
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 308 - 312
July 14-15, 2022 ©2022 Association for Computational Linguistics

JUST-DEEP at SemEval-2022 Task 4: Using Deep Learning Techniques to
Reveal Patronizing and Condescending Language

Mohammad Makahleh and Naba Bani Yaseen and Malak Abdullah
Jordan University of Science and Technology

Irbid Jordan
maalmakahleh20, nmbaniyaseen21 @cit.just.edu.jo, mabdullah@just.edu.jo

Abstract
Classification of language that favors or con-
dones vulnerable communities (e.g., refugees,
homeless, widows) has been considered a chal-
lenging task and a critical step in NLP appli-
cations. Moreover, the spread of this language
among people and on social media harms soci-
ety and harms the people concerned. Therefore,
the classification of this language is consid-
ered a significant challenge for researchers in
the world. In this paper, we propose JUST-
DEEP architecture to classify a text and deter-
mine if it contains any form of patronizing and
condescending language (Task 4- Subtask 1).
The architecture uses state-of-art pre-trained
models and empowers ensembling techniques
that outperform the baseline (RoBERTa) in the
SemEval-2022 task4 with a 0.502 F1 score.

1 Introduction

The language used when talking about other people
significantly impacts society and individuals. Talk-
ing about others and using caring and sympathetic
language to express them causes them to be con-
cerned, regardless of the author’s intention, which
is often to help others by raising awareness of
their cause. Unfair treatment of vulnerable groups
on social media increases exclusion and inequal-
ity(Kučak et al., 2018).

Several researchers study modeling language
that intentionally undermines others, such as of-
fensive language or hate speech (Zampieri et al.,
2019; Faraj and Abdullah, 2021). PCL modeling is
still a relatively new topic of research in NLP. For il-
lustration, the use of PCL in the media is frequently
unconscious, subtler, and more subjective than the
sorts of discourse that are typically addressed in
NLP. To the best of our knowledge, a particular fo-
cus on PCL for vulnerable communities has not yet
been considered. Through a broader context, some
work on PCL had been studied on communication
between two people, such as in social media inter-
actions, where others patronize an individual. For

example, the authors in (Inui et al., 2019) published
the talk down corpus for detecting condescension
in Reddit comment-reply pairs. Finding or creating
a high-quality dataset that covers all or most cases
of PCL is very difficult and requires significant ef-
fort from specialized researchers. As researchers
in NLP, we use it to investigate PCL in vulnerable
communities(Perez-Almendros et al., 2020).

In this paper, we describe our model on task
4 of Semeval 2022 sub task1 (P’erez-Almendros
et al., 2022) to identify PCL and categorize the
linguistic techniques used to express it. Specifi-
cally when referring to communities identified as
being vulnerable to unfair treatment in the media.
We compare the outcomes of multiple pre-trained
models (BERT, RoBERTa, and ensemble on them).
We furthermore show the effect of tuning their hy-
perparameters values (batch-size and epoch) on
model prediction. Also, we illustrate our proposed
architecture where we feed the data to an ensemble
model with the stacking of 2 BERT models and
-in parallel- to another ensemble model with the
stacking of 2 RoBERTa models. Finally, the results
of the two ensembling models are fed to a max
voting ensemble, which predicts the outcome with
achieving the best F1 score at 0.502.

The rest of the paper is organized as follows;
section 2 presents a Related Work, and section
3 offers Methodology. Results are discussed in
section 4. Finally, section 5 presents conclusion.

2 Related Work

Many researchers applied machine learning mod-
els to classify text (Abdullah and Shaikh, 2018;
Qawasmeh et al., 2019). Lai et al.(Lai et al., 2015)
classified text using a recurrent convolutional neu-
ral network. They captured the key components
in texts using the max-pooling layer from word
representations. Then they grabbed contextual in-
formation from it. To check the efficacy of the pro-
posed method, they conducted several experiments

308

on four commonly used data sets. As a result, they
found that their suggested method outperforms the
latest methods in many data sets.

Gunal et al.(Kowsari et al., 2019) studied text
classification algorithms on several sides. Like lim-
itations of each technique and its application in
real-world situations are discussed. They found
some steps useful in decreasing the time complex-
ness and memory complexity of existing text classi-
fication algorithms like central component analysis
and incidental projection, etc.

Using deep neural networks with LSTM mod-
ules, Semberecki et al.(Semberecki and Maciejew-
ski, 2017) classified text documents. They tried to
construct feature vectors, which represent the docu-
ments to be categorized: each feature vector repre-
sents the sequence of words that are included in the
documents. First, they convert the terms into vector
representations and then use the sequences of these
vector representations as features of the documents.
They evaluated the feasibility of this approach to
text categorization utilizing a set of Wikipedia ar-
ticles. They show that the LSTM network-based
approach with documents represented as vectors
achieves an accuracy of 86%.

