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Abstract

A trending paradigm for multiple-choice ques-
tion answering (MCQA) is using a text-to-text
framework. By unifying data in different tasks
into a single text-to-text format, it trains a gen-
erative encoder-decoder model which is both
powerful and universal. However, a side ef-
fect of twisting a generation target to fit the
classification nature of MCQA is the under-
utilization of the decoder and the knowledge
that can be decoded. To exploit the genera-
tion capability and underlying knowledge of a
pre-trained encoder-decoder model, in this pa-
per, we propose a generation-enhanced MCQA
model named GenMC. It generates a clue from
the question and then leverages the clue to en-
hance a reader for MCQA. It outperforms text-
to-text models on multiple MCQA datasets.

1 Introduction

Multiple-choice question answering (MCQA) aims
at selecting the correct answer from a set of options
given a question. This long-standing challenge in
natural language processing (NLP) requires ma-
chines to have a wealth of knowledge, such as
commonsense knowledge (Talmor et al., 2019; Mi-
haylov et al., 2018) and scientific knowledge (Clark
et al., 2018; Khot et al., 2020; Huang et al., 2019;
Li et al., 2021), and have reasoning skills such as
multi-hop reasoning (Khot et al., 2019) and logical
reasoning (Yu et al., 2020; Liu et al., 2020b; Li
et al., 2022).

MCQA has made great progress with the devel-
opment of pre-trained language models (PLMs).
Basically there are two types of PLMs that are suit-
able for different tasks. BERT (Devlin et al., 2019)

and its variants such as RoBERTa (Liu et al., 2019)
and ALBERT (Lan et al., 2020) are encoder-only
models, being more suitable for natural language
understanding (NLU) tasks including MCQA and
other classification and regression tasks. T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020) are
encoder-decoder models, being more suitable for
natural language generation (NLG) tasks. How-
ever, encoder-decoder models can also be applied
to MCQA (Khashabi et al., 2020; Zhou et al.,
2021). This is enabled by the text-to-text frame-
work, which transforms data in different tasks into a
unified text-to-text format so that knowledge span-
ning many and various tasks can be learned, aggre-
gated, and used by a single model.

Research Question To fit MCQA, existing im-
plementations of the text-to-text framework take
all the options as input and are trained to gener-
ate one of the options, i.e., to copy some tokens
from the input. However, this is inconsistent with
how encoder-decoder models are pre-trained so that
their underlying knowledge may not be sufficiently
exploited. Indeed, Liu et al. (2021) have found that
in classification and regression tasks, the decoder
layer is often under-utilized. One research question
is how to apply pre-trained encoder-decoder mod-
els in a more natural way to MCQA, in particular,
to exploit their NLG capabilities.

Our Contribution Our idea is inspired by hu-
man behavior. When reading a question, humans
are sometimes triggered to associate the question
with their background knowledge to form some
clues even before reading the options. For simple
questions, a clue may be exactly the correct answer,
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Question:

A company makes notebooks for college courses,
so their main material is ?

(A) Chips (B) Water (C) Grass (D) Trees

Clue: Paper

Figure 1: An example MCQA task and a generated clue.
Bold underline indicates the correct answer.

while for complex questions, clues may play an
auxiliary role to help humans connect the question
with the correct answer. For example, for the ques-
tion shown in Figure 1, the clue “paper” forms an
intermediate concept between “notebook” in the
question and “tree” in the correct answer.

With this idea, we propose to employ a pre-
trained encoder-decoder model to generate a clue
from the question by exploiting its underlying
knowledge, without seeing and being strictly con-
fined to the options as in the text-to-text framework.
The clue representation is then leveraged by an
encoder-based model to read the options and make
prediction. We refer to this generation-enhanced
MCQA model as GenMC. It significantly outper-
forms comparable models, in particular, text-to-text
models, on five MCQA datasets.

Outline We discuss related work in Section 2,
introduce GenMC in Section 3, describe the ex-
perimental setup in Section 4, report the results in
Section 5, and conclude in Section 6.

Code Our code is available on GitHub1 under the
Apache Licence 2.0.

