
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1235 - 1243
July 14-15, 2022 ©2022 Association for Computational Linguistics

WueDevils at SemEval-2022 Task 8: Multilingual News Article Similarity
via Pair-Wise Sentence Similarity Matrices

Dirk Wangsadirdja and Felix Heinickel and Simon Trapp
{name}.{surname}@stud-mail.uni-wuerzburg.de

Albin Zehe and Konstantin Kobs and Andreas Hotho
{surname}@informatik.uni-wuerzburg.de

University of Würzburg

Abstract

We present a system that creates pair-wise co-
sine and arccosine sentence similarity matri-
ces using multilingual sentence embeddings
obtained from pre-trained SBERT and Univer-
sal Sentence Encoder models respectively. For
each news article sentence, it searches the most
similar sentence from the other article and com-
putes an average score. Further, a convolu-
tional neural network calculates a total similar-
ity score for the article pairs on these matrices.
Finally, a random forest regressor merges the
previous results to a final score that can option-
ally be extended with a publishing date score.

1 Introduction

The goal of the Multilingual News Article Similar-
ity task (Chen et al., 2022) is to check pairs of mul-
tilingual news articles against each other in terms
of similarity of their information content. The chal-
lenge focuses on what is talked about (time, ge-
olocation, shared entities), not how the informa-
tion is expressed (writing style, emotional tone,
etc.), which is essential for applications such as
analyzing the news coverage between different re-
gions. The participants’ objective is the creation
of a model that rates the similarity of article pairs
on a 4-point scale from most (1) to least (4) similar
and achieves the highest possible Pearson corre-
lation score compared to the gold standard. The
languages covered by this competition are English
(en), German (de), Spanish (es), Turkish (tr), Pol-
ish (pl), French (fr) and Arabic (ar) in the training,
additionally Italian (it), Russian (ru) and Chinese
(zh) in the evaluation.

Our system uses an ensemble approach to score
pair-wise sentence similarity matrices of the article
pairs, which are created with SBERT and Universal
Sentence Encoder sentence embeddings. Scores
are obtained through simple matrix operations and
our convolutional neural network SimCNN based

on the TextCNN by Kim (2014). Finally, a ran-
dom forest regressor (Breiman, 2001) consolidates
the individual scores into a final result, which we
extend with a publishing date score.

The key challenge of this task is the usage of mul-
tilingual text pairs, which requires the application
of less precise multilingual language models. Also
the splitting of sentences and named entity recog-
nition becomes hard to accomplish, since models
for these tasks are still monolingual in most cases
and we found the few multilingual ones to be un-
reliable. The article scraping tool provided by the
authors also did not reveal meaningful features to
work with besides the article title and text, since the
scraped keywords, tags and publishing dates were
not always available and in a utilizable format.

In the competition, we took 9th place with a
Pearson correlation coefficient of 0.759 on the eval-
uation set, which differs from the observed perfor-
mance on our own validation sets. This is due to
a shift from Latin languages to more complex lan-
guages like Chinese in the evaluation data, where
the performance of the multilingual models and
sentence tokenizing algorithm decreases. Our code
is publicly available1.

2 Background

The starting point of the task is the training data —
a CSV file — which contains a list of article pairs2.
Each article pair consists of the languages, IDs
and URLs for both articles and the gold standard
similarity scores for multiple aspects of the articles
(Geography, Entities, Time, Narrative, Style, Tone,
Overall), of which only the overall score is relevant
for our evaluation.

To get the content and metadata of the articles,

1https://github.com/simontrapp/
semeval-22-task-8

2We used the most recent version 0.2 with 4,964 labeled
article pairs.

1235

https://github.com/simontrapp/semeval-22-task-8
https://github.com/simontrapp/semeval-22-task-8

the task authors provide a scraping tool3 utilizing
the newspaper3k python package that downloads
the HTML page and creates a JSON file that con-
tains the title, text, keywords, labels, date, and more
properties of each news article. For the training of
the prediction system on the JSON files, the results
can be compared against the overall scores in the
initial CSV file. The final evaluation data CSV, for
which the results are submitted, does not provide
scores to compare against.

