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Abstract
We describe the ULFRI system used in the Sub-
task 1 of SemEval-2022 Task 4 Patronizing and
condescending language detection. Our models
are based on the RoBERTa model, modified in
two ways: (1) by injecting additional knowl-
edge (coreferences, named entities, dependency
relations, and sentiment) and (2) by leveraging
the task uncertainty by using soft labels, Monte
Carlo dropout, and threshold optimization. We
find that the injection of additional knowledge
is not helpful but the uncertainty management
mechanisms lead to small but consistent im-
provements. Our final system based on these
findings achieves F1 = 0.575 in the online
evaluation, ranking 19th out of 78 systems.

1 Introduction

Despite invaluable contributions to the society, the
internet can also serve as an infrastructure for a
rapid spread of hurtful language, in part due to
the anonymity it commonly provides (Burnap and
Williams, 2015). The spread of such language can
have a serious impact on individuals, such as the
increased development of mental health problems
in children (Munro, 2011). To prevent this, the
society has to establish moderation mechanisms.
Fully manual content moderation is infeasible both
due to the large scale of the web as well as the
possible negative psychological effects on human
moderators (Arsht and Etcovitch, 2018). Much at-
tention has been devoted to the automatic detection
of offensive language within the field of natural lan-
guage processing (NLP). Some examples include
the detection of hate speech (Davidson et al., 2017),
toxic language (Pavlopoulos et al., 2021), and cy-
berbullying (Dadvar et al., 2013), which use a rela-
tively explicit form of hurtful language (Waseem
et al., 2017). In contrast, patronizing and conde-
scending language (PCL) is more implicit in nature.
PCL can roughly be described as an expression of
a superior attitude towards others, possibly uncon-
sciously. Perez Almendros et al. (2020) have shown

that large language models are able to detect PCL
to a various degree, but consistently better than
random guessing or a machine learning approach
using the bag-of-words representation. Based on
that, the authors propose SemEval-2022 Task 4
(Pérez-Almendros et al., 2022), which aims to en-
courage further research and improvements in the
detection of PCL.

We present our attempts at modeling PCL, based
on the RoBERTa model (Liu et al., 2019) and fol-
lowing two main lines:

1. Injection of additional knowledge. We
experiment with the injection of additional
knowledge on coreferences, named entities,
dependency relations, and sentiment.

2. Leveraging uncertainty present in the task.
We experiment with the use of soft labels in
the form of the target label probability distri-
bution, and with the Monte Carlo dropout as
a means for more accurate estimation of the
label posterior probability (Gal and Ghahra-
mani, 2016).

Our first set of modifications aims to guide the
model to better follow the definition of PCL. The
additional coreference and named entity knowl-
edge may help the model to focus on detecting
an imbalance between entities in the text, while
the dependency relations and sentiment knowledge
may help the model discover more subtle linguistic
patterns used in PCL. We inject different forms
of knowledge as the second input sequence to the
model, combining it with the primary text represen-
tation during training of the PCL detector. This is
motivated by the Factored Transformer (Armengol-
Estapé et al., 2021).

The second set of modifications aims to capture
the subjectivity and uncertainty that is inherently
present in the task and is reflected in the annotator
disagreement. This is motivated by the data per-
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spectivism paradigm (Basile et al., 2021) which
argues the disagreements are not necessarily errors.

We participate in Subtask 1, and our best model
ranks 19th out of 78 systems1. In our analysis,
we find that (1) injection of additional knowledge
does not increase the F1 score significantly and (2)
leveraging uncertainty in the task leads to small but
consistent increase in the F1 score.

The remainder of the paper is structured as fol-
lows. In Section 2, we describe the details of the
task. In Section 3, we describe our approach, and
analyze its performance in Section 4. In Section
5, we summarize our work and provide ideas for
further work.

2 Task Description

Given an updated version of the Don’t Patronize
Me! dataset (Perez Almendros et al., 2020), the
goal of SemEval-2022 Task 4 Subtask 1 is the de-
tection of patronizing and condescending language
(PCL). The provided dataset consists of 10 469
paragraphs annotated by three annotators: two were
tasked with annotating the examples as not contain-
ing PCL (0), containing PCL (2), or borderline (1).
The third annotator resolved complete disagree-
ments, i.e. examples annotated as {0, 2} by the two
annotators. The annotations are aggregated into a
five-point fine-grained class yF :

• yF = 0 if both annotators assigned the label
0,

• yF = 1 if one annotator assigned the label 0
and the other assigned 1,

• yF = 2 if both annotators assigned the label
1,

• yF = 3 if one annotator assigned the label 2
and the other assigned 1,

• yF = 4 if both annotators assigned the label
1.

