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Abstract

Building user simulators (USs) for reinforce-
ment learning (RL) of task-oriented dialog sys-
tems (DSs) has gained more and more attention,
which, however, still faces several fundamental
challenges. First, it is unclear whether we can
leverage pretrained language models to design,
for example, GPT-2 based USs, to catch up
and interact with the recently advanced GPT-
2 based DSs. Second, an important ingredi-
ent in a US is that the user goal can be effec-
tively incorporated and tracked; but how to flex-
ibly integrate goal state tracking and develop
an end-to-end trainable US for multi-domains
has remained to be a challenge. In this work,
we propose a generative user simulator (GUS)
with GPT-2 based architecture and goal state
tracking towards addressing the above two chal-
lenges. Extensive experiments are conducted
on MultiWOZ2.1. Different DSs are trained via
RL with GUS, the classic agenda-based user
simulator (ABUS) and other ablation simula-
tors respectively, and are compared for cross-
model evaluation, corpus-based evaluation and
human evaluation. The GUS achieves superior
results in all three evaluation tasks.

1 Introduction

Task-oriented dialog (TOD) systems are mainly de-
signed to help users accomplish specific goals, such
as finding restaurants or booking flights. The dialog
system (DS) usually consists of several modules
- dialog state tracking (DST), database querying
(DB), dialog policy (DP) and natural language gen-
eration (NLG). Recent studies recast these modules
all as conditional generation of tokens and build
on some pretrained language model (PLM) such
as GPT-2 (Radford et al., 2019) as the backbone.
Fine-tuning PLM over annotated dialog datasets
via supervised learning (SL) has shown state-of-
the-art results (Hosseini-Asl et al., 2020; Li et al.,

∗Corresponding author. The code is released at https:
//github.com/thu-spmi/GUS

Figure 1: The information flow in a task-oriented dialog.
Domains and intents are enclosed by square brackets.

2020; Kulhánek et al., 2021; Yang et al., 2021; Lee,
2021), thanks to the powerful generation ability of
PLMs.

However, supervised trained agents could be-
come biased by the annotations, and it has long
been recognized that reinforcement learning (RL)
could be applied to policy learning for the agent
(Young et al., 2013), which aims at goal-directed
learning from interaction between the dialog agent
and the user. Interaction with human users is ex-
pensive and time-consuming in practice. Therefore,
an alternative approach, building user simulators
(USs), has gained more and more attention, which,
however, still faces several fundamental challenges.

First, note that the recent research on building
dialog agents has been significantly advanced with
the end-to-end trainable generative approach based
on PLMs such as GPT-2. However, prior work on
user simulators are mostly LSTM-based, not utiliz-
ing any PLMs, as reviewed in Table 1. It is unclear
whether we can leverage PLMs to design, for ex-
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ample, GPT-2 based1 user simulators, to catch up
and interact with the GPT-2 based dialog agents.
This has not ever been systematically examined, to
the best of our knowledge. We leave detailed dis-
cussion to Related Work section, where we review
prior work on USs from a number of important
features in building USs.

Second, an important ingredient in a US is that
the user goal can be incorporated and tracked. Task-
oriented dialog systems are characterized by a user
goal, which is composed of user constraints and
requests. The user goal ensures that the user be-
haves in a consistent, goal-directed manner, and
the system agent is considered successful if it is
able to fulfill the user goal by the end of a dialog
session. Thus, it is desirable for the US to track the
completion process of the goal explicitly (which
we call goal state tracking in this paper), as did in
the classic agenda-based user simulator (ABUS)
(Schatzmann et al., 2007). However, the goal state
tracking process is overlooked in later data-driven
USs (Asri et al., 2016; Gür et al., 2018; Papangelis
et al., 2019), or realized by binary vectors (Kreyssig
et al., 2018; Lin et al., 2021; Tseng et al., 2021), or
only works at the semantic level (Takanobu et al.,
2020). How to flexibly integrate goal state track-
ing and develop an end-to-end trainable US for
multi-domains has remained to be a challenge.

In this work, we propose a generative user sim-
ulator (GUS) with GPT-2 based architecture and
goal state tracking towards addressing the above
two challenges in building end-to-end trainable
USs for reinforced multi-domain dialog systems.
Basically, a US, interacting with a DS in natural lan-
guages, needs several modules - natural language
understanding (NLU) of system responses, goal
state tracking (GST) to refresh the remained con-
strains and requests that need to send subsequently,
user policy (UP), and natural language generation
(NLG). The information flow in a task-oriented di-
alog between a US and a DS is illustrated in Figure
1. In generative user simulator (GUS), we recast
these modules in US all as conditional generation
of tokens, similar to the recent approach of fine-
tuning PLMs such as GPT-2 to build end-to-end
trainable generative DSs.

To be specific in this paper, we use the GPT-2
based architecture for GUS to generate user acts
and user utterances, and constantly track the goal

1It can be seen that the discussion and the proposed method
in the remainder of this paper can also be applied to other
PLMs such as T5 (Raffel et al., 2020), not limited to GPT-2.