3 Related Work

For the scoring of our similarity matrices in subsec-
tion 4.4, we use an idea from Ginzburg et al. (2021),
who introduce Self-Supervised Document Similar-
ity Ranking (SDR), an unsupervised approach built
upon the RoBERTa language model to rank the se-
mantic similarity of a collection of documents to a
source (query) document. SDR captures the intu-
itive fact that for each sentence or paragraph in one
document, there should be at least one similar one
anywhere (obtained by a max operation on the rows
and columns of the similarity matrix) in the other
document if both deal with the same topic. Since
SDR is monolingual and is only trained on En-
glish texts, we combine its scoring approach with
multilingual embeddings obtained from SBERT
(Reimers and Gurevych, 2019) and Universal Sen-
tence Encoder (Cer et al., 2018) for this challenge.

4 System Overview

Our system (see Figure 1) first splits the article text
into a list of sentences including the title. Then we
compute embeddings with SBERT and Universal
Sentence Encoder for all sentences and create the
respective similarity matrices (similarity of all sen-
tences of one article to all sentences of the other) of
all article pairs. In the next step, we apply two dif-
ferent scoring approaches to these matrices: First,
we apply simple maximum and average operations
to the two matrices for four similarity scores, as pro-
posed by Ginzburg et al. (2021). Second, we feed
the matrices into our SimCNN to increase score ac-
curacy (see Appendix C). Finally, we combine the
five scores into a final score with a random forest
regressor to get a stable prediction. Optionally, an
additional score for the publishing date distance of
both articles can be computed and merged with the
random forest result to refine the prediction.

3https://github.com/euagendas/semeval_
8_2022_ia_downloader

4.1 Preparation of Article Data

We decided that only the title and the text of the
article should be relevant for our model, since other
features such as keywords, tags or publishing date
of the articles are not always available or feasibly
retrievable. We use the sent_tokenize func-
tion of the nltk python package to split the text
of both articles into a list of sentences and append
their title strings to the respective list. This allows
us to feed text of arbitrary length into the embed-
ding models.

4.2 Creation of Embeddings and Similarity
Matrices

For all sentences in the lists, we create two separate
sets of sentence embeddings:

The Universal Sentence Encoder (Yang et al.,
2019) always uses the same pre-trained model (see
subsection 5.2) to create the embeddings, for which
we calculate the recommended arccos-based text
similarity (Yang et al., 2018), that converts the co-
sine values into angular distances in [0, π] pair-wise
between all sentences of both articles.

For SBERT, the model that is selected to create
the embeddings depends on the languages of both
articles: If both are the same and a model with bet-
ter performance than the multilingual one is known
(see subsection 5.2), this model computes the em-
beddings for both articles, otherwise the default
multilingual model is used. The pair-wise simi-
larity matrix between article sentences is created
analogously to the Universal Sentence Encoder, but
with cosine similarity instead of arccos, because
SBERT was optimized for it.

4.3 Architecture of SimCNN

The architecture of our CNN is based on the ar-
chitecture by Yoon Kim for CNNs for text pro-
cessing (Kim, 2014) (detailed layer information
in Appendix A). As input, we use both precom-
puted sentence embeddings from the SBERT and
the Universal Sentence Encoder model of two ar-
ticles with lengths x and y. Further, we calculate
one similarity matrix from both the SBERT and
the Universal Sentence Encoder embeddings since
tests have indicated an increased performance us-
ing this input. Finally, the input of the CNN is
an x × y × 2 matrix, generated by concatenating
the SBERT and the Universal Sentence Encoder
similarity matrices. Due to this input, we named
our network SimCNN. However, the CNN requires

1236

https://github.com/euagendas/semeval_8_2022_ia_downloader
https://github.com/euagendas/semeval_8_2022_ia_downloader

Article Pair Lists of sentences

Text + Title

SBERT
Embedding for each

sentence

Universal
Sentence
Encoder arccosine

cosine

Similarity matrix for all

embedding pairs

(across articles)

SentenceTokenizer
Take avg. of

maximum of each

row/column

Process with pre-

trained SimCNN

score

score

score

Random Forest
Regressor

Weighted average

(optional)

Same

Language

Pair?

No

Yes, <SPECIAL>
language

Yes, other
language

Use multilingual

SBERT model

Use specialized

SBERT model

score
(weight: 2)

article date difference
score

(weight: 1)

Figure 1: The data flow of the article pairs from raw text to the final score. If both articles are written in the same
language, we use an SBERT model that is better than the default multilingual one, if one exists (see subsection 5.2).

a fixed input size within the y-dimension, so we
set y to 100 (using zero-padding if y < 100 and
cropping if y > 100). We chose y = 100 based
on analysis that indicates only a few articles have
longer sentence lists and do not set it to the maxi-
mum sentence list length since broken lists with up
to 1500 sentences can occur.