We provide the distribution of these fine-grained
class labels in Figure 1. For the task evalua-
tion, the fine-grained five label class is binarized
into a coarse-grained class yC , where yC = 1 if
yF ∈ {2, 3, 4}, and yC = 0 otherwise. Although
the final evaluation uses binary labels, the fine-
grained labels can provide additional information

1Our code is available at https://github.com/
matejklemen/pcl-detection-semeval2022t4.
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Figure 1: Fine-grained PCL label distribution. The
numbers above bars indicate the number of examples
for each label.

in the form of label uncertainty. We leverage this
information in one of our modifications, described
next.

3 Methods

In this section, we describe our methodology. First,
we describe RoBERTa, which we use as the base-
line model. Then, we describe how additional
knowledge is injected into the model in Section
3.2. In Section 3.3 we describe how we leverage
the task uncertainty in our model.

3.1 RoBERTa

RoBERTa (Liu et al., 2019) is a robustly opti-
mized BERT model (Devlin et al., 2019), com-
posed of multiple transformer layers that use the
self-attention mechanism to construct a text repre-
sentation. It is first pre-trained on a general corpus
using the masked language modeling objective, af-
ter which it can be fine-tuned for a downstream
task. Motivated by its strong performance on the
PCL detection task shown by Perez Almendros
et al. (2020), we use the RoBERTaBASE model as a
baseline.

3.2 Knowledge injection

We inject various types of additional knowledge
through a secondary aligned input sequence con-
taining additional knowledge in the form of special
tokens. The procedure is shown in Figure 2 for one
type of additional knowledge. Using RoBERTa,
we independently obtain two representations and
combine them using a learned weighted linear com-
bination to obtain a single representation. Lastly, a
linear layer transforms the representation into label
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Figure 2: Injection of additional coreference knowledge
for PCL detection. The secondary sequence (in yellow)
consists of special tokens that denote if a word repre-
sents an entity (Ei) or not (O).

scores. The individual sequence representations
correspond to the output of the last layer for the
<s> token in each sequence.

We experiment with four different types of ad-
ditional knowledge, one at a time: coreferences
(obtained using neuralcoref2), sentiment (obtained
using SentiWordNet (Esuli and Sebastiani, 2006)),
named entities, and dependency relations (obtained
using Stanza (Qi et al., 2020)). We provide addi-
tional preprocessing details and the used tagsets in
Appendix A.

As our modification requires embedding two in-
put sequences instead of one, the memory require-
ment during training is doubled, and the batch size
has to be halved. To minimize differences due to
a halved batch size, we accumulate gradients over
two half-sized batches before updating the parame-
ters.

3.3 Leveraging uncertainty
We experiment with two ways to leverage the task
uncertainty. The first approach trains a model on
soft instead of hard (one-hot encoded) labels. We
show the comparison between hard and soft labels
in Table 1. As described in Section 2 each example
is annotated twice. We assign each annotation a
probability of the example containing PCL: 0.0 if
the annotation is 0, 1.0 if it is 2, and 0.5 if it is 1
(borderline). To obtain the final soft labels, we then
take the mean of the two annotations. In this way,
we transform a five-class problem into a binary
one while approximately preserving information

2https://github.com/huggingface/
neuralcoref

about label differences. Additionally, we poten-
tially avoid issues when a label has few training
examples.

Table 1: Conversion scheme from fine-grained annota-
tions into hard and soft binary target vector.

Label
type

Fine-grained
annotation (yF)

Binary
target vector

hard
0, 1 [1.00, 0.00]

2, 3, 4 [0.00, 1.00]

soft

0 [1.00, 0.00]
1 [0.75, 0.25]
2 [0.50, 0.50]
3 [0.25, 0.75]
4 [0.00, 1.00]

The second approach uses the Monte Carlo
dropout (MCD) (Gal and Ghahramani, 2016) to
sample the label distribution during the prediction
phase. Instead of determining the target label us-
ing a single prediction, we obtain multiple non-
deterministic predictions while applying dropout
(Srivastava et al., 2014), and then aggregate them
into a single prediction (in our case, using the
mean) (Miok et al., 2022).

Both modifications transform the target label
probability distribution, so using the PCL probabil-
ity threshold of 0.5 may no longer be suitable. For
this reason, we also experiment with the decision
threshold optimization, i.e. we select the threshold
based on the validation set F1 score.

