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Abstract

This paper describes our participation in
SemEval-2022 Task 10, a structured sentiment
analysis. In this task, we have to parse opin-
ions considering both structure- and context-
dependent subjective aspects, which is differ-
ent from typical dependency parsing. Some
of the major parser types have recently been
used for semantic and syntactic parsing, while
it is still unknown which type can capture
structured sentiments well due to their sub-
jective aspects. To this end, we compared
two different types of state-of-the-art parser,
namely graph-based and seq2seq-based. Our
in-depth analyses suggest that, even though
graph-based parser generally outperforms the
seq2seq-based one, with strong pre-trained
language models both parsers can essentially
output acceptable and reasonable predictions.
The analyses highlight that the difficulty de-
rived from subjective aspects in structured sen-
timent analysis remains an essential challenge.

1 Introduction

SemEval-2022 Task 10 (Barnes et al., 2022) aims
at extracting structured sentiment from a given
sentence. Different from other sentiment analy-
sis tasks, structured sentiment analysis is formu-
lated as an information extraction problem with at
least three elements, namely a holder, a target and
a sentiment expression. The shared task has two
subtasks. In Subtask 1 (monolingual), we evaluate
the performance on seven monolingual corpora, i.e.,
MPQA (Wiebe et al., 2005), OpeNER, OpeNER_es
(Agerri et al., 2013), DSu (Toprak et al., 2010),
MultiB_ca, MultiB_eu (Barnes et al., 2018)
and NoReC (Øvrelid et al., 2020). In Subtask 2
(crosslingual), we evaluate the zero-shot predic-
tion performance on three non-English corpora,
i.e., OpeNER_es, MultiB_ca and MultiB_eu,
generated by a model trained with an English cor-
pus. One significant difference between syntactic
parsing and structured sentiment analysis is that
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Figure 1: Overview of the two parsers: (Top) Graph
and (Bottom) Seq2Seq.

the former is based on certain well-defined rules,
whereas the latter forms an information structure
on the basis of subjective opinions. Given the na-
ture of the sentiment structure, Barnes et al. (2021)
formulated the problem as a dependency parsing
task.

Our motivation here is to throw light upon how
subjective opinions affect parsing performance and
how well recent strong parsing models can cap-
ture them. To this end, we compare two types
of parsing model: graph- and generation-based1

models. Though these parsers have shown compet-
itive performance under various conditions (Oepen
et al., 2020; Ozaki et al., 2020; Samuel and Straka,
2020), each of them has its own advantages and
disadvantages. Graph-based parsers (McDonald
et al., 2005) directly model token-to-token rela-
tions; therefore, they are suitable for modeling
structured sentiment with surface anchors. On the
other hand, generation-based parsers output a se-
quence to reconstruct the graph structure of the
target meaning representation. Recent advances in
deep neural networks have allowed us to generate a
serialized graph directly from an input sentence by
using pre-trained generation models (Ozaki et al.,

1We regard a transition-based parser (Dyer et al., 2015) to
be a kind of seq2seq-based parser, as it generates an action
sequence based on its states.
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2020; Procopio et al., 2021). Specifically, we fo-
cus on state-of-the-art seq2seq-based models like
T5 (Raffel et al., 2020). Because pre-trained gen-
eration models (e.g. text summarization models)
have been trained to generate a summarized state-
ment from a given input sentence, it may be easier
for the generation-based parsers to model seman-
tic relations including subjective opinions than the
graph-based ones.

In this paper, we briefly introduce our ap-
proaches together with a comparison of the two
different parsers: (i) Graph: We use a model that
jointly solves two different problems, namely span
identification, and relation extraction of spans. (ii)
Seq2Seq: We design a serialization for sentiment
structures generated by our seq2seq-based parser.
We simply use pre-trained text generation models
and fine-tune them with the serialized sentiment
structures.

Experiments showed that Graph and Seq2Seq
achieved reasonable levels of performance on both
subtasks. Our submitted systems are based on
Graph and ranked third in both the monolingual
and cross-lingual tasks. We further conducted in-
depth analyses for the two parsers. Our findings
are twofold:

1. Multilingual performance tends to depend
more on the type of pre-trained model used
than on the model architecture, while Graph
outperformed Seq2Seq in non-English cor-
pora.