Adapted from the TextCNN of Yoon Kim, the
network consists of seven different convolutions
with kernel size w × 100 with w ∈ {2, 3, . . . , 9},
and 128 filters, named sliding window. For ex-
tended feature extraction, we added two convolu-
tional blocks before each sliding window SWw,
consisting of five convolutions. Thereby, each con-
volution of a block SWk uses a kernel size of
w × w, the same padding, and 32 filters within
the first block and 64 within the second. Further-
more, each convolution follows a ReLU6 activation
and a batch normalization layer and, additionally,
a dropout layer (probability = 0.25) after the 2nd
and 4th convolution. After each sliding window
convolution, a max over time pooling extracts the
best feature of each filter, so we get a output vector
of size 128. Afterwards, a separate linear layer is
applied to each vector(mapping to 128 features),
followed by another dropout (probability = 0.5)
and a ReLU6 layer.

For the final prediction, we concatenate all vec-
tors of the different sliding windows to one vector
of size 1024 that is fed into five consecutive lin-
ear layers. Thereby, the output size for each linear
layer is half the input size and every layer uses
a ReLU6 activation function and, additionally, a
dropout layer (probability = 0.5) every second
time. Finally, a linear layer with an input size of

32 and output size of 1 predicts a score s ∈ [0, 1]
using a sigmoid activation function. This score is
scaled to our target values s ∈ [1, 4] subsequently.

4.4 Ensemble Scoring of Article Similarity

In addition to being fed into the SimCNN, the ar-
ccos and cosine similarity matrices of the article
pairs are processed by taking the average over the
maximum value of each row/column of the matrix,
similar to the approach by Ginzburg et al. (2021) in
section 3. The maximum values yield the most sim-
ilar sentence in the other article for each sentence
and the average operation acts as a proportion of
how many sentences of one article share statements
with the other article. By doing this for both rows
and columns, we obtain two scores for both articles
respectively. Figure 2 visualizes this process.

0.5 0.7 0.1

0.3 0.2 0.8

0.4 0.6 0.9

s1
1

s2
1

s3
1

s1
2 s2

2 s3
2

0.7

0.8

0.9

0.5 0.7 0.9

0.8

0.7avg.

max
/row

max
/col.

avg.

Figure 2: Example of the scoring operation on the arc-
cos and cosine sentence similarity matrices. The super-
script number denotes the number of the sentence in the
document, the subscript number marks the document
number of the sentence.

1237

Finally, the four matrix scores (article similarity
SBERT 1-to-2 and 2-to-1, Universal Sentence En-
coder 1-to-2 and 2-to-1) and the SimCNN score are
fed into a random forest (Breiman, 2001) regressor
from the scikit-learn Python package4. The
forest uses the results of 100 different trained deci-
sion trees and takes the average of their predictions,
which is the final score reported back by the model.

4.5 Integration of a Publishing Date Score

We also compute scores based on the publishing
date distances of each article pair (if available) for
the reason that the further the publishing dates are
apart, the more likely the articles are about differ-
ent topics. In accordance with the 4-point score
used for the text scoring, we use 10, 20, and 50
days as the boundaries, meaning the score would
be ignored if the difference is less than 10 days,
between 2 and 3 if the difference is between 10 and
20 days, between 3 and 4 if the difference is be-
tween 20 and 50 days, and a hard 4 for a difference
of more than 50 days.

If a date score can be calculated and is not ig-
nored, a weighted average of the random forest
score (weight 2) and the date score (weight 1) is re-
turned as a final result, otherwise the random forest
score is returned. The 10, 20, and 50 day bound-
aries, as well as the weights, were determined based
on experiments on the training data.

5 Experimental Setup

After outlining the model components and their in-
teractions in the previous section, here we cover the
data sets, experiments and training processes used
to configure the separate parts of the system. The
sole evaluation metric for this competition is the
Pearson correlation coefficient r (Pearson, 1896;
Lee Rodgers and Nicewander, 1988), which de-
scribes the linear association between two related
variables X and Y . A score close to -1 or 1 implies
that a linear equation can express the relationship
between the two variables almost perfectly, while a
score of 0 indicates no correlation.