4 Evaluation

In this section, we evaluate our methodology and
compare it to the baseline. We start by describ-
ing the experimental settings in Section 4.1, and
continue with the results in Section 4.2.

4.1 Experimental settings

We select the hyperparameters for the training of
RoBERTa using the validation set F1 score in pre-
liminary experiments on a single 80%:10%:10%
split into the training, validation and testing set.
In our main experiments, we use the learning rate
10−5, maximum sequence length of 158, and batch
size of 48. The latter two were selected in a way to
allow training on an 11GB GPU.

In the evaluation, we use 10-fold cross valida-
tion and report the means across folds. In each
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cross validation iteration, we use 10% of the train-
ing set for tuning and early stopping. Following
the official evaluation, we use three metrics: pre-
cision, recall, and F1 score for the positive (PCL)
label. To improve clarity, we only report the mean
F1 score throughout this section, and provide other
metrics and standard deviations of the results in Ap-
pendix B. We statistically test the differences in F1

score between pairs of models using the Wilcoxon
signed-rank test (Wilcoxon, 1945). The same test is
applied to the difference between groups of models,
where one group uses and one group does not use
certain modification (e.g., soft labels). In all cases,
we use a confidence level α = 0.01 to determine
the significance of the differences.

For the online evaluation, we retrain the model
using the best parameters on a 90%:10% split into
a training and validation set.

4.2 Results

Table 2 shows the F1 scores of our enhanced
models in comparison to the RoBERTaBASE base-
line. We interpret the results below, starting with
knowledge-enhanced models in Section 4.2.1 and
models leveraging uncertainty in Section 4.2.2.

4.2.1 Knowledge-enhanced models
We first only consider the knowledge injection in
isolation, i.e. the scores for each type of knowledge
in Table 2a.

We can observe that the addition of knowledge
about coreferences (F1 = 0.575), named entities
(F1 = 0.563), and dependency relations (F1 =
0.567) increases the performance over the baseline
(F1 = 0.556). However, none of the increases
are statistically significant due to the variance in
performance across the folds.

4.2.2 Knowledge- and uncertainty-enhanced
models

Next, we consider the effect of leveraging un-
certainty both on the base model as well as the
knowledge-enhanced models, i.e. analyze the full
results in Table 2. Unless stated otherwise, we com-
pare the modified models with their respective base
model without the discussed modifications (i.e. not
necessarily always against the roberta-base model
without MCD).

The first observation is that training the models
on soft instead of hard labels in most cases im-
proves the F1 score both when not using MCD and
when using MCD. Using soft labels increases the

Table 2: Results of the base models and their modifica-
tions. The best score in each table is displayed in bold.

(a) Results without MCD.

train on
hard labels

train on
soft labels

Model F1 F1

roberta-base 0.556 0.570
+ opt. thresh. 0.550 0.577

+ coreference 0.575 0.582
+ opt. thresh. 0.573 0.572

+ sentiment 0.544 0.554
+ opt. thresh. 0.532 0.582

+ named ent. 0.563 0.568
+ opt. thresh. 0.563 0.577

+ dep. relations 0.567 0.580
+ opt. thresh. 0.557 0.578

(b) Results using 10 MCD rounds.

train on
hard labels

train on
soft labels

Model F1 F1

roberta-base 0.546 0.553
+ opt. thresh. 0.551 0.580

+ coreference 0.550 0.566
+ opt. thresh. 0.573 0.579

+ sentiment 0.526 0.535
+ opt. thresh. 0.540 0.575

+ named ent. 0.556 0.556
+ opt. thresh. 0.553 0.577

+ dep. relations 0.557 0.557
+ opt. thresh. 0.564 0.583

(c) Results using 50 MCD rounds.

train on
hard labels

train on
soft labels

Model F1 F1

roberta-base 0.546 0.554
+ opt. thresh. 0.556 0.586

+ coreference 0.549 0.570
+ opt. thresh. 0.568 0.580

+ sentiment 0.527 0.563
+ opt. thresh. 0.543 0.581

+ named ent. 0.557 0.563
+ opt. thresh. 0.569 0.581

+ dep. relations 0.554 0.560
+ opt. thresh. 0.569 0.577
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F1 score for 13 models and makes no difference
for 2 models (named entity and dependency rela-
tion enhanced models using 10 MCD rounds). The
differences are statistically significant.

