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Abstract

In this paper, we describe our proposed method
for the SemEval 2022 Task 11: Multilingual
Complex Named Entity Recognition (Multi-
CoNER). The goal of this task is to locate and
classify named entities in unstructured short
complex texts in 11 different languages. After
training a variety of contextual language mod-
els on the NER dataset, we used an ensemble
strategy based on a majority vote to finalize our
model. We evaluated our proposed approach
on the multilingual NER dataset at SemEval-
2022. The ensemble model provided consistent
improvements against the individual models
on the multilingual track, achieving a macro
F1 performance of 65.2%. However, our re-
sults were significantly outperformed by the
top ranking systems, achieving thus a baseline
performance.

1 Introduction

Named entity recognition (NER) is the process of
identifying pre-defined categories of named enti-
ties, such as people, places, organizations, from
unstructured text. NER usually serves as an im-
portant first component in various natural language
processing (NLP) tasks, such as question answer-
ing (Mollá et al., 2006), information retrieval (Guo
et al., 2009) and machine translation (Babych and
Hartley, 2003). Thus, the performance of the NER
system can influence the quality of many down-
stream NLP applications. Despite the high perfor-
mance achieved by the current NER systems, they
still face some critical challenges(Augenstein et al.,
2017). NER models are typically trained on a well-
formed news text containing a variety of entities
within a relatively long context. In addition, most
of the existing NER datasets usually include a large
number of common entities between train set and
test set. As a result, the performance of the models
drops dramatically in the real world applications
as they must deal with unseen entities and noisy

texts. Furthermore, previous studies on NER have
mostly focused on English and as a result, many
other languages specially low-resource ones, such
as Turkish, Korean, and Persian, have not been
as well studied (Rouhizadeh et al., 2021a,b). In
this context, SemEval-2022 proposes the task of
Multilingual Complex Named Entity Recognition
(MultiCoNER) (Malmasi et al., 2022b), which is
concerned with detecting semantically ambiguous
and complex entities in short and low-contextual
settings for 11 languages (i.e. English, Spanish,
Dutch, Russian, Turkish, Korean, Farsi, German,
Chinese, Hindi, and Bangla). In this paper, we
present a multilingual NER method based on en-
semble of deep neural language models. We first
trained multiple NER models on the official train-
ing dataset and then utilized an ensemble strategy
based on a majority of votes from the top-3 best-
performing models. Based on the macro-average
F1-score of 65.2, achieved by our model, we placed
20th in the multilingual track of the competition.
The rest of the paper is organized as follows. Sec-
tion 2 reviews published work related to the NER
task. Section 3 and section 4 explain our proposed
NER system and the experimental setup respec-
tively. The results and detailed analysis of the
model performance are discussed in section 5 and
the conclusion and future work are reported in sec-
tion 6.

2 Related Work

Over the last decade, deep learning approaches
have significantly improved the results of different
NER tasks (Baevski et al., 2019; Akbik et al., 2018).
The most recent works on NER utilize pre-trained
language models like BERT in a supervised setting
(Yamada et al., 2020; Wang et al., 2020; Schnei-
der et al., 2020; Shaffer, 2021). These models use
pre-trained language models that have been trained
on a large monolingual or multilingual corpus to
fine-tune NER models. Meng et al. (2021) intro-
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duced a number of current challenges of developed
NER datasets and systems. The challenges include
the presence of long-tail entities, i.e., entities with
large distribution and millions of values, emerg-
ing entities, i.e., domains with growing entities, or
complex entities, i.e., linguistically complex enti-
ties such as gerunds and full clauses, in the context
of the systems’ inputs. In addition, as discussed in
Jayarao et al. (2018) the context of search queries
and questions usually include a short amount of
words which could be problematic for NER sys-
tems. To overcome the above issues, Meng et al.
(2021) created three new NER datasets, includ-
ing short sentences, questions, and search queries,
and a novel NER system which uses a contextual
gazetteer representation (CGR) encoder and a mix-
ture of experts (MoE) gating network to feed a CRF
layer for final predictions. Fetahu et al. (2021) also
tackled the challenge of the code-mixed queries
in which entities and non-entity query terms co-
exist simultaneously. They developed a large-scale
NER dataset in six languages with four different
scripts as well as a novel multi-lingual NER method
for code-mixed queries which integrates external
knowledge into the multilingual setting.