US PLM
Goal State Cross-model Compared Natural Lang. Multi-
Tracking Evaluation with DS-SL Interaction Domain

Schatzmann et al. (2007) N Y N N N N
Asri et al. (2016) N N N N N N
Liu and Lane (2017) N N N Y Y N
Gür et al. (2018) N N N N N N
Kreyssig et al. (2018) N Y Y N Y N
Papangelis et al. (2019) N N N Y Y N
Shi et al. (2019) N N Y N Y N
Takanobu et al. (2020) N Y N Y N Y
Lin et al. (2021) N Y Y N N Y
Tseng et al. (2021) N Y N Y Y Y
GUS Y Y Y Y Y Y

Table 1: Comparison of prior different user simulators
from a number of important features in building USs.
DS-SL denotes dialog system (DS) trained by super-
vised learning (SL). See Section 2 for detailed meaning
of each feature by column.

state according to the user acts and system acts
of the previous turn, which is shown in Figure 2.
In this work, the definition of goal state is similar
to the agenda in ABUS (Schatzmann et al., 2007),
which represents a collection of pending user acts
that are needed to elicit the information specified
in the goal. The maintenance of goal state includes
not only removing the completed user acts, but also
changing the user goal when the system cannot find
a requested entity.

Extensive experiments are conducted on Mul-
tiWOZ2.1 (Eric et al., 2020). Different DSs are
trained via RL with GUS, ABUS and other abla-
tion simulators respectively, and are compared for
cross-model evaluation, corpus-based evaluation
and human evaluation. The GUS achieves superior
results in all three evaluation tasks.

2 Related Work

Novelty In Table 1, we review prior work on USs
from a number of important features in building
USs, including whether or not the US is based on
any PLMs, the US conducts goal state tracking, the
cross-model evaluation (Schatztnann et al., 2005)
is conducted to assess the performance of the US,
the DS trained via RL with the US is compared
to the DS trained via supervised learning, the US
and the DS interact in natural languages 2, the US
is designed to work for multi-domain dialogs. It
is clear from Table 1 that our proposed GUS is
distinctive, which represents the first US that pos-
sesses all these desirable features, to the best of our
knowledge. More discussions are provided in the

2This means that during reinforcement training of the DS
with the US, the US accepts the system response in natural
language. In contrast, for those USs with ‘N’ marked in
the ‘Natural Lang. Interaction’ column, the system acts are
directly fed to the US so that the US does not need a natural
language understanding module. For such as case, the US is
also said to work at the semantic level.
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following.

US Architecture A variety of user simulators
have been studied, either rule-based or data-driven.
A classic rule-based US is the agenda-based user
simulator (ABUS) (Schatzmann et al., 2007). Dif-
ferent data-driven US models are proposed with dif-
ferent architectures and characteristics. Asri et al.
(2016) develops a LSTM-based seq2seq US on
the single-domain DSTC2 dataset and generates
semantic-level user acts. Gür et al. (2018) proposes
a GRU-based hierarchical seq2seq framework for
US (HUS) and further introduces a latent variable
to control the diversity of dialogue (VHUS). NUS
(Kreyssig et al., 2018) extracts feature vectors re-
lated to current goal states and feeds to a LSTM
seq2seq model to output natural languages. Shi
et al. (2019) make extensive comparisons for six
user simulators, based on two user policy modules
(seq2seq or agenda based) and three NLG mod-
ules (template, retrieval or seq2seq). TUS in (Lin
et al., 2021) designs domain-independent features
and implements the user policy as multi-class clas-
sification so that TUS could be easily adapted to
new domains. Some studies aim to jointly opti-
mize DS and US. The USs used in these studies
are mostly based on LSTM seq2seq architectures
(Liu and Lane, 2017; Papangelis et al., 2019; Tseng
et al., 2021), or simply as multi-class classification
for action selection with feed-forward networks
(Takanobu et al., 2020).

Goal State Tracking in US ABUS is classic in
goal state tracking, where the pending user acts
are tracked in a stack-like structure, called agenda.
ABUS is rule-based, generating user acts by push-
ing and popping hand-crafted rules from agenda.
The goal state tracking process is overlooked in
some later studies of data-driven USs (Asri et al.,
2016; Gür et al., 2018; Papangelis et al., 2019),
where the US is always conditioned on the whole
initial user goal at each turn. Some data-driven USs
explicitly track goal states but employ binary vec-
tors (Kreyssig et al., 2018; Lin et al., 2021; Tseng
et al., 2021). The US in (Takanobu et al., 2020) rep-
resents goal states by tokens, which is flexible, but
the US only interacts with the DS at the semantic
level (not end-to-end trainable).

3 Preliminaries

Notations According to the information flow in
a task-oriented dialog between a US and a DS as

(a) Architecture of Dialog System (DS)

(b) Architecture of User Simulator (US)

Figure 2: The generative architecture of dialog system
and user simulator in our experiments.Yellow boxes
represent the conditioning input of the model during
generation, and green boxes the targeting output.

illustrated in Figure 1, we let gt denote the user
goal state, aut the user act, ut the user utterance, bst
the system belief state, dbt the database result, ast
the system act, and rt the system response, respec-
tively, at turn t = 1, · · · , T , for a dialog of T turns.
Moreover, in this paper we are interested in build-
ing end-to-end trainable US that can interact with
the DS in natural languages. Thus, we introduce
a NLU module in the US, which takes the system
response rt as input and infer system intent. The
NLU result is denoted by but , or loosely speaking,
referred to as the user belief state. Notably, the
US belief state but denotes the US’s understanding
only about the previous system response, and ac-
cordingly is labeled as ast−1 in training. but is not
of accumulated nature, since the US uses the goal
state gt to summarize the dialog history encoun-
tered by the US3.