5.1 Validation Data Sets

The only labeled data available for training are the
4,964 article pairs provided by the task authors.
We reserve a static 10% subset of the training data

4https://scikit-learn.org/stable/
modules/ensemble.html#forest

consisting of 470 pairs of diverse language com-
binations for our model validation in Table 2, Ap-
pendix D and the following experiments. The other
90% of the data are used for the actual training.

5.2 Selection of Pre-Trained Models

The pre-trained multilingual SBERT model
paraphrase-multilingual-mpnet-base-v2 performed
best overall on the validation set, so it is used as the
default model. We could improve the accuracy for
some same-language article pairs by using special-
ized pre-trained models (en-en: all-mpnet-base-v2,
es-es: distiluse-base-multilingual-cased-v1, and fr-
fr: sentence-transformers/LaBSE). For Universal
Sentence Encoder we used version 3 of the model
multilingual-large.

5.3 SimCNN Pre-Training

The presented model was implemented in python
using PyTorch (Paszke et al., 2019) and trained
on a consumer graphics card. For updating the pa-
rameters in the network, we employed the Stochas-
tic Gradient Decent optimization algorithm using a
learning rate of 0.05 with a batch size of 8. Mean
squared error was used as the loss function, and
additionally, we monitored the mean average error
and the Pearson correlation coefficient for perfor-
mance evaluation. We used early stopping with a
patience of 20 epochs to prevent overfitting, so the
network was saved when no longer improving in
terms of the Person correlation coefficient. Even-
tually, our network was trained around 30 epochs
before overfitting.

5.4 Random Forest Regressor Pre-Training

After the training of the SimCNN model, five sim-
ilarity scores per article pair of the training data
are available through our model pipeline: Two
scores for both the SBERT and Universal Sentence
Encoder matrices and the SimCNN score. These
scores are fed into a random forest (Breiman, 2001)
regressor5 with the provided Overall scores of the
training data as labels. The random forest is popu-
lated with 100 decision trees and uses the squared
error as the optimization criterion. Appendix C
shows how the performance of the model increases
as we provide more data.

5RandomForestRegressor of the python package
scikit-learn with version 1.0.2.

1238

https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#forest

Data Set
Language Combination

pl-pl de-de de-en fr-fr ar-ar en-en tr-tr es-es zh-zh
Validation 0.80 0.75 0.80 0.91 0.76 0.79 0.89 0.81 -
Evaluation 0.63 0.67 0.77 0.74 0.59 0.85 0.66 0.74 0.64

Table 1: Performance of the random forest with date score on selected language combinations. The full table with
all pairs is in Appendix D.

Model
Pearson r

Validation Evaluation
SimCNN 0.800 0.699
RF 0.797 0.702
RF + Date 0.800 0.715

Table 2: Performance of our models on our validation
set and the final evaluation data. The random forest
(RF) is able to improve over just the SimCNN on the
evaluation data when combined with the date score.

6 Results

Our system ranked 9th place in the competition
with a Pearson score of 0.759.

To find the best models for submission, we tested
the three last stages of our system on the aforemen-
tioned validation set separately: Just the SimCNN
score, the prediction of the random forest regres-
sor and the weighted average of the random forest
score and the publishing date score.

The results in Table 2 indicate that the random
forest regressor replicates the results of the Sim-
CNN and barely considers the additional informa-
tion provided. The combination of the random
forest with the publishing date score on the other
hand improves the results. Further, our models
generally predict perceptibly worse scores on the
evaluation data than on the training data split.

The language distribution in Appendix B shows
a shift from Latin languages and article pairs
to vastly different and more complex languages:
Chinese-Chinese article pairs account for over 15%
of article pairs in the evaluation data. Russian, Pol-
ish and Arabic articles also occur often, frequently
in combination with other article languages such
as English, French and German. This leads to prob-
lems in the preparation of the article texts for our
system because our sentence tokenizer only sup-
ports English or similar texts and many of the new
languages have a different structure and alphabet.