3 Method

Our multilingual NER system takes sentences in
11 different languages and automatically identifies
and classifies named entities within each sentence.
For each sentence, the system utilizes three differ-
ent BERT-like models (fined-tuned on the multi-
lingual NER dataset) to perform entity prediction
independently. Next, for each entity, the label with
the majority of votes will be chosen as the final
prediction. In the following, we provide details
on different NER models we used in our pipeline
and our ensemble strategy for label prediction in
section 3.1 and section 3.2, respectively.

3.1 Training NER Models

To build our NER model, we first fine-tune a
number of pre-trained multilingual transformer-
based models, i.e., Multilingual-BERT (Pires et al.,
2019), XLM-RoBERTa-base, XLM-RoBERTa-
Large (Conneau et al., 2019) and Distilbert-
Multilingual (Sanh et al., 2019), on the official
training dataset (see section 4.1 for more details
about the dataset). We fine-tune each particular
model by adding (1): a fully connected neural net-
work (FCNN) layer or (2): a conditional random

fields (CRF) layer (Lafferty et al., 2001) on the
top of the transformer architecture. Transformer-
based models usually use the byte-pair encoding
for the tokenization. In other words, each token
might be divided into more than one sub-token. To
deal with this, during training, among the subto-
kens labels of a given word, the label of the fisrt
sub-token has been considered as the label of the
word. We also use the BERT-like models to train
a simple BiLSTM model with an additional linear
classifier on the dataset 1 Following Reimers and
Gurevych (2019), we calculate the vector represen-
tation for each context word by taking the average
of the layer output embeddings of the pre-trained
language model and feed them to a BiLSTM neural
network as input2.

As the next step, we select three of the best-
performing NER models and use an ensemble strat-
egy (discussed in section 3.2) to finalize our model.

3.2 Ensemble of the NER Models

Having trained multiple NER models, we use an
ensemble strategy based on a majority vote to as-
sign the predictions (Copara et al., 2020b,a; Knafou
et al., 2020; Naderi et al., 2021). More in detail,
for a given sentence S, three NER models infer
their predictions independently. Thus, we will have
three labeled instances of S associated with several
entity labels. Next, for each identified entity, we
choose the label that gets the majority of votes (at
least two votes) as the final prediction. Note that as
we use three different NER models in our pipeline,
three different labels might be assigned to a given
entity. In such cases, we choose the predicted label
of the best-performing model (evaluated on the dev
set) as the final prediction.

4 Experimental Setup

This section discusses the dataset we used to con-
duct our experiments, followed by the parameters
we used to train the models.

4.1 Data

Our experiments were conducted using the multilin-
gual dataset provided by the SemEval-2022 Task 11
organizers (Malmasi et al., 2022a). The dataset con-
sists of entity annotated sentences from eleven dif-

1We used the code provided by Adelani et al. (2021) to
perform BiLSTM experiments.

2We only report the results when we feed the BiLSTM
with XLM-RoBERTa-large as it performed best compared to
the other models
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Entity Train Dev Test
Person 35091 18.4% 8862 18.6% 2342 18.7%

Location 43052 22.6% 10978 23.1% 2932 23.4%
Group 26373 13.8% 6473 13.6% 1638 13.0%

Creative Work 30817 16.2% 7556 15.9% 2015 16.1%
Production 28170 14.8% 6949 14.6% 1848 14.7%
Corporation 26315 13.8% 6575 13.8% 1738 13.8%

All 189818 100% 47393 100% 12513 100%

Table 1: General statistics of the dataset including the number and the distribution of each entity.

Entity / Model m-BERT XLM-RoBERTa-base XLM-RoBERTa-large m-DistillBERT BiLSTM Ensemble
Person 69.2 | 70.8 88.8 | 89.2 90.1 |90.8 83.0 | 82.1 74.3 91.3

Location 69.4 | 69.9 86.9 | 87.6 88.0 | 89.3 83.0 | 79.9 75.7 89.9
Group 60.7 | 71.1 80.3 | 81.7 84.2 | 85.5 74.0 | 73.4 61.3 86.2

Creative Work 58.3 | 59.1 75.0 | 77.4 80.7 | 82.3 67.0 | 73.2 51.1 81.7
Production 55.0 | 56.6 74.8 | 76.1 79.6 | 80.6 67.0 | 63.5 54.6 80.6
Corporation 69.1 | 69.4 82.7 | 83.9 85.5 | 87.1 76.0 | 75.2 61.5 88.1

All 63.8 | 64.9 82.5 | 84.0 84.7 | 85.8 75.7 | 75.2 64.2 86.3

Table 2: The F1 performance of different multilingual NER models. Each cell include the results when we used a
FFCN (the number of the left side) or a CRF layer (the number of the right side) in the model.