2. Graph is somewhat recall-focused, whereas
Seq2Seq is more precision-focused in specific
corpora.

The first finding suggests that Graph with a strong
pre-trained model has an advantage for multilin-
gual training when compared to Seq2Seq. Given
that mT5 (Xue et al., 2021) is not trained on any su-
pervised tasks such as translation or summarization,
it may be difficult for multilingual Seq2Seq to gen-
erate (and possibly copy) sentiment tokens from
the input text. Other considerations such as the
decoder architecture and training time of Seq2Seq
seem to favor Graph.

Regarding the second finding, we found that
Graph performs well on complex structured opin-
ions. However, on the other side of the coin, it sug-
gests that Graph sometimes causes over-detection
(though these over detected opinions may be accept-
able to humans). We found that this happens partic-

ularly for MPQA polar expressions. This could be
due to the nature of MPQA, which usually includes
context-dependent expressions.

As a result, we argue that it is difficult to de-
cide which type of parser is better because: (i)
the decision criteria rely on how we define the
sentiment structure, e.g., structured sentiments
in some corpora are semantically complex and
context-dependent, while those in other corpora
are not, making the corpus less context-dependent.
(2) Whether to use Graph or Seq2Seq depends on
whether we want to cover as much of the struc-
tured sentiments as possible or whether we want
to emphasize precision. (3) In regard to metric-
dependent choices, Seq2Seq is at a disadvantage in
the shared task because the metric requires anchor-
ing to the surface of the input text. We also have
to decide which parser to use from various other
perspectives, such as (4) whether or not we are tar-
geting English, and (5) whether the training speed
is important. These considerations make structured
sentiment analysis challenging.2

2 Models

This section explains the Graph and Seq2Seq meth-
ods used in this work.

2.1 Graph model

We formulate the problem as a joint task of span
identification and relation extraction. This ap-
proach can be classified as a graph-based approach
(Dozat et al., 2017; Falenska et al., 2020), which
is known to perform well in fields such as syntac-
tic dependency parsing. Although there are var-
ious approaches to this problem, we simply use
the architecture of Morio et al. (2022). The archi-
tecture generates BIO tags to predict spans using
pre-trained language models such as Longformer
(Beltagy et al., 2020). The span representation of
each predicted span is generated by average pool-
ing of the predicted span and subsequently fed into
biaffine classifiers (Dozat and Manning, 2017) to
predict relations.

Because the architecture was originally designed
to predict argument structures (Lawrence and Reed,
2019), so-called argument mining, it needs a little
tweaking. We thus designed a dedicated encod-
ing for structured sentiment analysis. As shown in
Figure 1 (Top), the opinions for the input text can

2We plan to release our code at https://github.
com/hitachi-nlp/graph_parser
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be represented as a graph. We represent a repre-
sentative polarity expression as a root node, and
its polarity as a self-loop (e.g., a no node and its
negative self-loop). We represent the other polar-
ity expressions, target and source via child nodes
linked to the polarity nodes (e.g., balcony is a child
node for the no node). Overlapping spans are di-
vided up using the start and end indexes of the
overlap, and each span can have multiple labels
(e.g., Positive_Source is a combined label for posi-
tive and source spans). Although this graph encod-
ing cannot fully represent structured sentiments3,
we confirmed that the data reconstructed from the
graph encoding achieves about 99% F-score (so
there is practically no problem.) We convert all the
given datasets using this graph encoding, and given
a text input, the model is trained to parse the graph.

2.2 Seq2Seq model
Seq2Seq Generation Here, we formulate the
problem as a summarization task to output serial-
ized tuples of structured sentiment. We preferably
utilize pre-trained summarization language models,
such as T5 (Raffel et al., 2020), and fine-tune them
with the serialized tuples.

