnel:End-
Position

Trigger:
“retired”, Event
Type:
Personnel:End-
Position

Trigger:
“retired”, Event
Type:
Personnel:End-
Position

Table 3: Case study on the development set of the ACE 2005 dataset. The golden trigger words are underlined.

nize the event types and triggers, but OTED can
successfully perform the predictions. A major find-
ings in our analysis is that OTED can exploit the
introduced alignment bias (i.e., word and type pref-
erence) to avoid unlikely event triggers and types
(i..e, the ones that should be obviously eliminated
based on overall sentence context). This leads to
correct predictions for examples that BERT+CRF
make mistakes. Table 3 shows two examples from
the development set of the ACE 2005 dataset to
illustrate our findings. In the first example, the
baseline can recognize the event trigger “shot”, but
fails to predict the event type. Given the context of
the sentence, the predicted event type Contact:Meet
by BERT+CRF should be considered as unlikely
to be mentioned in the sentence. As the proposed
model OTED employs type preference knowledge,
it successfully avoids unlikely event types for this
sentence. In addition, in the second example, the
baseline incorrectly predicts a non-trigger word
(i.e., “waiting”) as a trigger. In contrast, since
OTED employs word preference knowledge, it can
effectively avoid unlikely event triggers.

4 Related Work

Early methods for ED employed feature engineer-
ing models (Ahn, 2006; Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011; Li
et al., 2013; Miwa et al., 2014; Yang and Mitchell,
2016). Recently, deep learning was adopted as the
SOTA approach for ED (Chen et al., 2015; Nguyen
et al., 2016; Sha et al., 2018; Nguyen and Grish-
man, 2018; Yang et al., 2019; Wang et al., 2019;
Lai et al., 2020; Cui et al., 2020; Tong et al., 2020;
Nguyen et al., 2021). Unlike such prior work, we
introduce a new word-label alignment perspective
using OT for ED. Finally, some recent work has
utilized OT for character/word/example alignment
problems (Dou and Neubig, 2021; Xu et al., 2021;
Veyseh et al., 2021a, 2022; Guzman-Nateras et al.,

2022). However, none of them explores OT for
word-label alignment in ED.

5 Conclusion

We present a general word-label alignment formula-
tion for ED in which each pair of words and types is
associated with an alignment score for label assign-
ment likelihood. Moreover, we introduce two align-
ment biases based on type and word preference to
improve the word-label alignment matrix computa-
tion with OT. Extensive analysis on a benchmark
dataset demonstrates the benefits of the proposed
technique for ED. In the future, we plan to evaluate
our method on more datasets for ED (Wang et al.,
2020a; Man et al., 2020; Lai et al., 2021) to better
understand its operation.
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