2 Related Work

2.1 Text-to-Text Paradigm for MCQA

Recently, the text-to-text paradigm has achieved
breakthrough results on many NLP tasks (Raffel
et al., 2020; Lewis et al., 2020). As illustrated in
Figure 2a, adopting this paradigm for MCQA, the
question Q and all the options {O1, O2, O3, O4}
are spliced into a text as input, and the correct
answer O1 is used as the generation target. One
benefit is that extensive training data can be shared
across different tasks. Using such a framework,
UnifiedQA (Khashabi et al., 2020) integrates 20
QA datasets into a unified format for training, and
achieves state-of-the-art results on multiple MCQA
datasets. Similarly, CALM (Zhou et al., 2021)

1https://github.com/nju-websoft/GenMC

(a) Text-to-Text

(b) Encoder-Only

Figure 2: Paradigms for MCQA.

learns concept-centric knowledge from text for
commonsense QA.

However, it might be debatable whether it is
appropriate to train a classification task via a gen-
eration target. Liu et al. (2021) point out that the
decoder layers of T5 are under-utilized when fine-
tuning on classification and regression tasks. There-
fore, they propose a method to reduce the number
of T5 parameters to improve efficiency without
reducing accuracy. By contrast, we address this
issue from a different perspective of how to exploit
the NLG capability of pre-trained encoder-decoder
models for MCQA to improve accuracy.

Some other works propose new pre-trained mod-
els for unified generation and classification tasks
by designing universal encoders and task-specific
decoders (Shao et al., 2021; Sun et al., 2021). They
are orthogonal to our work as we leverage exist-
ing pre-trained encoder-decoder models instead of
pre-training new models at an additional cost.

2.2 Encoder-Only Paradigm for MCQA

Benefiting from the powerful NLU capabilities of
BERT-style PLMs (Devlin et al., 2019; Liu et al.,
2019; Lan et al., 2020), the encoder-only paradigm
has been popular for MCQA. As illustrated in Fig-
ure 2b, in this paradigm, the question Q and each
option in {O1, O2, O3, O4} are interacted to calcu-
late a score, and the option with the highest score is
chosen as the answer. Building on this, some works
study how to design better attention-based models
to identify evidence (Chen et al., 2019; Zhang et al.,
2020; Zhu et al., 2020). Other efforts mimic human
behavior of reading evidence and answering ques-
tions (Ran et al., 2019; Tang et al., 2019; Sun et al.,
2019). There, evidence is derived from the given
passage or retrieved from external corpora. By con-
trast, we aim at exporting clues from pre-trained
models without resorting to extra sources.
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Figure 3: Architecture of GenMC. To make the prediction Op ∈ O, the clue generator first takes Q as input and
outputs a clue representation HQC which is indicative of the correct answer. The enhanced reader then relies on the
generated clue representation to better attend to options from O and makes the final prediction. The whole model is
trained in an end-to-end manner with both the generation loss LGEN and the classification loss LREAD.

2.3 Knowledge in PLMs

Recently, PLMs have been used as knowledge
bases (Petroni et al., 2019), and the knowledge
in parameters can be exported via methods such as
Prompt (Jiang et al., 2020; Shin et al., 2020). Ex-
ploiting the knowledge in PLMs for QA tasks has
come into play in many forms including question
expansion (Mao et al., 2021) and question genera-
tion (Shwartz et al., 2020).

There is also research on MCQA trying to ex-
porting knowledge from PLMs before answering.
Rajani et al. (2019) propose CAGE as a framework
for generating explanations for commonsense QA.
However, CAGE relies on explanations annotated
by humans, which are not available in many real
scenarios and datasets. Latcinnik and Berant (2020)
propose a joint generator-classifier model where
the generator produces a human-readable textual
hypothesis. Although it somewhat improves the
explainability of MCQA, in terms of accuracy of
MCQA there is little advancement. CEGI (Liu
et al., 2020c) is probably the most similar work to
ours. It first uses a generative model to generate
evidence, and then uses a reading model to incor-
porate the evidence and predict the answer, both
using answer supervision. However, the generative
model and the reading model are separate steps
in a pipeline and are connected only via the evi-
dence text. Such token-level interaction can lead
to significant losses in accuracy as we will see in
our experiments, where our representation-level
interaction exhibits better performance.

3 GenMC Model

In MCQA, a question Q is given together with
a set of n options O = {O1, . . . , On} with ex-
actly one option being the correct answer. The
key to finding the correct answer is to capture and
deeply understand the connection between Q and
each Oi ∈ O, which oftentimes is beyond the lexi-
cal level and requires a non-trivial entailment pro-
cess. We follow the trend of building on a pre-
trained encoder-decoder model and use the encoder
to jointly encode Q and each Oi. However, previ-
ous works directly use the decoder to generate an
option in O, i.e., using the decoder as a classifier,
which may have under-exploited the model’s NLG
capability (Liu et al., 2021). Moreover, a simple
joint encoding of Q and each Oi can only enable
lexical-level reasoning (Zellers et al., 2019) which
is insufficient for MCQA tasks.