Serialization system A seq2seq model outputs
serialized tuples of structured sentiment regardless
of their position on the surface (see Figure 1). For
example, when an input text is “No balcony, cannot
open windows”, we have two tuples of structured
sentiment; each of them is serialized as follows:� �
No[NEG] balcony[TGT] [SRC]
cannot open[NEG] windows[TGT] [SRC]� �

We serialize a tuple into a polar expression, a target,
and a holder order. The polar expression ends with
[NEG], [NEU] or [POS] tokens according to its
polarity. The target and holder expressions end
with [TGT] and [SRC], respectively. If multiple
spans are in a tuple, we concatenate them with
a special separator ([SEP]) token. Since each
expression is marked with these special tokens, we
can simply concatenate all tuples without confusing
them with each other.

Reconstruction from serialization Although
our serialization preserves semantically sufficient
information on sentiment structures, there is a piece

3Our graph encoding cannot distinguish a case where one
polar expression forms a single opinion with multiple targets
from a case where a polar expression forms multiple opinions
with a single target.

of missing information, i.e., anchors. To recon-
struct the anchor information, we utilize a word
aligner based on a pre-trained language model:
SimAlign (Jalili Sabet et al., 2020). Because
SimAlign provides a zero-shot alignment model,
we utilize it for obtaining the alignment between
the input text and its serialized sentiment struc-
ture. For ease of explanation, we define span
s = [ti, ti+1, . . . , ti+j ] as a single phrase appearing
as a holder, a target, or a polar expression, where
t is a generated token. First, we pick a single
opinion; then, we extract all tokens in the opin-
ion and form a token sequence [t1, . . . , tn]. Sec-
ond, we calculate the token alignments [a1, . . . , an]
between the input text and the token sequence
to point out the corresponding tokens in the in-
put, where a > 0 and a ∈ N. Lastly, we
recover the span s = [ti, . . . , ti+j ] location by
[min (ai, . . . , ai+j),max (ai, . . . , ai+j)]

4.
Furthermore, we add a heuristic procedure to

improve the reconstruction accuracy. When an
expression extracted from a reconstructed anchor
is different from its original generated expression,
we apply a greedy search to find the part where the
original expression appears as is in the input text. If
we find the part, we use an anchor that points to the
part instead of the reconstructed anchor. With this
heuristic, we achieved an F-score of around 97%
between gold and reconstructed opinions from the
serialized outputs5.

3 Experiments

3.1 Experimental setup
Implementation details We implemented
Seq2Seq and Graph with PyTorch (Paszke et al.,
2019) and the Huggingface Transformers library
(Wolf et al., 2020). All models were trained with
a fixed number of steps (about 10,000 steps). We
used a learning rate of 2e-5 for Graph and 5e-5
for Seq2Seq, with a warmup (Howard and Ruder,
2018) ratio of 0.1. The batch size was set to 16
for Graph and 32 for Seq2Seq. We set the beam
width to 5 for Seq2Seq. We did not conduct
hyperparameter tuning or model selection and did
not use any development data during training and
validation.

Pre-trained models To fully utilize the repre-
sentative power of Graph and Seq2Seq, we used

4Because actual anchors are character-level, we need to
convert the spans from the token level to the character level.

5Without this heuristic, the F-score is about 91%.
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Dev DSu OpeNER MPQA OpeNER_es MultiB_eu MultiB_ca NoReC
en en en es eu ca no

Graph RoBERTa-large 38.6 72.3 42.8
InfoXLM-large 71.1 64.7 71.0 50.7

Seq2Seq T5-large 38.0 69.4 42.3
mT5-large 66.0 61.4 67.9 48.8

Test

Graph RoBERTa-large 42.2 75.0 39.3
+ensemble (submitted) 46.3 75.6 40.2
InfoXLM-large 71.7 70.5 69.8 51.2
+ensemble (submitted) 73.2 71.5 70.9 53.3

Seq2Seq T5-large 40.5 67.1 40.9
mT5-large 65.6 66.2 65.5 48.0

Best team 49.4 76.0 44.7 72.2 73.9 72.8 52.9

Table 1: Evaluation results of Subtask 1 (monolingual) in Sentiment Graph F1 (SF1) for the development and
test sets. Graph and Seq2Seq represent graph-based and seq2seq-based parsers, respectively. We submitted
the InfoXLM-large+ensemble model in the evaluation phase. Note that en=English, es=Spanish, eu=Basque,
ca=Catalan, and no=Norwegian.