3 Methodology

Our approach methodology can be summarized as
follows: We begin by describing the dataset for
this task. Then, the preprocessing step is described.
Our final section describes how JUST-DEEP can
identify the patronizing language in the text.

3.1 Data Set:
The SemEval-task 1 competition provided three
files (rial, train, and test dataset(Perez-Almendros
et al., 2020)) The files contain several columns as
follows:

• par_id: the identification number for each
paragraph.

• art_id: the identification number for each arti-
cle.

• keyword: word related to patronizing. .

• country_code: the code for each country.

• text: the text that we want to classify.

• label: denotes if the text contains patronizing
or not (4 levels 0,1,2,3 where 0 and 1 means
no PCL, as well as 2 and 3, means high PCL).

3.2 Data pre-processing:

In this section we describe the basic data pre-
processing steps we applied for all of our experi-
ments:

1. In the beginning, we transform the Label col-
umn into a binary format. If the value is zero
or one, we convert it to zero. And if it is two
or three, we convert it to One. So with this
transformation, the Label is a Binary column
with two values: the Zero means that there are
no PCL in the text, and the value One implies
that there is PCL.We converted the column to
binary because we are working on sub-task
one, so we want to determine if it contains
PCL or not; we don’t care about the degree of
PCL.

2. Pre-trained models don’t work with raw text,
so we converted the text into numbers and
added unique tokens to separate sentences at
the beginning and end of each sentence. Then
we pass the resulting sequence to the models
to perform the classification process.

3. Pre-trained models work with fixed-length se-
quences. So we used a simple strategy to
choose the appropriate maximum length for
all sequences. First, we found that most series
have a size of 160, so we set the size of all
series to 160.

3.3 JUST-DEEP Architecture:

Our task aims to detect whether a text contains
PCL language or not. As shown in Figure 1, JUST-
DEEP architecture uses multiple pre-trained lan-
guage models (BERT and RoBERTa) from the
transformers library.

The first step is data pre-processing. The train-
ing dataset is fed to the augmentation processor,
responsible for adding more data to the training
dataset since it is originally imbalanced data where
the number of Zero class instances is ten times the
One class instances. The augmentation processor
input is all One instances text. The processor aug-
ments the text of the input instances by adding the
same instance to the primary dataset multiple times
with slightly different text but with the same mean-
ing. Next, the textual data is processed into their
corresponding embeddings(tokens) to feed them to
the classifiers.

309

Figure 1: Model Architecture

The second step is the classification step. Finally,
the input tokens are fed in parallel to two ensem-
bling models; the first is composed of stacking of
2 BERT models, and the second contains stacking
of 2 RoBERTa models.

Finally, the predictions of the two ensembling
models are joined by a max voting classifier to
produce the final prediction output. We conducted
several experiments with different models and hy-
perparameters, but the JUST-DEEP architecture
achieved the best results.

Figure 2 show an example use case for architec-
ture. If we fed the sentence ’Fast food employee
who fed disabled man becomes internet sensation’
which is an example from the train data labeled
as 1 (contains PCL). In augmentation step we gen-
erate more instances with same meaning of this
row by the augmentation processor which might
add data like ’Fast food worker who fed weakened
guy becomes internet rumor’. Next, the sentence
is converted into numeric token and passed to both
ensemble models.
For instance, the first ensemble model which con-
tains stacking of 2 RoBERTa models produce the
prediction of 1 for this row. The other ensemble
model with stacking of 2 Bert classifiers predicts
Zero as a class label. Finally, the last step which
implement a max voting will generate One as the
final output label for the instance.

4 Result

We performed several experiments to determine
which is the best suitable model for this task and
which model produces the highest value of F1 score.
First, we experimented with BERT and RoBERTa

pre-trained models and tuned their hyperparameters
(batch_size and epoch) to achieve the maximum
possible F1 score. Table 1 shows the experiments
we did, the models, their parameters, and the value
of the f1 score we got in each experiment in the
test dataset.

As a first step, we explored BERT and
RoBERTa’s best hyperparameters, such as
batch_size, epochs, and max sequence length.
Table 2 describes these hyperparameters.

We use five different models: BERT model,
RoBERTa model, stacking of 2 BERT, stacking of
2 RoBERTa, and JUST-DEEP model as described
in the architecture section. As shown in the ta-
ble1 model, JUST-DEEP achieves the best results
compared to the rest of the models we tested, as it
reached an F1 score value equal to 0.502.