Our proposed model GenMC overcomes these
limitations. Building on a pre-trained encoder-
decoder model, GenMC firstly generates a clue
which is indicative of the correct answer, thereby
exploiting the NLG capability and underlying
knowledge of the pre-trained encoder-decoder
model. Then GenMC employs the generated clue
representation as intermediate knowledge connect-
ing the question and the correct answer to interact
with and enhance a reader for solving MCQA. Our
model design mimics how humans solve an MCQA
task, i.e., after reading a question, humans may
firstly associate it with some of their background
knowledge (i.e., looking for clues) that helps them
to later identify the correct answer.

The overall architecture of GenMC is shown in
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Figure 3. The clue generator (Section 3.1) first gen-
erates a clue representation only given Q. Then the
enhanced reader (Section 3.2) uses the generated
clue to augment question-option understanding.

3.1 Clue Generator
The clue generator takes the question Q as in-
put and autoregressively outputs a clue C =
c1, . . . , c|C| using a pre-trained encoder-decoder
model.2 Note that not the clue text C but its repre-
sentation HC will be used in our model, although
one could output C as evidence for explainability.

Specifically, we obtain the question represen-
tation HQ ∈ Rd×|Q| and the clue representation
HC ∈ Rd×|C| from the last layer of the encoder
and of the decoder, respectively, where d denotes
the representation dimension. HC

j , denoting the
representation of the j-th token cj ∈ C, is com-
puted as follows:

pC
j ,H

C
j = Decoder(cj−1,H

C
<j ,H

Q) , (1)

where Decoder (·, ·, ·) takes the last token cj−1,
the representation for the decoding history HC

<j ,
and HQ as input, and outputs the hidden state HC

j

together with the probability distribution pC
j over

the decoding vocabulary at the j-th step.
To encourage the tokens in C to thoroughly inter-

act with each other and with Q, we strengthen the
clue representation by passing it to a transformer
layer (Vaswani et al., 2017) and obtain HQC :

HQC = Transformer([HQ;HC ]) , (2)

where [·; ·] denotes concatenation. HQC carries the
information of C which can be helpful to better
understand and answer Q.

3.2 Enhanced Reader
Previous works often directly model the relevance
of each Oi ∈ O to Q via joint encoding using a pre-
trained encoder, which largely performs superficial
lexical reasoning (Zellers et al., 2019). By contrast,
we use the previously generated clue representation
to enhance our reader for a deeper understanding
of each question-option pair.

Specifically, we first concatenate Q and each Oi

independently3 and feed the concatenated input
into the pre-trained encoder (which is shared with
our clue generator) to obtain Oi’s contextualized

2For efficiency, we decode the clue greedily without per-
forming beam search.

3A delimiter "\n" is inserted between Q and each Oi.

representation HQO
i , which constitutes a column

of HQO ∈ Rd×n where n = |O|.
Next, based on the clue representation HQC , our

model intensively reads each question-option pair
and obtains the matching signal between the clue
and the option. Specifically, inspired by Huang
et al. (2021), we first use dual-attention (Liu et al.,
2020a) to fuse information from HQO

i to HQC and
from HQC to HQO

i . Then we perform max-pooling
to aggregate the matching features:

(ĤQO
i , ĤQC

i ) = DualAttention(HQO
i ,HQC) ,

fQO
i = Max-Pooling(ĤQO

i ) ,

fQC
i = Max-Pooling(ĤQC

i ) .

(3)

To obtain the final score si for each Oi, we con-
catenate the dual matching features fQO

i and fQC
i

and feed them into a two-layer multi-layer percep-
tron (MLP):

si = Linear(ReLU(Linear([fQO
i ; fQC

i ]))) . (4)

We select the option with the highest score as the
predicted answer, denoted as Op.

3.3 Training Objective
We jointly train the clue generator and the enhanced
reader in an end-to-end fashion with a combined
loss:

L = LGEN + LREAD . (5)

Generator Loss For LGEN, assuming that Ot ∈
O is the correct answer containing m tokens
a1, . . . , am, we first use Ot as the target to cal-
culate our clue generator loss with teacher forcing:

pOt
j ,HOt

j = Decoder(aj−1,H
Ot
<j ,H

Q) ,

LGEN = − 1

m

m∑

j=1

logpOt
j,aj

,
(6)

where pOt
j denotes the probability distribution

over the decoding vocabulary at the j-th step, and
pOt
j,aj

is the probability of token aj .