Dev OpeNER_es MultiB_eu MultiB_ca
en→es en→eu en→ca

Graph InfoXLM-large 62.8 46.2 62.3
Seq2Seq mT5-large 56.9 41.3 53.5

Test

Graph InfoXLM-large 61.9 51.6 60.1
+ensemble (submitted) 62.8 52.7 60.7

Seq2Seq mT5-large 57.4 44.7 53.5

Best team 64.4 63.2 64.3

Table 2: Evaluation results of Subtask 2 (crosslingual zero-shot) in SF1. We submitted the InfoXLM-
large+ensemble version in the evaluation phase.

pre-trained language models based on Transformer
(Vaswani et al., 2017). For Graph, we used
RoBERTa-large (Liu et al., 2019) in Subtask 1
(monolingual) and InfoXLM-large (Chi et al.,
2021) in Subtask 2 (cross-lingual). RoBERTa is a
well-tuned model based on BERT (Devlin et al.,
2019), and it has shown state-of-the-art perfor-
mance in various classification tasks. InfoXLM
is a recently proposed model, which is pre-trained
with contrastive learning. For Seq2Seq, we used
T5-large (Raffel et al., 2020) in Subtask 1 and mT5-
large (Xue et al., 2021) in Subtask 2. T5 uses a
unified text-to-text framework to deal with various
text-based tasks.

Submitted models In our preliminary experi-
ments, we found that the development scores of
the monolingual Graph models were slightly better
than those of the Seq2Seq ones (the reasons will be
discussed later). Thus, we only used Graph models
for our submission. However, to discuss Graph

and Seq2Seq in detail, we show the results of both
Graph and Seq2Seq below.

3.2 Main results
Table 1 shows the overall results of Subtask 1
(i.e., monolingual), including the scores for the
development and test data in Sentiment Graph F1
(SF1) (Barnes et al., 2021). We tried three dif-
ferent seeds for each model to minimize the ef-
fects of random seeds and averaged the scores. For
the ensemble methods, the scores are those from
the ensemble of models with the three seeds. For
reference, we also include the results of the best-
performing team for the test data. Overall, Graph
mostly outperformed Seq2Seq with significant dif-
ferences observed in non-English corpora, such as
OpeNER_es and MultiB_eu. This suggests that
Graph has an advantage for multilingual training
when compared to Seq2Seq. That is, while T5 is
trained on summarization and its related tasks, mT5
is not. This difference might cause a disadvantage
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Figure 2: Misalignment ratio of Seq2Seq, where mis-
alignment means Seq2Seq predicted correct surface to-
kens, but the aligned spans for the original text were
incorrect.

wherein Seq2Seq generates (and possibly copies)
sentiment tokens from the input text.

Although not surprising, Table 1 indicates that
the ensemble models of Graph outperform the non-
ensemble ones. The submitted ensemble models
have comparable SF1 to those of the best team on
the test set of some corpora.

Subtask 2 In this subtask, we used OpeNER
English for training and conducted zero-shot
prediction for OpeNER_es, MultiB_eu, and
MultiB_ca. Table 2 shows SF1 of Subtask 2
(i.e., cross-lingual zero-shot). Overall, it seems
that Graph is still a better choice than Seq2Seq.
There is a significant difference in MultiB_eu,
i.e., Seq2Seq (44.7) and Graph (51.6). This differ-
ence may be due to the pre-trained language mod-
els (i.e., InfoXLM vs. mT5) and the misalignment
problem of Seq2Seq. On the other hand, Graph and
Seq2Seq performed poorly compared with the top-
performing team, so neither model seems suitable
for the zero-shot setting.

3.3 Analysis and Discussion

This section compares Seq2Seq and Graph and
points out that one is not superior to the other. Our
argument is supported by an analysis of the align-
ment errors of Seq2Seq and the structural/semantic
properties of the parsers. To simplify the discus-
sion, we focus only on non-ensemble and mono-
lingual models for the English corpora (i.e., MPQA,
DSu and OpeNER).