GPT-2-based Generative Architecture In this
work, all variables defined in the last paragraph for
the US and DS are converted to token sequences,
like in DAMD (Zhang et al., 2020). So pretrained
language models (LMs) such as GPT-2 can be fine-
tuned to build end-to-end trainable DS and US,
as will be introduced later. To be clear, GPT-2
(Radford et al., 2019) in this paper refers to the
particular class of causal LMs, which computes
conditional probabilities for next-token generation

3In contrast, the system belief state bst summarizes the
dialog history encountered by the DS. This subtle difference
makes sense, since the roles of the DS and US are different.
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via self-attention based Transformer neural net-
work (Vaswani et al., 2017). Given a particu-
lar form of conditional model, p(output|input),
where input and output are token sequences, the
GPT-2 model can be finetuned over training sam-
ples (input, output) (often referred to as training
sequences (Hosseini-Asl et al., 2020)), and after
finetuning, the model can be used for generation,
i.e., generating output after receiving input.

Generative Dialog System The main task for a
dialog system (DS) is, for each dialog turn t, to
generate (or say, predict)4 bst , a

s
t and rt, given ut

and dialog history u1, r1, · · · , ut−1, rt−1. A recent
progress in building DS is that all variables are rep-
resented by token sequences, and the workflow of
a dialog system (DST, DP and NLG) is unified into
a single sequence generation problem, which can
be accomplished by a causal LM such as GPT-2
(Hosseini-Asl et al., 2020; Liu et al., 2022). In
this paper, we employ the Markov generative ar-
chitecture (MGA) for DS, which is introduced in
Liu et al. (2022) and shows efficiency advantages
in memory, computation and learning over non-
Markov DS models like SimpleTOD (Hosseini-Asl
et al., 2020). Specifically, for DS to predict bst , a

s
t

and rt at each turn t, we use only the belief state
bt−1 and response rt−1 from previous turn along
with current user utterance ut, as shown in Figure
2(a). The DS can thus be trained via finetuning
GPT-2 by maximizing the following conditional
likelihood over labeled training sequences for su-
pervised learning (SL):

JDS-SL = log pθ(b
s
t , a

s
t , rt|bst−1, rt−1, ut)

=

|bst⊕ast⊕rt|∑

i=1

log pθ(ci|bst−1, rt−1, ut, c<i)

(1)
where ⊕ denotes the concatenation of sequences,
|bst ⊕ ast ⊕ rt| denotes the length in tokens, and
ci denotes the i-th token. The DS parameters are
actually a set of GPT-2 parameters, collectively
denoted by θ.

4 Method: Generative User Simulator

An end-to-end trainable US needs several modules
- natural language understanding (NLU) of system
responses, goal state tracking (GST), user policy

4Note that database result dbt is deterministically obtained
by querying database using the predicted bst . We omit dbt in
the discussion for simplicity.

(UP), and natural language generation (NLG). In-
spired by the recent approach of finetuning PLMs
such as GPT-2 to build end-to-end trainable gen-
erative DSs, we propose an end-to-end trainable
generative user simulator (GUS), which generally
refer to the approach of recasting all the modules
in the US (NLU, UP, and NLG) as conditional gen-
eration of tokens based on finetuning PLMs such
as GPT-2. In the following, we first introduce the
GUS model including goal state tracking and GPT-
2 based architecture. Then, we describe how GUS
is trained and used for reinforcement training of
the DS.

4.1 GUS Model
Goal State Definition Crucially, the interaction
between the user and the system is motivated by the
user goal, which is composed of user constraints
and requests such as booking a cheap hotel. The
goal state, in this paper, is defined as the uncom-
pleted part of the user goal at each turn. Similar
to Kreyssig et al. (2018), we accumulate the an-
notated user acts backwards turn by turn to obtain
the goal state annotation at each turn. The accumu-
lation process is illustrated in Appendix A.1.The
goal state obtained at the first turn corresponds to
the initial user goal for the whole dialog session.

Goal State Tracking Given the goal state an-
notations at each turn, the US can be trained via
teacher-forcing to mimic the user behaviors. When
the US is applied to interact with the DS for evalu-
ation or for reinforcement training of the DS, the
US needs to track the completion process of the
goal to update the goal state turn by turn, which we
call goal state tracking. There are three types of
user intents in the goal state gt - inform, book and
request. The slots and values for the first two types
of intents in gt are denoted by gconstraint

t and those
of the request intent as grequest

t . The update rule of
gt at turn t is designed to be as follows:

gconstraint
t = gconstraint

t−1 ⊖ au,inform
t−1

grequest
t = grequest

t−1 ⊖ bu,inform
t

(2)

where au,inform
t−1 , bu,inform

t are the informable slots
and values in user act aut−1 and user belief state
but respectively and ⊖ denotes removing the cor-
responding slots and values. Moreover, the slot
values in the initial user goal may be changed dur-
ing the interaction (i.e., goal change). When the
DS expresses no-offer intent, which means no en-
tities in the database satisfy the constraints of the
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goal, we randomly select one slot in the no-offer
intent and replace its value with another value in
the ontology.