Reader Loss For LREAD, we simply calculate a
cross-entropy loss given the correct answer Ot ∈ O
as follows:

LREAD = − log
exp(st)∑n
i=1 exp(si)

. (7)

Note that we update the encoder using the joint loss
L, while we do not allow LREAD to be backprop-
agated to the decoder part to reduce the memory
consumption.
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Train set
size

Dev set
size

Test set
size

Option
number

Question
average length

Option
average length

CSQA 8,500 1,241 1,221 5 13.38 1.52
OBQA 4,957 500 500 4 10.65 2.85
ARC-Easy 2,241 567 2,365 4 19.36 3.73
ARC-Challenge 1,117 295 1,165 4 22.30 4.93
QASC 7,320 814 926 8 8.12 1.64

Table 1: Dataset statistics. For CSQA and QASC, their official dev sets are used as our test sets, and our dev sets are
in-house split from their official training sets.

The above training objective exploits the dou-
ble properties of the correct answer Ot in MCQA:
as a text and as an index. We use Ot as a text
to supervise our clue generator, and as an index
(i.e., classification label) to supervise our enhanced
reader. Such usage is more natural than the text-to-
text paradigm (Khashabi et al., 2020; Zhou et al.,
2021), thus having the potential to outperform.

4 Experimental Setup

4.1 Data

We conducted experiments on five popular MCQA
datasets spanning from commonsense questions
to scientific questions. The former requires com-
monsense knowledge and reasoning, and the latter
requires inference over scientific facts.

Datasets CSQA (Talmor et al., 2019) and
OBQA (Mihaylov et al., 2018) are two common-
sense MCQA datasets created by crowd workers
based on commonsense facts. Each question is
given with 5 options in CSQA and 4 options in
OBQA. ARC-Easy and ARC-Challenge, denoting
two disjointed subsets of ARC (Clark et al., 2018),
contain natural grade-school science questions with
4 options, where ARC-Challenge comprises diffi-
cult questions which require more advanced rea-
soning. QASC (Khot et al., 2020) is collected from
elementary and middle school level science with 8
options for each question.

Train-Dev-Test Split For OBQA, ARC-Easy,
and ARC-Challenge we used their official train,
dev, and test sets. For CSQA and QASC, since
the correct answers in the official test set are not
public, we took their official dev set as our test set
for experiments and randomly held out an in-house
dev set from the training set. The dataset statistics
are shown in Table 1.

External Knowledge For all these datasets, our
experiments did not rely on any provided docu-
ments or external corpora; a question was solely

provided with its options to form the input. It
means that pre-trained models were used as the
primary source of knowledge in the experiments.

4.2 Implementation Details
We used two popular encoder-decoder models as
a basis, BART (Lewis et al., 2020) and T5 (Raffel
et al., 2020). For each model, we experimented
with its BASE and LARGE versions.

We used PyTorch 1.7. We used the Adam
optimizer and set warmup fraction = 0.1,
weight decay = 0.01, maximum source length =
64, maximum target length = 32, epoch = 30,
and early stop training when there was no bet-
ter result on the dev set after 5 epochs. For each
model, we searched for the best learning rate from
{1e−4, 5e−5, 1e−5}, and for the best batch size
out of {8, 64}.

Because neural models are known to be sensi-
tive to different random seeds, especially when the
training set is small, we performed multiple experi-
ments for all models with different random seeds,
and reported the mean and standard deviation. For
CSQA, OBQA, ARC-Easy, and QASC, we used
three random seeds {1, 10, 20}. For the smallest
dataset ARC-Challenge, we used five random seeds
{1, 10, 20, 30, 40}.

All the experiments were performed on a
GeForce RTX 3090 with 24G memory.