3.3.1 Does Graph really outperform
Seq2Seq?

Alignment error in Seq2Seq A major drawback
of Seq2Seq is the alignment error caused by the
aligner. That is, Seq2Seq can produce the correct
surface tokens of the polar expression, source or
target, but the aligner may align incorrect spans

Figure 2 shows the misalignment ratio (i.e., the ra-
tio of predicted elements where the surface tokens
generated by Seq2Seq are correct, but the spans
generated by the aligner are incorrect). There is a
certain amount of alignment error in MPQA, DSu
and OpeNER. We can see that the ratio of OpeNER
is larger than those of the others. We explain this
in Table 3. In case #1, a polar expression chic! was
correctly predicted, but the aligner did not include
the exclamation mark. In #2, minutes from numer-
ous... was correctly predicted, but the beginning
word minutes was unfortunately not included in the
span. We found that the large misalignment ratio
of the source in OpeNER was caused by pronoun
words, as illustrated in #3, where our system could
not resolve which I (i.e., the former or the latter in
the two I tokens) to align. Case #4 shows a similar
phenomenon for the term hate.

If we had remedied some of the misalignments,
Seq2Seq would have produced 41.8 SF1 and 42.6
SF1 on the test data of DSu and MPQA, respectively.
These results are comparable or better than those
of the Graph models shown in Table 1; thus, we
can not simply conclude that Graph is better than
Seq2Seq. Moreover, Seq2Seq might be the best
choice for an evaluation metric that does not empha-
size anchoring spans of the input sentence (which
may be enough for practical purposes). On the
other hand, it seems that Seq2Seq for OpeNER still
has a significant performance gap against Graph, as
shown in Table 1. We focus on this aspect below.

3.3.2 How do Graph and Seq2Seq differ
from each other?

Here, we discuss the differences between Graph
and Seq2Seq on the basis of structural and semantic
complexity. We also discuss the limitations of the
parsers.

Complexity of sentiment structure We sup-
pose that the number of opinions in an input text
can be used as a proxy metric showing the com-
plexity of the sentiment structure. Figure 3 shows
the relationship between the number of opinions in
an input sentence and SF1. Overall, the two parsers
exhibit similar trends; that is, the more opinion
numbers there are, the harder the prediction be-
comes. However, the performance of Graph seems
to be less dependent on the number of opinions,
while Seq2Seq generally exhibits a negative trend,
especially for OpeNER. These results suggest that
Graph is a good choice for handling complicated
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# Corpus Text Gold span (and its
text)

Generated
surface by
Seq2Seq

Mis-aligned span
(and its text)

1 OpeNER hotel chic ! [6:12] (chic !) chic! [6:10] (chic)
2 OpeNER It is minutes from numerous restaurants ,

bars , etc. and centrally located between
the Prado and the Palace · · great for
walking .

[6:53] (minutes from
numerous restaurants,
bars, etc.)

minutes from
numerous
restaurants,
bars, etc.

[14:53] (from numer-
ous restaurants , bars
, etc.)

3 OpeNER I was forced to stay in this area due to my
business reason , but oterwise I would
not suggest to come here to spend your
holidys .

[75:76] (I) I [0:1] (I)

4 MPQA " We do n’t hate the sinner , " he says , "
but we hate the sin . "

[51:55] (hate) hate [12:16] (hate)

Table 3: Case study of misalignments where Seq2Seq produced correct surface tokens but the reconstruction
system aligned incorrect spans.
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structures.
However, Graph has another disadvantage: over-

detection. Figure 4 shows the precision and recall
values for target and polar expression in MPQA and
OpeNER. As shown, there is a possible trend that
Graph is more recall-focused, and Seq2Seq is more
precision-focused. In other words, Graph may over-
detect opinion fragments for specific corpora. Case
#1 in Table 4 shows an example of over-detection.
The over-detected phrases are a means of “threat-
ened” and may not be a target.