GPT-2-based Architecture The main task for a
US is, conditional on the user goal, to iteratively
understand the system response, track goal state,
decide user act, and generate user utterance. In this
work, we find that the recent approach of finetun-
ing GPT-2 for conditional generation can be simi-
larly applied to build US. Specifically, we employ
Markov generative architecture (Liu et al., 2022).
The US is designed to firstly infer the system intent,
i.e., user belief state but of turn t from the previous
system response rt−1, which could be modeled as
pϕ(b

u
t |rt−1). After obtaining but , the goal state will

be updated according to the rule in Eq. (2). Then,
the US will generate user act and user utterance
sequentially conditioned on the previous system
response, user belief state, and the updated goal
state. The resulting US is called GUS and could
be modeled as pϕ(a

u
t , ut|rt−1, b

u
t , gt). The GUS

parameters are actually another set of GPT-2 pa-
rameters, collectively denoted by ϕ.

4.2 GUS Training
The GUS model can thus be trained via finetuning
GPT-2 by maximizing the following conditional
likelihood over labeled training sequences for su-
pervised learning (SL):

JUS-SL = log pϕ(b
u
t |rt−1)

+ log pϕ(a
u
t , ut|rt−1, b

u
t , gt)

(3)

Note that during supervised learning, the user belief
state but is labeled by directly copying the system
act ast−1 from the previous turn.

4.3 Reinforcement Optimization of DS
through Interaction with US

RL Setup The DS and US described above
will first be trained using supervised learning
with the objectives in Eq. (1) and Eq. (3) respec-
tively. After supervised learning, we can per-
form RL optimization on the DS through inter-
actions with the US. The DS agent view the US
as the environment and use its conditional model
pθ(b

s
t , a

s
t , rt|bst−1, rt−1, ut) as its policy. Here the

policy of the DS involves generating not only sys-
tem act ast , but also belief state bst and system re-
sponse rt. This is different from some previous
studies of learning reinforced DS, e.g., (Liu and
Lane, 2017; Papangelis et al., 2019; Tseng et al.,

2021), which only use RL to optimize the selec-
tion of system acts (but all use traditional LSTM
seq2seq architectures). However, thanks to the rep-
resentation power of GPT-2, recursively predict (or
say, decide about) bst , ast and rt in one policy yields
the best performance in our experiment. In Sec-
tion 7.3, we compare different schemes for policy
definition for the DS agent with more discussions.

RL Optimization We apply the policy gradient
method (Sutton et al., 2000) to optimize the DS for
RL. We first let the two agents interact with each
other based on the user goals from the goal gen-
erator provided by ConvLab-2 (Zhu et al., 2020).
Then we calculate the reward Rt for each turn, as
detailed below. The return Ui,t for the action of
turn t at the i-th step is γ|At|−iRt, where γ is the
discounting factor and |At| is the policy sequence
length of turn t. We update the DS with the follow-
ing policy gradients:

∇θJDS-RL =

|bst⊕ast⊕rt|∑

i=1

Ui,t∇θ log pθ(ci) (4)

where pθ(ci) denotes pθ(ci|bst−1, rt−1, ut, c<i).

Reward Settings A number of different settings
for reward have been studied, as described in
the following. The three settings are separately
tested, and the experimental results are given in
Section 7.2.
1) Success. If a dialog is successful, we set the
reward of each turn to 1, otherwise it is set to be 0;
2) A turn-level synthetic reward similar to Tseng
et al. (2021); Takanobu et al. (2020), which consists
of requesting reward (+0.1 for each), repeating pun-
ishment (-0.5 for each) and task completion reward
(the proportion of tasks completed) of the DS;
3) A Sigmoid synthetic reward obtained by map-
ping the synthetic reward to [0,1] interval using
the Sigmoid function. This setting is designed to
exclude the influence of the value range of reward
because the value range is different between the
Success reward and the synthetic reward.

5 Experiments

5.1 Dataset
Experiments are conducted on MultiWOZ2.1 (Eric
et al., 2020), which is an English multi-domain
task-oriented dialog dataset of human-human con-
versations. It contains 10.4k dialogs, collected in
a Wizard-of-Oz setup over seven domains. The
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dataset contains the annotations of system belief
state, system act, and user act for every turn.

5.2 Evaluation Metrics
Evaluating the quality of a US is not trivial. The
performance of the reinforced DS trained with a
specific US gives an indirect assessment of the
quality of the US. Considering that a main purpose
of developing USs is to help train RL based DSs,
this indirect assessment makes sense and is widely
employed (Kreyssig et al., 2018; Shi et al., 2019;
Lin et al., 2021). We conduct both automatic evalu-
ation and human evaluation of the DSs trained with
different USs. Additionally, we also ask human
graders to directly assess the performance of dif-
ferent USs, by reading and scoring the generated
utterances from the USs.
Automatic Evaluation It could be interaction-
based or corpus-based. For both manners, we can
calculate Inform and Success for measuring the
performance of the DSs. Inform Rate measures
how often the entities provided by the system are
correct. Success Rate refers to how often the sys-
tem is able to answer all the requested attributes by
user. BLEU Score is used to measure the fluency of
the generated system responses when conducting
corpus-based evaluation.