4.3 Evaluation Metric
For each model, we reported its proportion of cor-
rectly answered questions in each dataset.

5 Experimental Results

5.1 Main Results: Comparison with
Text-to-Text Models

To empirically evaluate GenMC in terms of
whether it better exploits the potential of pre-
trained encoder-decoder models for MCQA, we
compare GenMC with a standard text-to-text imple-
mentation and with a variant thereof for analysis.
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CSQA OBQA ARC-Easy ARC-Challenge QASC
dev test dev test dev test dev test dev test

BARTBASE

Text2Textvanilla 51.62 (±0.04) 53.26 (±0.57) 54.93 (±0.83) 52.73 (±1.00) 51.55 (±1.38) 50.51 (±1.82) 30.05 (±1.25) 24.95 (±1.10) 46.72 (±1.21) 26.78 (±1.21)

Text2Textenc 50.63 (±0.66) 52.22 (±1.64) 55.87 (±1.10) 51.00 (±1.83) 49.03 (±1.86) 49.94 (±1.49) 32.32 (±4.87) 26.24 (±2.01) 48.08 (±1.35) 17.06 (±0.39)

GenMC 54.82 (±0.61) 56.40 (±0.61) 58.53 (±0.31) 57.53 (±2.91) 59.38 (±1.60) 56.80 (±0.28) 38.64 (±0.90) 33.82 (±1.66) 57.70 (±0.43) 35.96 (±1.70)

T5BASE

Text2Textvanilla 57.59 (±0.81) 60.93 (±0.73) 59.53 (±0.81) 57.53 (±0.70) 52.20 (±0.31) 51.75 (±0.89) 29.38 (±2.63) 23.69 (±2.47) 54.55 (±1.01) 37.94 (±1.47)

Text2Textenc 58.96 (±1.21) 59.49 (±1.41) 60.67 (±2.86) 57.07 (±3.03) 56.55 (±1.17) 52.92 (±0.29) 29.49 (±5.13) 26.09 (±0.23) 56.84 (±0.84) 39.60 (±2.38)

GenMC 60.65 (±0.47) 63.45 (±0.29) 62.07 (±1.01) 61.67 (±0.58) 62.38 (±0.67) 58.82 (±0.37) 43.62 (±0.52) 39.00 (±0.30) 58.93 (±1.76) 41.72 (±1.18)

BARTLARGE

Text2Textvanilla 65.58 (±2.72) 66.91 (±2.14) 62.66 (±1.18) 61.46 (±1.74) 63.49 (±1.89) 62.81 (±2.15) 29.94 (±2.32) 28.55 (±4.97) 64.57 (±2.21) 47.80 (±2.22)

Text2Textenc 65.00 (±0.66) 67.35 (±0.90) 63.80 (±1.44) 62.47 (±1.53) 68.20 (±2.04) 65.33 (±1.74) 35.37 (±6.07) 31.13 (±5.86) 65.07 (±0.94) 47.19 (±0.71)

GenMC 69.57 (±0.89) 72.26 (±0.70) 68.93 (±1.17) 68.07 (±1.70) 72.43 (±0.54) 68.68 (±0.34) 48.93 (±0.98) 45.52 (±1.54) 68.39 (±0.68) 55.90 (±0.92)

T5LARGE

Text2Textvanilla 67.53 (±0.43) 70.63 (±0.74) 66.80 (±0.87) 63.53 (±1.10) 65.61 (±0.18) 62.55 (±0.54) 43.05 (±1.69) 42.83 (±2.00) 64.13 (±1.47) 57.74 (±0.82)

Text2Textenc 68.41 (±0.73) 70.30 (±0.82) 65.93 (±1.03) 63.67 (±0.46) 69.61 (±0.20) 66.65 (±0.34) 30.73 (±3.15) 28.76 (±4.85) 65.27 (±1.55) 55.65 (±0.45)

GenMC 71.10 (±0.41) 72.67 (±1.02) 71.60 (±0.92) 66.87 (±1.33) 72.49 (±0.77) 69.01 (±1.97) 49.83 (±2.06) 47.41 (±2.00) 67.61 (±1.14) 58.06 (±0.92)

Table 2: Comparison with text-to-text models.

5.1.1 Baselines
Text2Textvanilla The vanilla usage of pre-trained
encoder-decoders for MCQA is to reform the input
and output in a way that can be directly processed
by a encoder-decoder model. Specifically, follow-
ing Raffel et al. (2020), we concatenate the input
question with all candidate options, where each
option is also preceded by its option ID, and then
prepend the sequence with a dataset name. The
concatenated sequence is fed into the encoder part
to get a joint representation for the question and
all options. Based on the joint representation, the
decoder finally outputs an option ID. In this setting,
the decoder is basically used as a classifier.