However, we find that, even for complex struc-
tures with multiple opinions, both Graph and
Seq2Seq produce reasonable predictions. In case
#1 in Table 4, the means of “threatened” is seman-
tically a target; thus, this would be an acceptable
case. Case #2 shows a long polar expression which
does not appear in the gold standard, i.e., let alone
the 4 stars, while the prediction seems to be cor-
rect in a sense. Through these observations, both
Graph and Seq2Seq seem to try to output plausible
outputs.

Semantic complexity Here, we begin by focus-
ing on the difference between corpora (i.e., MPQA
and OpeNER), because it is difficult to evaluate
the semantic complexity directly. MPQA is anno-
tated on the basis of the private state frame and
distinguishes subjective information from mate-
rial presented as fact (Wiebe et al., 2005). This
makes MPQA semantically complex and context-
dependent. On the other hand, OpeNER project
originally focuses on lexicon creation (Agerri et al.,
2013), making the corpus probably less context-
dependent.

Again, let us investigate the precision and re-
call in Figure 4. A significant score gap between
precision and recall in the figure can be found in
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# Corpus Text Method Polarity Polar exp. Source Target
1 MPQA But after the Chinese side released

all the US crew members , major
US political figures changed their
stance immediately and threatened
to use human rights , trade , and
Olympics hosting issues to " retali-
ate " against China .

Gold Negative threatened major US
political
figures

China

Graph Negative threatened major US
political
figures

1. China, 2. trade ,
and Olympics host-
ing

Seq2Seq Negative threatened major US
political
figures

China

2 OpeNER I would never ever come back to
this hotel even if they paid me.
simply it ’s not worth the money ,
let alone the 4 stars .

Gold Negative would never ever
come back

I this hotel

Negative not worth the money
Graph Negative would never ever

come back
I this hotel

Negative not worth the money
Seq2Seq Negative never ever come

back
I this hotel

Negative not worth I the money
Negative let alone the 4 stars it

3 MPQA AOL would never have existed if it
had been founded here , I am sure
, since its employees would have
been mocked into obscurity by the
digerati .

Gold Negative mocked into obscu-
rity

digerati its employees

Graph Negative mocked the digerati its employees
Seq2Seq ⊥ ⊥ ⊥ ⊥

4 MPQA In the complaint , Hobeika had not
yet been called by name .

Gold Negative the complaint
Graph Negative complaint
Seq2Seq ⊥ ⊥

5 DSu I had a programming class with no
lectures which is always fun for
beginners to try to learn concepts
without any sort of interactivity .

Gold Negative 1.always, 2.fun for
beginners

everyone no lectures

Graph ⊥ ⊥ ⊥ ⊥
Seq2Seq ⊥ ⊥ ⊥ ⊥

Table 4: Case study of outputs by graph-based and seq2seq-based models. Magenta colored text indicates incorrect
outputs. For visibility, we have omitted some of the outputs. ⊥ represents a false-negative prediction.

the polar expression of MPQA; i.e., for Seq2Seq,
the polar expression’s precision of MPQA is quite
higher than its recall. Interestingly, the gap was
not so large in the polar expression of OpeNER.
We presume that this is due the semantic complex-
ity (or context-dependent nature) of MPQA. That is,
since Seq2Seq always refers to the context of the
input side when generating an output, the output
could be more context-dependent, and as a result,
Seq2Seq may not output less-confident opinions.

Since it is difficult to test the hypothesis that
Seq2Seq may not output less-confident opinions in
a statistical manner, we present several case stud-
ies. Cases #3 and #4 in Table 4 show errors where
Graph predicted correct or incorrect opinions but
Seq2Seq did not. In #3, the term mocked is a neg-
ative word as is, and can be predicted only with a
lexical perspective. However, the polar expression
is located in a fictional speculation in insubstan-
tial text, which may have confused Seq2Seq. In
#4, Graph predicted complaint as a negative polar
expression, since the complaint could be a nega-

tive lexicon as is, while Seq2Seq did not output
any opinions. Considering the context in the entire
article, it might be difficult to for Seq2Seq to de-
termine if the complaint is an opinion. In this way,
Seq2Seq might enable more context-aware predic-
tions, but may not be suitable for structured senti-
ment analysis based on lexicons. Graph seems to be
good at handling lexicons and context-independent
phrases.