Optimizing the threshold after training on soft
labels improves the F1 score for 14 models: for 13
models, the improvement over baseline is larger
than without threshold optimization. The only ex-
ception where the F1 score decreases is the corefer-
ence enhanced model without MCD, which could
be due to overfitting the threshold to the tuning
set. Optimizing the threshold after training on
hard labels has a mixed effect. For models without
MCD, it consistently leads to equivalent or lower
F1 scores compared to the baseline model without
the optimized threshold. On the other hand, the
threshold optimization leads to the statistically sig-
nificant increase in the F1 score for models with
MCD. Concretely, it increases the F1 score for 9
models and decreases it for 1 model.

Using MCD on its own is not helpful. Without
also training the model on soft labels or optimiz-
ing the threshold, it decreases the F1 score for all
10 models in comparison to the respective models
not using MCD. However, as described previously,
using MCD in combination with either or both of
these mechanisms mostly leads to an increase in
F1 score.

Lastly, using more MCD rounds starts to bring a
diminishing increase in the F1 score after a certain
point. Concretely, using 50 instead of 10 MCD
rounds leads to only a small additional increase in
F1 score.

The best F1 score is achieved by the model with-
out additional knowledge, trained on soft labels,
using 50 MCD rounds and the threshold optimiza-
tion. This model achieves the F1 score of 0.586
(+0.030 over the baseline) in the offline evaluation,
and the F1 score 0.575 on the official online test
set.

5 Conclusion

We have described our approaches for the detec-
tion of PCL as part of the SemEval-2022 Task 4.
We attempted to inject knowledge into prediction
models and leverage the uncertainty present in the
task. The injection of additional knowledge did
not increase the F1 score significantly. Leveraging
the uncertainty in different ways produced mixed
effects. Training the models on soft instead of hard
labels consistently increased the F1 score, while

using MCD on its own was not beneficial. How-
ever, using MCD in combination with soft labels
and threshold optimization brought consistent im-
provements in the F1 score and produced our best
score.

Both directions of our research have potential
for further work. In our knowledge injection exper-
iments, we have only experimented with a single
type of additional knowledge at a time. To inject
multiple types simultaneously, we would need to
create special tokens for each combination, which
could lead to overfitting due to relatively small and
imbalanced data. Therefore, in further work we
will try a different method for knowledge injection
considering multiple types of additional knowledge
simultaneously. In leveraging uncertainty, we have
constructed the soft binary labels from the two an-
notations per example and aggregated the annota-
tions by weighing them equally. A possible further
work would experiment with different weighting
schemes.
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named ent.
O, {B-, I-, E-, S-} ×

{ORG, PER, LOC, MISC};
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dep. relations
universal dep. relations

(including subtypes)
(Nivre et al., 2020); 63 tags

A Additional details of knowledge
injection experiment

Table 3 shows the tags used to inject the additional
knowledge. The tags are added as special (indi-
visible) tokens to the tokenizer and used in the
secondary input sequence as described in Section
3.2. For sentiment and coreference knowledge, we
note additional preprocessing details:

• Sentiment. We obtain the sentiment tags us-
ing SentiWordNet. Each token is assigned a
positive, negative and objectivity score, and
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Table 4: Extended results of the base models and their modifications: mean and standard deviation of precision (P),
recall (R), and F1 score across 10 folds.

(a) Results without MCD.

train on
hard labels

train on
soft labels

Model P R F1 P R F1

roberta-base 0.575
(0.051)

0.543
(0.057)

0.556
(0.038)

0.612
(0.040)

0.539
(0.067)

0.570
(0.045)

+ opt. thresh. 0.571
(0.056)

0.537
(0.068)

0.550
(0.048)

0.597
(0.060)

0.570
(0.081)

0.577
(0.051)

+ coreference 0.591
(0.046)

0.567
(0.063)

0.575
(0.032)

0.583
(0.073)

0.594
(0.061)

0.582
(0.031)

+ opt. thresh. 0.566
(0.061)

0.593
(0.066)

0.573
(0.033)

0.572
(0.084)

0.591
(0.077)

0.572
(0.028)

+ sentiment 0.589
(0.056)

0.514
(0.074)

0.544
(0.054)

0.614
(0.061)

0.529
(0.132)

0.554
(0.077)

+ opt. thresh. 0.587
(0.043)

0.494
(0.080)

0.532
(0.056)

0.596
(0.061)

0.585
(0.097)

0.582
(0.047)

+ named ent. 0.538
(0.053)

0.604
(0.076)

0.563
(0.026)

0.569
(0.067)

0.585
(0.081)

0.568
(0.028)

+ opt. thresh. 0.563
(0.021)