ferent languages: English, Spanish, Dutch, Russian,
Turkish, Korean, Farsi, German, Chinese, Hindi,
and Bangla. The six entity types of the dataset are
Person, Location, Production, Corporation, Group,
and Creative Work. The organizers provided the
competitors with NER-tagged training and devel-
opment sets, and then released an unlabeled test
set for the final prediction. To fine-tune our hyper-
parameters and evaluate our models in the devel-
opment phase, we divided the training set into two
parts - 0.80% for the train set and 0.20% for the
dev set - and used the official dev set (i.e., provided
by the organizers) to test the models and analyse
our model results as the labels of the official test
set are not released. The number and distribution
of occurrences of each entity in the training (train
and dev) and test (official dev) datasets are reported
in Table 1, where we can notice a relatively good
class distribution among the training examples.

4.2 Parameters

In our experiments, we fine-tuned different multi-
lingual pre-trained language models including bert-
base-multilingual-uncased, XLM-Roberta-base,
XLM-Roberta-large, distilbert-base-multilingual-
cased, and also trained a simple BiLSTM model on
the dataset. We trained each particular model for
6 epochs using Adam optimizer (Kingma and Ba,
2014), a batch size of 16, the learning rate of 2e-5,
and the maximum sequence length of 256 tokens.

We computed the F1 performance of the model on
each epoch and finally saved the parameters of the
epoch with the best performance to perform NER
on the test set.

5 Results and Discussion

5.1 Results

In Table 2, we show the macro-averaged F1 perfor-
mance of the NER models on the different entities
of the unofficial test dataset. We use the three
best performing models identified in the dev set,
i.e., XLM-RoBERTa-large + CRF, XLM-RoBERTa-
base + CRF and XLM-RoBERTa-large + FCNN,
to create our ensemble strategy. As shown in Ta-
ble 2, the ensemble model outperforms the other
single transformer-based models, improving the
F1-score of the top-performer models by around
1% point. The results also indicate that the models
fine-tuned on the XLM-RoBERTa (both large and
base) outperform the other models by a wide mar-
gin. In addition, a comparison between the results
of each particular model with and without CRF on
the test set shows that adding a CRF layer to the
models could be helpful as it improves the model
performance in most cases. The results show that
all models perform best in inferring Person and
Location entities. This can be due to the large
number of instances of both entities in the training
set. In Table 1, it is shown that the number of oc-
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Sentence Length 1 ≤ N ≤ 5 6 ≤ N ≤ 10 11 ≤ N ≤ 15 16 ≤ N ≤ 20 N > 20 All
Number of Sentences 85 1988 2517 1964 2246 8800
Ratio of the sentences 0.1% 22.5% 28.6% 22.3% 25.5% 100%

Table 3: Number and ratio of sentences with different length (in words) in the test set.

Figure 1: Performance of our ensemble model according
to the sentence length (in words).

currences of these entities in the dataset is greater
than the other ones. The BiLSTM model also per-
forms significantly worse than the fine-tuned XLM-
RoBERTa-large models, despite using the same
word vectors.

5.2 Discussion

Effect of the context length One of the most im-
portant factors affecting the performance of the
NER systems is the context length (Meng et al.,
2021). To analyze the effect of the input context
on our NER system, we divided the (unofficial)
test set into 5 different groups: (1): sentences with
five or fewer words, (2): sentences with a context
length of at least 6 and less than 11, (3) sentences
including at least 10 and less than 15 context words,
(4) sentences containing between 15 and 20 words,
and (5) sentences containing more than 20 context
words. The number and ratio of sentences in each
group is reported in Table 3. Figure 1 shows the
performance of the ensemble NER model on the
different groups of sentences. As it can be seen,
the model has the worse performance when the sen-
tences contain 5 or less words. Surprisingly, the

model performs best in the second group (sentences
containing between 5 and 10 words) showing the
strength of the model even in the short the sen-
tences.

6 Conclusion

In this paper, we presented our multilingual NER
method that uses an ensemble of different fine-
tuned models to identify the named entities in the
unstructured texts. Using a variety of multilingual
pre-trained language models, we first fine-tuned
several NER models and then applied a vote-based
ensemble strategy to make the final prediction. Our
submission achieved an overall F1 score of 65.2,
ranking 20th in the multilingual track of task 11 of
SemEval-2022. Our next step would be to examine
other possible types of ensemble strategies as it
has shown to be effective in the performance of the
NER models.
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