As we explained earlier, in the JUST-DEEP
model, we trained the dataset with augmentation.
Then we applied the Stacking Ensemble Technique
separately on 2 BERT Models and 2 RoBERTa
Models. Then, we took the Max voting between
the two models as a result; therefore, this model
produces the best results because it combines the
two models that we used, BERT and RoBERTa.

The other models show less favorable results;
the application of the stacking ensemble technique
to the 2 BERT models gives the highest results
after the JUST-DEEP, where the F1 result is close
to 46%, followed by the model resulting from the
application of the stacking ensemble technique to
the 2 RoBERTa, where it achieved results close
to 0.44. Then, RoBERTa’s model achieved the F1
with a score of 0.43. The worst model was Bert
achieved 0.42.

310

Figure 2: Example Description

5 Conclusion

Deep learning helped in the development of many
aspects these days, and with in-text classification,
we become to have the ability to make a lot of
applications related to it and so on. In this paper,
we describe our JUST-DEEP model solving the
SemEval-2022 Task 4 Subtask 1 to check if the
text contains any form of PCL. The JUST-DEEP
model obtained an F1 score of 0.5 using ensem-
bling of pre-trained language models BERT and
RoBERTa. Our strategy depends on training data
set with augmentation then applying stacking en-
semble technique to 2 BERT and 2 RoBERTa and
take max voting between the models to achieve F1
score higher than the other experiments we conduct
where we use plain BERT and RoBERTa models
with different hyperparameters.

References
Malak Abdullah and Samira Shaikh. 2018. Teamuncc

at semeval-2018 task 1: Emotion detection in english
and arabic tweets using deep learning. In Proceed-
ings of the 12th international workshop on semantic
evaluation, pages 350–357.

Dalya Faraj and Malak Abdullah. 2021. Sarcasmdet
at semeval-2021 task 7: Detect humor and offen-
sive based on demographic factors using roberta pre-
trained model. In Proceedings of the 15th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2021), pages 527–533.

Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan.
2019. Proceedings of the 2019 conference on em-
pirical methods in natural language processing and
the 9th international joint conference on natural lan-
guage processing (emnlp-ijcnlp). In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

311

Classifier Batch size Epoch F1
1 RoBERTa 16 10 0.43
2 RoBERTa 16 4 0.40
3 RoBERTa 8 10 0.42
4 RoBERTa 8 4 0.41
5 BERT 16 10 0.42
6 BERT 16 4 0.428
7 BERT 8 10 0.41
8 BERT 8 4 0.405
9 stacking of 2 RoBERTa 16 10 0.44
10 stacking of 2 RoBERTa 16 4 0.45
11 stacking of 2 RoBERTa 8 10 0.435
12 stacking of 2 RoBERTa 8 4 0.438
13 stacking of 2 BERT 16 10 0.46
14 stacking of 2 BERT 16 4 0.45
15 stacking of 2 BERT 8 10 46.5
16 stacking of 2 BERT 8 4 0.45
17 JUST-DEEP 16 10 0.5

Table 1: Our Experiments.

Parameter Description Values
Batch_Size The number of samples per batch 16,8
Epoch Training examples in both directions (backward and forward) 4,10
Dropout Number of examples that can be neglected during training 0.3
Max Sequence Length Sequence length the model can support 160

Table 2: Parameters

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura Barnes, and Donald
Brown. 2019. Text classification algorithms: A sur-
vey. Information, 10(4):150.

Danijel Kučak, Vedran Juričić, and Goran Ðambić. 2018.
Machine learning in education-a survey of current
research trends. Annals of DAAAM & Proceedings,
29.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In Twenty-ninth AAAI conference on artifi-
cial intelligence.

Carla Perez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2020. Don’t patronize me! an
annotated dataset with patronizing and condescend-
ing language towards vulnerable communities. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5891–5902.

Carla P’erez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2022. SemEval-2022 Task 4:
Patronizing and Condescending Language Detection.
In Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022). Association
for Computational Linguistics.

Ethar Qawasmeh, Mais Tawalbeh, and Malak Abdullah.
2019. Automatic identification of fake news using
deep learning. In 2019 Sixth International Confer-
ence on Social Networks Analysis, Management and
Security (SNAMS), pages 383–388. IEEE.

Piotr Semberecki and Henryk Maciejewski. 2017. Deep
learning methods for subject text classification of
articles. In 2017 Federated Conference on Computer
Science and Information Systems (FedCSIS), pages
357–360.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and catego-
rizing offensive language in social media (offenseval).
arXiv preprint arXiv:1903.08983.

312

https://doi.org/10.15439/2017F414
https://doi.org/10.15439/2017F414
https://doi.org/10.15439/2017F414