0.588
(0.087)

0.563
(0.021)

0.565
(0.044)

0.595
(0.062)

0.577
(0.031)

+ dep. relations 0.537
(0.028)

0.605
(0.076)

0.567
(0.040)

0.581
(0.042)

0.585
(0.064)

0.580
(0.028)

+ opt. thresh. 0.572
(0.061)

0.558
(0.091)

0.557
(0.039)

0.593
(0.037)

0.575
(0.085)

0.578
(0.038)

(b) Results using 10 MCD rounds.

train on
hard labels

train on
soft labels

Model P R F1 P R F1

roberta-base 0.610
(0.062)

0.499
(0.054)

0.546
(0.041)

0.660
(0.054)

0.481
(0.068)

0.553
(0.056)

+ opt. thresh. 0.580
(0.064)

0.534
(0.069)

0.551
(0.040)

0.593
(0.043)

0.577
(0.095)

0.580
(0.059)

+ coreference 0.612
(0.043)

0.507
(0.084)

0.550
(0.051)

0.614
(0.069)

0.537
(0.075)

0.566
(0.038)

+ opt. thresh. 0.537
(0.058)

0.621
(0.055)

0.573
(0.040)

0.572
(0.078)

0.602
(0.085)

0.579
(0.043)

+ sentiment 0.627
(0.063)

0.460
(0.074)

0.526
(0.059)

0.667
(0.075)

0.474
(0.129)

0.535
(0.086)

+ opt. thresh. 0.575
(0.056)

0.514
(0.058)

0.540
(0.047)

0.610
(0.059)

0.553
(0.077)

0.575
(0.042)

+ named ent. 0.589
(0.062)

0.543
(0.087)

0.556
(0.034)

0.621
(0.077)

0.523
(0.098)

0.556
(0.041)

+ opt. thresh. 0.560
(0.062)

0.561
(0.086)

0.553
(0.034)

0.540
(0.056)

0.628
(0.074)

0.577
(0.043)

+ dep. relations 0.577
(0.039)

0.544
(0.063)

0.557
(0.037)

0.633
(0.062)

0.511
(0.100)

0.557
(0.060)

+ opt. thresh. 0.555
(0.044)

0.577
(0.046)

0.564
(0.033)

0.572
(0.059)

0.608
(0.076)

0.583
(0.031)

(c) Results using 50 MCD rounds.

train on
hard labels

train on
soft labels

Model P R F1 P R F1

roberta-base 0.609
(0.055)

0.499
(0.051)

0.546
(0.038)

0.662
(0.052)

0.480
(0.062)

0.554
(0.051)

+ opt. thresh. 0.564
(0.046)

0.558
(0.090)

0.556
(0.046)

0.594
(0.058)

0.587
(0.063)

0.586
(0.034)

+ coreference 0.616
(0.035)

0.503
(0.078)

0.549
(0.046)

0.620
(0.080)

0.538
(0.072)

0.570
(0.043)

+ opt. thresh. 0.561
(0.084)

0.601
(0.099)

0.568
(0.040)

0.582
(0.084)

0.599
(0.101)

0.580
(0.048)

+ sentiment 0.630
(0.066)

0.461
(0.074)

0.527
(0.061)

0.629
(0.080)

0.531
(0.099)

0.563
(0.045)

+ opt. thresh. 0.574
(0.040)

0.523
(0.092)

0.543
(0.055)

0.543
(0.058)

0.633
(0.059)

0.581
(0.038)

+ named ent. 0.589
(0.068)

0.544
(0.086)

0.557
(0.038)

0.629
(0.080)

0.531
(0.099)

0.563
(0.045)

+ opt. thresh. 0.551
(0.038)

0.596
(0.072)

0.569
(0.030)

0.543
(0.058)

0.633
(0.059)

0.581
(0.038)

+ dep. relations 0.575
(0.033)

0.541
(0.071)

0.554
(0.043)

0.636
(0.056)

0.513
(0.091)

0.560
(0.049)

+ opt. thresh. 0.556
(0.043)

0.588
(0.062)

0.569
(0.035)

0.568
(0.058)

0.607
(0.107)

0.577
(0.050)
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the final tag is the one with the highest of the
three scores. The token UNK is used if a token
does not have associated scores.

• Coreference. We enumerate the coreference
clusters in the document randomly. We find
this has a positive effect on the performance,
possibly as the model is overtrained on the
tags with lower IDs otherwise.

B Extended evaluation results

Table 4 shows the extended results of the base and
extended models.
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