Human Evaluation We conduct human evalua-
tion, where human graders are recruited to assess
the quality of dialogs generated by the US and the
DS trained with it. Similar to Su et al. (2021), for
each dialog, the grader will score the conversation
on a 3-point scale (0, 1, or 2)5 by the following 3
metrics for the DS and 2 metrics for the US:

• Success. This metric measures if the DS suc-
cessfully completes the user goal by interact-
ing with the US;

• DS Coherency (DS-coh). This metric mea-
sures whether the system’s response is logi-
cally coherent with the dialogue context;

• DS Fluency (DS-Flu). This metric measures
the fluency of the system’s response.

• US Coherency (US-Coh). This metric mea-
sures whether the simulator’s utterance is log-
ically coherent with the dialogue context;

• US Fluency (US-Flu). This metric measures
the fluency of the simulator’s utterance.

5Three scales (0, 1 and 2) denote three degrees - not at all,
partially and completely, respectively.

5.3 Baseline

The DS model is as described in Section 3. We
compare GUS with the classic rule-based simulator
ABUS (Schatzmann et al., 2007). We use the sim-
ulator in the ConvLab-2 (Zhu et al., 2020) toolkit,
which provides an instantiation of ABUS on Multi-
WOZ (Budzianowski et al., 2018), including BERT-
based NLU and template-based NLG. The ABUS
in ConvLab-2 has a goal generator module, which
we use for driving the interaction between the DSs
and the proposed GUS. Remarkably, the TUS pa-
per (Lin et al., 2021) has revealed the shortcoming
of VHUS (Gür et al., 2018), which performs much
worse than ABUS. Also, it is concluded that TUS
has a comparable performance to the rule-based
ABUS in cross-model evaluation. Thus, in this pa-
per, we mainly compare GUS with ABUS, which
is a very strong baseline.

6 Main Results

6.1 Cross-Model Evaluation

Cross-model evaluation is a type of automatic eval-
uation (Schatztnann et al., 2005) to compare differ-
ent USs. The main idea is that if the DS trained
with a specific US performs well on all USs (not
just on the one that the DS was trained with), it
indicates the specific US with which the DS was
trained is of good quality (realistic), and thus the
DS is likely to perform better on real users.

Specifically, we first train a DS and a US sep-
arately on training data based on the supervised
learning objectives described in Eq. (1) and Eq. (3).
The resulting models are referred to as DS-SL and
GUS respectively. Then we further optimize DS-
SL by policy gradient in Eq. (4) on interaction with
either ABUS or GUS, and obtain DS-ABUS and
DS-GUS respectively. For either of ABUS and
GUS, RL trainings (all starting from DS-SL) are in-
dependently taken for three times with different ran-
dom seeds. Each specific DS model is then tested
on both ABUS and GUS. We use the same 1000
randomly generated goals for each test. Further im-
plementation details can be found in Appendix A.2.
Table 2 shows the cross-model evaluation results6.

It can be seen from Table 2 that the DS trained
with GUS (DS-GUS) performs well on both ABUS

6Similar tables to Table 2 have been used in previous work
such as NUS (Kreyssig et al., 2018) and TUS (Lin et al.,
2021). A common practice of reading such tables is row-
by-row comparison. This is exactly what the cross-model
evaluation means.
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DS \ US
ABUS GUS

Inform Success Inform Success
DS-SL 0.864 0.791 0.781 0.736
DS-ABUSbest 0.885 0.816 0.783 0.741
DS-GUSbest 0.881 0.810 0.864 0.808
DS-ABUSavg 0.889 0.793 0.793 0.735
DS-GUSavg 0.872 0.801 0.859 0.802

Table 2: Cross-model evaluation results. The subscripts
best and avg denote the best and the average from 3 in-
dependent RL experiments with different random seeds.

and GUS, while the DS trained with ABUS (DS-
ABUS) only performs well on ABUS and achieves
much lower Inform and Success when tested with
GUS. This indicates the superiority of GUS over
ABUS, being more helpful in training reinforced
DSs that perform well on both USs. Moreover, DS-
GUS also outperforms the supervised baseline (DS-
SL) on both USs. This shows the practical benefit
brought by training DSs via RL on interaction with
the proposed GUS. Such comparison of RL and SL
is overlooked in some prior work, as reviewed in
Table 1.

6.2 Corpus-based Evaluation

Corpus-based evaluation has become a widely-used
type of automatic evaluation to compare different
end-to-end DSs. In the context of studying USs,
it is relevant to conduct corpus-based evaluation
for the following two aspects. First, running test-
ing of the DS trained with a specific US over a
fixed testing set of dialogs could be an indirect as-
sessment of the quality of the US. Second, it is
possible for the trained DS via RL to achieve high
task success and yet not generate human language
(Zhao et al., 2019), particularly when the reward is
mainly defined to encourage task success. With the
fixed testing set, we could calculate BLEU which
measures the NLG performance of the trained DS.