When taking a look at the performance per lan-
guage pair of our model in Table 1, another reason
for the score drop-off between training split and

evaluation data becomes apparent: The commonly
occurring Chinese-Chinese article pairs perform
bad with a Pearson score of 0.64. Also, other com-
binations which previously did well on the split of
the training data gave significantly worse results on
the evaluation set, indicating that maybe the quality
or structure of the new data differs from the earlier
samples. Interestingly, our system improved on the
English-English evaluation pairs.

All things considered, we achieved satisfying
results with just slightly modified publicly available
models to create sentence embeddings and a CNN
to work with them. The system only depends on
an article’s text, title and sometimes the publishing
date, if it is available, and is still able to achieve a
Pearson correlation score of about 0.6 even for the
most difficult examined language.

7 Conclusion

Pair-wise sentence comparison is a simple way to
calculate the similarity of texts of arbitrary length
if suitable multilingual models for sentence em-
beddings are available. With simple matrix oper-
ations like taking the maximum or average and a
random forest regression algorithm, good results
can be achieved. After introducing the more com-
plex SimCNN and combining it with a score of
the publishing dates of the article pairs, our model
surpassed a Pearson correlation coefficient of 0.8
in some conditions.

Nevertheless, the current state of the system
leaves many things to be improved: The sentence
tokenizing currently only reliably works for En-
glish and similar languages. With a sentence split-
ting algorithm, that is capable of differently struc-
tured languages like Chinese or Japanese, results
on such articles could be greatly improved. Further,
our pair-wise sentence similarity matrix approach
could be extended to named entities like locations
and persons, which we think would also greatly im-
prove accuracy, but for that, a more sophisticated
multilingual algorithm for named entity recogni-
tion would be needed.

1239

References
Leo Breiman. 2001. Random forests. Machine learning,

45(1):5–32.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Céspedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Xi Chen, Ali Zeynali, Chico Q. Camargo, Fabian
Flöck, Devin Gaffney, Przemyslaw A. Grabowicz,
Scott A. Hale, David Jurgens, and Mattia Samory.
2022. SemEval-2022 Task 8: Multilingual news
article similarity. In Proceedings of the 16th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2022). Association for Computational Linguistics.

Dvir Ginzburg, Itzik Malkiel, Oren Barkan, Avi Caciu-
laru, and Noam Koenigstein. 2021. Self-supervised
document similarity ranking via contextualized lan-
guage models and hierarchical inference. arXiv
preprint arXiv:2106.01186.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification.

Joseph Lee Rodgers and W Alan Nicewander. 1988.
Thirteen ways to look at the correlation coefficient.
The American Statistician, 42(1):59–66.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Karl Pearson. 1896. Vii. mathematical contributions to
the theory of evolution.—iii. regression, heredity, and
panmixia. Philosophical Transactions of the Royal
Society of London. Series A, containing papers of a
mathematical or physical character, 187:253–318.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo,
Jax Law, Noah Constant, Gustavo Hernández Ábrego,
Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, and Ray Kurzweil. 2019. Multilingual uni-
versal sentence encoder for semantic retrieval. CoRR,
abs/1907.04307.

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong,
Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan
Sung, Brian Strope, and Ray Kurzweil. 2018. Learn-
ing semantic textual similarity from conversations.

In Proceedings of The Third Workshop on Represen-
tation Learning for NLP, pages 164–174, Melbourne,
Australia. Association for Computational Linguistics.

1240

http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1907.04307
http://arxiv.org/abs/1907.04307
https://doi.org/10.18653/v1/W18-3022
https://doi.org/10.18653/v1/W18-3022

A Architecture of SimCNN

(a) SimCNN

(b) Sliding Window Block with size k

Figure 3: Architecture and methods of the SimCNN based on the TextCNN described by Kim (2014).

Figure 3a shows the architecture of the SimCNN. The SimCNN is based on the architecture by Yoon
Kim for CNNs for text processing (TextCNN) (Kim, 2014). It consists of seven sliding window blocks
SWw with window size w ∈ {2, . . . , 9}. Each block SWw receives the input of size 2 × x × 100 and
is structured as illustrated in graphic 3b. First, two convolution blocks, with five convolutions each, are
applied to the input. Each convolution of SWw has a kernel size of w × w and uses same padding. The
convolutions of the first block have 32 filters and the ones of the second block 64. After a convolution,
first, a ReLU6 activation layer is applied and, subsequently, a batch normalization layer. Furthermore,
after the second, fourth and last convolution, a dropout is executed with a probability of 0.25. Afterwards,
the sliding window convolution is applied, using a kernel size of w × 100 and 128 filters, followed by a
ReLU6 and a batch normalization layer. Next, a MaxOverTime pooling layer extracts the best feature of
each filter. Last of the sliding window block, a fully connected layer using a Relu6 activation function,
followed by a dropout with a probability of 0.5, maps to a feature vector of 128 features.