Limitation of both parsers Another semanti-
cally complex case illustrates an interesting error
that neither Graph nor Seq2Seq could parse. Case
#5 in Table 4 shows an irony expression that might
illustrate a limitation of pre-trained models.

Which is superior? As discussed above, each
model has its own advantages depending on the
perspective. However, we cannot decide which is
better, because the decision criteria rely on how
we define the sentiment structure. MPQA defines
structured sentiment on the basis of private state
frames, while OpeNER focuses more on lexical
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↓ Sec. per step DSu OpeNER MPQA
en en en

Graph RoBERTa-large 0.2 0.2 0.3
Seq2Seq T5-large 2.0 2.0 1.8

↓ Sec. per epoch

Graph RoBERTa-large 34.0 26.9 92.8
Seq2Seq T5-large 138.6 105.3 332.1

Table 5: Training speed (in sec.) for each parser.

SF1

(Barnes et al., 2021) mBERT 31.2
(Peng et al., 2021) mBERT 31.9
PERIN NC (Samuel et al., 2022) XLM-R-base 39.3
PERIN LE (Samuel et al., 2022) XLM-R-base 40.4
PERIN OT (Samuel et al., 2022) XLM-R-base 41.6

Graph (ours) XLM-R-base 44.8

Table 6: Comparison with state-of-the-art methods for
NoReC test data. Note that NC, LE, and OT mean the
node-centric, labeled edge, and opinion-tuple variants
of PERIN.

semantics. This would make a difference with syn-
tactic parsing, which is based on a certain type of
well-defined grammar, and would cause the pars-
ing performance to be lower than that of syntactic
parsers. To cover the variety of definitions of struc-
tured sentiment, an abstraction of the sentiment
structure might be needed, as is done in abstract
meaning representation (AMR; Banarescu et al.
2013).

3.3.3 Energy efficiency approximated by
training time

Finally, we discuss the energy efficiency of Graph
and Seq2Seq as an estimate of their financial and
environmental impact (Strubell et al., 2019). We
evaluated the approximated energy consumption
in terms of the training time on NVIDIA V100
GPUs. Table 5 shows step-normalized and epoch-
normalized training speed in seconds, given that
a different batch size was used for Graph and
Seq2Seq. As shown, Graph is usually faster than
Seq2Seq on all English corpora. We suppose this
is because Seq2Seq has a decoder part, which has a
computational cost. The results suggest that Graph
is preferable in terms of energy efficiency.

4 Related work and state-of-the-art

Sentiment analysis, such as aspect-based sentiment
analysis (Chen and Qian, 2020), is a popular re-
search area in natural language processing. Most

recently, we have seen attention focusing on pars-
ing full representations of sentiment from text,
i.e., structured sentiment analysis (Barnes et al.,
2021), as we have tackled in this study. Most
methods (Barnes et al., 2021; Peng et al., 2021)
for this task are motivated by graph-based parsers
that can parse the structured sentiment using a
technique similar to dependency parsing. On the
other hand, the state-of-the-art graph-based parser,
PERIN (Samuel et al., 2022), utilizes the idea
of meaning representation parsing (Oepen et al.,
2020; Samuel and Straka, 2020), which remedies
the lossy dependency graphs of the previous work
(Barnes et al., 2021). Our graph-based method (i.e.,
Graph) is one such study. The differences between
Graph and the related literature are in the graph
encoding method and model architecture.

To directly compare our Graph with the state-
of-the-art methods, we trained Graph with XLM-
RoBERTa-base (XLM-R; Conneau et al. (2020)).
We tried three different seeds and averaged the
scores. Because the corpora provided in the shared
task were slightly modified from those used in the
related studies, it is difficult to make a direct com-
parison. Thus, we evaluated only on the unaffected
NoReC. Table 6 suggests that our Graph outper-
forms state-of-the-art baselines; however, we can-
not conclude that our method is state-of-the-art
based solely on an evaluation on NoReC. We hope
that more extensive studies will clarify this situa-
tion.