We use the standard evaluation scripts from
Nekvinda and Dušek (2021) for corpus-based eval-
uation. The results are shown in Table 3 with some
interesting findings. First, the DS trained with GUS
(DS-GUS) achieves higher combined score than
the DS trained with ABUS (DS-ABUS). This is
consistent with the results in Table 2 and again
demonstrate the advantage of GUS over ABUS.
Second, note that DS-GUS is initialized from DS-
SL and further trained via RL on interaction with
GUS, and Table 2 shows that DS-GUS improves
over DS-SL not only in Inform and Success but

DS Inform Success BLEU Combined
AuGPT (Kulhánek et al., 2021) 76.6 60.5 16.8 85.4
SOLOIST (Li et al., 2020) 82.3 72.4 13.6 90.9
UBAR (Yang et al., 2021) 83.4 70.3 17.6 94.4
DS-SL 84.10 72.10 19.24 97.34
DS-ABUSbest 84.20 71.00 19.44 97.04
DS-ABUSavg 85.37 69.70 19.10 96.64
DS-GUSbest 85.70 74.60 19.80 99.95
DS-GUSavg 85.17 73.33 19.83 99.01

Table 3: Corpus-based evaluation. Above the dashed
line are GPT-2-based results from the official website
of MultiWOZ. Below are the results from DS-SL and
the DSs trained with ABUS and GUS respectively.

also in BLEU. This result indicates that RL train-
ing of the DS with GUS does not suffer from the
tradeoff problem between policy learning and NLG
in offline RL (Zhao et al., 2019)7, achieving higher
success and being faithful to human language. See
more discussions in Section 7.3.

6.3 Human Evaluation

We further perform human evaluation of the perfor-
mances of USs and DSs. For each pair of US and
DS, 100 dialogs were gathered, which were scored
by 5 human graders. The details of evaluation met-
rics have been described in Sec. 5.2 and the results
are shown in Table 4. For convenience, we refer to
the results of each row by the name of the DS in
the table. It can seen that the overall performance
of DS-GUS is superior over both DS-ABUS and
DS-SL. Further, we conduct significance tests by
comparing either DS-ABUS or DS-SL with DS-
GUS respectively, using the matched-pairs method
(Gillick and Cox, 1989) and add a superscript ∗

to the score in the first two rows in Table 4 if the
p-value is less than 0.05. All the specific p-values
can be seen in Appendix A.4. The results show
that DS-GUS significantly improves over DS-SL
for Success and US-Coh, while the differences in
terms of DS-Coh, DS-Flu and US-Flu are not sig-
nificant. Moreover, all the human evaluation met-
rics by DS-GUS are stronger than or equal to those
by DS-ABUS. Particularly, DS-GUS significantly
outperforms DS-ABUS for DS-Flu, US-Coh and
US-Flu. This indicates that GUS is able to generate
more coherent and fluent utterances than ABUS.
To illustrate this point, we provide some generated
dialogues in Appendix A.3.

7This problem for offline RL is further studied and allevi-
ated in Lubis et al. (2020).
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DS US Success DS-Coh DS-Flu US-Coh US-Flu
DS-ABUS ABUS 1.71 1.51 1.65∗ 1.27∗ 1.30∗

DS-SL GUS 1.73∗ 1.60 1.85 1.61∗ 1.88
DS-GUS GUS 1.84 1.52 1.79 1.75 1.90

Table 4: Human evaluation of the dialogs generated
by different DSs and USs. The score with ∗ in the
first two rows denotes the difference between this score
and the score in the last row (DS-GUS with GUS) is
significant (p-value<0.05); otherwise, the difference is
not significant (p-value>=0.05).

US Inform Success
ABUS 0.863 0.790
GUS 0.825 0.777
GUS w/o GST 0.743 0.502

Table 5: The ablation results about goal state tracking
(GST). The DS trained with GUS w/o GST is tested on
ABUS, GUS and GUS w/o GST respectively.

7 Ablation Study

7.1 The Importance of Goal State Tracking

In our GUS model, we use Eq. (2) to update
the goal state at every turn. In the section, we
consider a variant of GUS, which sets the goal
state at all turns to be the initial goal, that is,
gt = g0, t = 1, ..., T , like in Asri et al. (2016);
Gür et al. (2018); Papangelis et al. (2019). Such
model is referred to as GUS w/o GST, and could
be similarly trained according to Eq. (3). Then
we train a DS with this US (called “DS-GUS w/o
GST”) and test it with ABUS, GUS and GUS w/o
GST respectively. The results are shown in Table 5.
We can see that the Inform and Success rates ob-
tained by “DS-GUS w/o GST” are lower than those
by DS-GUS as shown in Table 2, when testing on
ABUS and GUS. This indicates the importance of
using GST in GUS. Besides, we can see that the re-
sults are pretty low when testing on GUS w/o GST.
Presumably, this is because GUS w/o GST cannot
accurately distinguish the uncompleted part in the
complex goal, which will easily cause omission
and repetition when generating user acts.

7.2 Different Reward Settings

The results of optimizing DS on GUS using differ-
ent reward settings are reported in Table 6. It is
found that all reward settings achieve better results
than supervised baseline (Reward=None) and the
synthetic reward setting achieves the best result,
which is reasonable since the fine-grained rewards
reflect more than simple success rate in terms of

Reward Inform Success
None 0.781 0.736
Success 0.842 0.787
Synthetic 0.864 0.808
Sigmoid synthetic 0.850 0.780

Table 6: Interaction-based results of testing DS-GUS
on GUS under different reward settings, as introduced
in Section 7.2. “None” denotes the testing results of
DS-SL with GUS, as also reported in the first row in
Table 2.