After all sliding window blocks SW2, . . . , SW9, the outputs are concatenated to a feature vector of
1024 features. Five fully connected layers with output sizes 512, 256, 128, 64 and 32 are applied to this
vector. A Relu6 is used as activation function after these layers, and a dropout is performed after the
second and fourth layer with a probability of 0.5. Finally, a fully connected layer maps the feature vector
to one number, that is processed in a sigmoid function, to get the score s ∈ [0, 1]

1241

B Language Distributions of Data Sets

en-en de-de de-en es-es tr-tr pl-pl ar-ar fr-fr
Absolute Count 1800 857 577 570 465 349 274 72
Percentage [%] 36.26 17.26 11.62 11.48 9.37 7.03 5.52 1.45

Table 3: In the distribution of training data language pairs, English-to-English is the prevalent combination, with
other similar European languages following. With our specialized English-to-English SBERT model, we therefore
achieve very good results.

zh-zh de-de es-en it-it es-it ar-ar ru-ru tr-tr es-es
Absolute Count 769 608 496 411 320 298 287 275 243
Percentage [%] 15.69 12.4 10.12 8.38 6.53 6.08 5.85 5.61 4.96

en-en pl-pl zh-en de-en de-fr fr-fr pl-en de-pl fr-pl
Absolute Count 236 224 213 185 116 111 64 35 11
Percentage [%] 4.81 4.57 4.35 3.77 2.37 2.26 1.31 0.71 0.22

Table 4: In the evaluation set, the use of languages is vastly different: Previously unseen combinations (gray), often
with complex languages like Chinese, make up a large part of the article pairs the models are scored upon.

C Random Forest Performance with Increasing Amount of Training Data

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Labeled score

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
ed

 sc
or

e

Model Performance (Mean = green, Median = red)
Ideal behavior

(a) SBERT (cosine) scores only
(r = 0.703)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Labeled score

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
ed

 sc
or

e

Model Performance (Mean = green, Median = red)
Ideal behavior

(b) SBERT + Universal Sentence En-
coder scores (r = 0.748)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Labeled score

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Pr

ed
ict

ed
 sc

or
e
Model Performance (Mean = green, Median = red)

Ideal behavior

(c) SBERT + Universal Sentence En-
coder + SimCNN scores (r = 0.77)

Figure 4: Performance of the random forest regressor with different inputs on a random train-test-split with 80%
training and 20% test data. The more data is provided, the better our Pearson correlation score r gets.

1242

D Model Performance per Language

Model
Language Combination

pl-pl de-de de-en fr-fr ar-ar en-en tr-tr es-es es-it
V SimCNN 0.89 0.75 0.82 0.83 0.77 0.80 0.81 0.80 -
V Random Forest 0.90 0.75 0.81 0.88 0.76 0.79 0.83 0.80 -
V Publish Date 0.80 0.75 0.80 0.91 0.76 0.79 0.89 0.81 -
E SimCNN 0.61 0.67 0.76 0.69 0.56 0.86 0.65 0.73 0.73
E Random Forest 0.61 0.66 0.76 0.72 0.58 0.85 0.67 0.73 0.73
E Publish Date 0.63 0.67 0.77 0.74 0.59 0.85 0.66 0.74 0.73

fr-pl pl-en de-pl zh-en it-it ru-ru de-fr zh-zh es-en
E SimCNN 0.71 0.77 0.62 0.76 0.76 0.73 0.60 0.64 0.77
E Random Forest 0.70 0.77 0.62 0.75 0.76 0.73 0.58 0.63 0.77
E Publish Date 0.70 0.78 0.62 0.78 0.79 0.74 0.59 0.64 0.80

Table 5: Pearson correlation score of our model configurations on different language pairs. They often do perform
significantly better on the validation data (V) than on the evaluation data (E) and seldom vice versa. The additional
languages in the evaluation data do not perform noticeably worse than some of the languages already seen in the
training set.

1243