On the other hand, an alternative to the tra-
ditional graph-based methods, we proposed a
generation-based method (i.e., Seq2Seq) that
showed promising results. Generation-based meth-
ods have been recently utilized in meaning rep-
resentation parsing (Ozaki et al., 2020; Procopio
et al., 2021); this framework offers more research
options in terms of architecture and graph encod-
ings for structured sentiment analysis. Our study
can be positioned within this framework.

5 Conclusion

This paper showed two different parsers (i.e., graph-
based and seq2seq-based parsers) for SemEval-
2022 Task 10, structured sentiment analysis. The
parsers were compared in various aspects such as
complexity in structure and semantics. Experi-
ments and analyses showed that both parsers output
reasonable predictions, but that it is hard to decide
which is better. This could be because the deci-
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sion criteria rely on how the sentiment structure is
defined. This makes structured sentiment analysis
challenging. To deal with this difficulty, it may
be helpful to apply an abstract representation of
structured sentiment.

Acknowledgements

The computational resources of the AI Bridging
Cloud Infrastructure (ABCI) provided by the Na-
tional Institute of Advanced Industrial Science and
Technology (AIST) were used. We would like to
thank Dr. Masaaki Shimizu for maintenance and
management of the large computational resources.

References
Rodrigo Agerri, Montse Cuadros, Sean Gaines, and

German Rigau. 2013. OpeNER: Open polarity en-
hanced named entity recognition. In Sociedad Es-
pañola para el Procesamiento del Lenguaje Natural,
volume 51, pages 215–218.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Jeremy Barnes, Toni Badia, and Patrik Lambert. 2018.
MultiBooked: A corpus of Basque and Catalan hotel
reviews annotated for aspect-level sentiment classifi-
cation. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Jeremy Barnes, Robin Kurtz, Stephan Oepen, Lilja
Øvrelid, and Erik Velldal. 2021. Structured senti-
ment analysis as dependency graph parsing. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 3387–
3402, Online. Association for Computational Lin-
guistics.

Jeremy Barnes, Laura Ana Maria Oberländer, En-
rica Troiano, Andrey Kutuzov, Jan Buchmann, Ro-
drigo Agerri, Lilja Øvrelid, and Erik Velldal. 2022.
SemEval-2022 task 10: Structured sentiment analy-
sis. In Proceedings of the 16th International Work-
shop on Semantic Evaluation (SemEval-2022), Seat-
tle. Association for Computational Linguistics.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Zhuang Chen and Tieyun Qian. 2020. Relation-aware
collaborative learning for unified aspect-based sen-
timent analysis. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3685–3694, Online. Association for
Computational Linguistics.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham
Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao,
Heyan Huang, and Ming Zhou. 2021. InfoXLM: An
information-theoretic framework for cross-lingual
language model pre-training. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3576–3588, On-
line. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20–30, Vancouver, Canada. Association for
Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China. Associa-
tion for Computational Linguistics.

Agnieszka Falenska, Anders Björkelund, and Jonas
Kuhn. 2020. Integrating graph-based and transition-
based dependency parsers in the deep contextualized

1357

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://aclanthology.org/L18-1104
https://aclanthology.org/L18-1104
https://aclanthology.org/L18-1104
https://doi.org/10.18653/v1/2021.acl-long.263
https://doi.org/10.18653/v1/2021.acl-long.263
https://doi.org/10.18653/v1/2020.acl-main.340
https://doi.org/10.18653/v1/2020.acl-main.340
https://doi.org/10.18653/v1/2020.acl-main.340
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2021.naacl-main.280
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.18653/v1/2020.iwpt-1.4
https://doi.org/10.18653/v1/2020.iwpt-1.4


era. In Proceedings of the 16th International Con-
ference on Parsing Technologies and the IWPT 2020
Shared Task on Parsing into Enhanced Universal De-
pendencies, pages 25–39, Online. Association for
Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Masoud Jalili Sabet, Philipp Dufter, François Yvon,
and Hinrich Schütze. 2020. SimAlign: High qual-
ity word alignments without parallel training data us-
ing static and contextualized embeddings. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1627–1643, Online. As-
sociation for Computational Linguistics.

John Lawrence and Chris Reed. 2019. Argument
mining: A survey. Computational Linguistics,
45(4):765–818.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
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