Policy Inform Success
bst ⊕ ast ⊕ rt 0.864 0.808
ast ⊕ rt 0.845 0.770
ast 0.848 0.796

Table 7: The ablation experiments of using different
policy schemes.

the nature of the tasks (Tseng et al., 2021). All
RL results in this paper are based on this setting of
reward, unless here for ablation study.

7.3 Different Policy Schemes for DS

The policy in RL refers to the probabilistic map-
ping from states to actions. Previous studies of
learning reinforced DS, e.g., (Liu and Lane, 2017;
Papangelis et al., 2019; Tseng et al., 2021), mainly
employ RL to optimize the policy module, i.e., use
system acts for actions. In contrast, the policy of
DS-GUS and DS-ABUS involves generating not
only system act ast , but also belief state bst and
system response rt, which can be represented as
bst ⊕ ast ⊕ rt, as illustrated in Eq. (4). To compare
policy schemes for reinforced DS, we try two other
policy schemes when optimizing DS-GUS. The
first policy scheme only involves the generation of
system act ast and the second one involves the gen-
eration of both system act ast and system response
rt. We denote the two policy schemes as ast and
ast ⊕ rt respectively. Table 7 shows the interaction
results when the DS-GUS trained under different
policy schemes is tested with GUS.

It can be seen from Table 7 that using bst⊕ast⊕rt
for policy achieves the highest Inform and Success
rate. We provide two points, which may explain the
advantage of our model in using bst⊕ast⊕rt for RL.
First, since the DST, DP and NLG modules in GPT-
2 based DS share the model parameters, parameter
adjust in one module will affect other modules.
Only optimizing DP during RL without considering
other modules may mislead other modules. Using
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bst ⊕ ast ⊕ rt leads to better overall optimization
and decision-making. Second, the balance between
policy learning and NLG, which was a concern
in previous studies when using modular or small-
capacity architectures (Zhao et al., 2019), could be
relieved, thanks to the high-capacity of GPT-2.

8 Conclusion

In this paper, towards developing an end-to-end
trainable US for multi-domains, a generative user
simulator (GUS) with GPT-2 based architecture
and goal state tracking is proposed and systemat-
ically evaluated. We train GPT-2 based DSs and
USs and conduct cross-model evaluation, corpus-
based evaluation and human evaluation. The results
show that the DS trained with GUS outperforms
both the supervised trained DS and the DS trained
with ABUS. The human evaluation further con-
firms the superiority of GUS and shows that GUS
can generate much more coherent and fluent utter-
ances than ABUS. Moreover, GUS is simple and
easy to use, in addition to its strong performance.
Hope this work will stimulate further work on de-
veloping and using user simulators in the study of
building dialog systems.

9 Limitations

There are some limitations of this work. First, due
to computational constraints, both the DSs and the
USs are experimented based on a distilled version
of GPT-2. Studies using larger GPT-2 and other
classes of larger PLMs such as T5 (Raffel et al.,
2020) would enhance our results in this paper. Sec-
ond, we only utilize the policy gradient method for
RL in this paper. Other advanced RL methods such
as proximal policy optimization (PPO) and actor-
critic are also worth trying in future work. Those
being said, while we agree that experimenting with
larger PLMs and more complex RL methods are
meaningful, we believe the extensive experiments
presented in this paper (cross-model evaluation,
corpus-based evaluation, human evaluation, and
ablation studies) can well support the evaluations
of GUS and should not affect the main finding and
contribution of this paper.
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Figure 3: An example of how turn-level goal state anno-
tations are obtained. The blue boxes are user acts and
the yellow ones are goal states.

A Appendices

A.1 Data Processing
We delexicalize system responses following Zhang
et al. (2020) to reduce surface language variability.
Specifically, we replace values in the ontology with
specific placeholders such as [value_name] and
[value_price]. The proposed DS and US are both
trained on the delexicalized dataset. During human
evaluation or interaction with ABUS, the system
responses need to be lexicalized. We then replace
those placeholders with corresponding values in the
predicted entities by querying the given database
with the predicted belief states.

For building US, we need to accumulate the an-
notated user acts backwards turn by turn to obtain
the goal state annotation at each turn as we de-
scribed in Sec 4. The accumulation process is
depicted in Figure 3.

A.2 Implementation Details
We use Huggingface Transformers repository. GPT-
2 based DSs and USs are initialized with DistilGPT-
2 (Sanh et al., 2019), a distilled version of GPT-2,
with 6 transformer decoder layer. During super-
vised learning, we use the AdamW optimizer and a
linear scheduler with 20% warm up steps and max-
imum learning rate 10−4. The minibatch base size
is set to be 8 with gradient accumulation steps of 4.
During RL, we no longer use scheduler and fix the
learning rate to 2× 10−5. The minibatch base size
is set to be 16 with gradient accumulation steps
of 12. For each interaction, the dialog will end in
the following three cases: 1) both the DS and US
generate bye intent; 2) the goal state of the US is
empty; 3) the content of the current turn is exactly
the same as that of the previous turn. Besides, to
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User
Sorry, actually I need an expensive restaurant in
the north. The first on your list would be great.

Bspan [restaurant] pricerange expensive area north
Act [restaurant] [inform] name
Resp Sure how about [value_name]?
BspanSL [restaurant] pricerange expensive area north food north
ActSL [restaurant] [nooffer] food area [request] food

RespSL
I am sorry, there are no [value_food] restaurants in the
[value_area] . Would you like to try a different type of cuisine?

BspanRL [restaurant] pricerange expensive area north
ActRL [restaurant] [inform] choice price area [request] food

RespRL
There are [value_choice] [value_price] restaurants in
the [value_area] . What type of food would you like?

Table 8: One dialog turn in the test set. Bspan and Act
denote the sequence forms of belief state and system
act. The subscript SL and RL represent the supervised
trained model DS-SL and the RL model DS-GUS re-
spectively.

increase the diversity of dialogues, beam search
decoding is applied during generating user acts and
system acts. The beam size is set to be 10 and the
final act will be sampled by probability from the
10 candidates. All the SL and RL experiments are
conducted on a single 16GB Tesla-P100 GPU.

A.3 Case Study

Interaction Case To illustrate the advantage of
GUS over ABUS, we let DS-ABUS and DS-GUS
interact with their corresponding USs under the
same user goal. The generated dialogs are shown
in Table 9. It can be seen that the user utterances
generated by ABUS are unlike natural languages
and sometimes logically coherent. For instance,
ABUS says “I want a train” when it has said “please
book the train for me” before in the first turn. On
the contrary, GUS can generates very fluent and
logically coherent utterances, and is able to under-
stand the system response and provide necessary
information to complete the dialogue.

Corpus-based Evaluation Case We can see
from Table 3 that DS-GUS improves the Success
rate over DS-SL on test set. We show an dialog
example in Table 8 to explain how the RL improves
the DS performance. In this turn, DS-SL predicts
a wrong Bspan with a redundant slot “food” and
incorrect value “north”. As a result, no entity can
be found when querying database and DS-SL gen-
erates “nooffer” intent, which finally leads to an
unsuccess dialog. However, DS-GUS can predict a
correct Bspan and generate an appropriate system
act in this turn. This indicates that RL can improve
the ability of dialog state tracking of DS, thus im-
proving the success rate. In fact, this advantage
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User Goal
Train: Inform (arrive=12:45; day=Thursday; departure=Birmingham new street; destination: Cambridge),

Book (people=8)
Attraction: Inform (area=centre), Request (postcode, phone)

Dialogue generated through the interaction between DS-ABUS and ABUS
user1: Please book the train for me. I am departing from Birmingham new street. I want a train leaving on Thursday.

I would like to go to Cambridge please.
resp1: There are 19 trains that meet your criteria. What time would you like to leave?
user2: Please pick one for me. I don’t care about the leave of the train.
resp2: Tr4235 leaves at 05:40. Would you like me to book it for you?
user3: I want to get there by 12:45.
resp3: Tr4235 arrives at 08:23. Would you like me to book it for you?
user4: I would like 8 tickets please.
resp4: Booking was successful, the total fee is 600.8 pounds payable at the station. Reference number is: 0000002206.

Is there anything else I can help you with?
user5: Can you help me plan a trip to see a particular attraction? I’d like something in the centre.
resp5: There are 44 theatre and architecture in the centre of town. What type of attraction are you interested in?
user6: Just select one for me. I don’t care about the type of the attraction.
resp6: There are 44 museums in the centre of town. May I suggest Adc theatre ?
user7: Sounds good. Could I get the phone number of the attraction? Can you give me the postcode of the attraction?
resp7: The phone number is 01223300085 and the postcode is CB58AS. Is there anything else I can help you with?
user7: That’s all the help I need. Take care. Bye.
resp7: Thank you for contacting us and have a nice day.

Dialogue generated through the interaction between DS-GUS and GUS
user1: I am looking for places to go in the centre of town.
resp1: There are 44 attractions in the centre. Do you have a specific type in mind?
user2: No, I don’t have a preference.
resp2: I would recommend Adc Theatre on Park Street. It is free to get in.
user3: That sounds great. Can I get the phone number and postcode?
resp3: The phone number is 01223300085 and the postcode is CB58AS. Is there anything else i can help you with?
user4: I am also looking for a train going to Cambridge.
resp4: Where will you be departing from and what day would you like to travel?
user5: I will be departing from Birmingham new street on Thursday.
resp5: There are 19 trains that meet your criteria. Do you have a preferred departure or arrival time?
user6: I would like to arrive by 12:45. I would like to book for 8 people.
resp6: Booking was successful, the total fee is 600.8 pounds payable at the station. Reference number is: 0000002206.
user7: Thank you so much! that is all I need.
resp7: Thank you for contacting us and have a nice day.

Table 9: Dialogs generated through the interaction between DSs and USs.

comes from the special policy scheme employed in
this paper, as discussed in Sec 7.3.

A.4 Significance Test
In Sec. 6.3, we conduct significance tests to show
whether the differences between the first two
groups and the last group in Table 4 are signifi-
cant. The p-values are listed in Table 10.

DS Success DS-Coh DS-Flu US-Coh US-Flu
DS-ABUS vs DS-GUS 0.065 0.535 0.036 0.000 0.000
DS-SL vs DS-GUS 0.045 0.220 0.273 0.020 0.639

Table 10: Significance tests for human evaluation. We
refer to the results of each row in Table 4 by the name
of the DS.
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