Text2Textenc Similar to Liu et al. (2021), we use
only the encoder part of a pre-trained encoder-
decoder model. Each option is independently
paired with the question to obtain a joint represen-
tation using the encoder. Then the representation is
fed into a scorer (i.e., an MLP) to obtain a matching
score for each question-option pair. The model then
predicts the option with the highest score. In this
setting, the decoder is totally unused. Though Liu
et al. (2021) find that their encoder-only model per-
forms comparably to using the decoder as a clas-
sifier, we argue that the decoder part can further
improve the performance, if being properly used.

5.1.2 Results
The main results (see Table 2) show that GenMC
consistently and significantly (with p-value < 0.01)
outperforms Text2Textvanilla and Text2Textenc on
all datasets. For several settings, GenMC even
obtains an absolute gain of over 10%. For exam-
ple, on the test set of the challenging scientific
MCQA dataset ARC-Challenge, T5BASE + GenMC
improves T5BASE + Text2Textvanilla from an accu-

racy of 23.69% to 39.00%, suggesting a relative
gain of around 65%. These results demonstrate that
GenMC is a more effective usage of pre-trained
encoder-decoder models than existing ones.

Moreover, we interestingly find that the
decoder-free baseline Text2Textenc outperforms
Text2Textvanilla on over half of the experiments.
This indicates that the decoder’s general language
knowledge gained from pre-training is largely
wasted by only using it as a classifier, which may
further explain the superior performance of our
model because GenMC can exploit the pre-trained
decoder more effectively. In addition, all LARGE

models significantly outperform their BASE coun-
terparts. This suggests that the embedded knowl-
edge gained from pre-training is critical to MCQA
tasks, strengthening our point to make full use of
pre-trained encoders and decoders.

5.2 Comparison with Other Models
5.2.1 Baselines
UnifiedQA Existing methods that rely on exter-
nal documents or corpora have achieved state-of-
the-art performance on several MCQA datasets.
However, to enable a fair comparison, we only
compare with models that adopt the same setting
as ours, where a question and its options are the
only input to the model. Among these models, Uni-
fiedQA (Khashabi et al., 2020) is the current best
model. While UnifiedQA reports the best score us-
ing its T5-11B version, since for T5 we experiment
with its BASE and LARGE versions, we only report
and compare under T5BASE and T5LARGE. Note that
instead of training on each dataset separately, Uni-
fiedQA converts a line of popular QA datasets with
four formats (e.g., retrieval-based QA, MCQA)
into a unified format, and trains a single model
over all training data, while GenMC only uses each
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CSQA OBQA ARC-Easy ARC-Challenge QASC
dev test dev test dev test dev test dev test

BASE

RoBERTa 56.51 (±0.34) 58.91 (±0.79) 58.67 (±1.03) 49.67 (±0.76) 56.56 (±0.91) 52.32 (±0.70) 38.64 (±0.90) 34.85 (±2.20) 55.28 (±0.12) 34.38 (±1.72)

ALBERT 53.16 (±0.58) 53.95 (±0.49) 54.53 (±1.10) 49.20 (±2.27) 48.32 (±0.88) 45.84 (±1.94) 34.80 (±1.53) 30.21 (±1.74) 40.99 (±(1.78) 24.55 (±1.23)

UnifiedQAT5 ∗ - 45.00 (±0.00) - 59.00 (±0.00) - 53.00 (±0.00) - 42.40 (±0.00) - 25.80 (±0.00)

UnifiedQAT5 41.02 (±0.00) 44.80 (±0.00) 59.20 (±0.00) 59.60 (±0.00) 54.85 (±0.00) 53.66 (±0.00) 44.75 (±0.00) 42.58 (±0.00) 17.94 (±0.00) 25.70 (±0.00)

UnifiedQAT5-FT 56.81 (±0.49) 62.35 (±0.80) 60.80 (±0.72) 58.47 (±0.64) 54.97 (±0.20) 53.88 (±0.39) 45.31 (±0.39) 42.43 (±0.47) 55.57 (±0.58) 43.20 (±0.57)

GenMCT5 60.65 (±0.47) 63.45 (±0.29) 62.07 (±1.01) 61.67 (±0.58) 62.38 (±0.67) 58.82 (±0.37) 43.62 (±0.52) 39.00 (±0.30) 58.93 (±1.76) 41.72 (±1.18)

LARGE

RoBERTa 68.92 (±0.76) 71.88 (±0.26) 67.80 (±1.22) 64.47 (±1.41) 65.73 (±0.80) 62.40 (±0.89) 38.08 (±1.99) 35.97 (±1.74) 67.32 (±0.58) 50.22 (±1.88)

ALBERT 60.62 (±0.57) 59.32 (±0.91) 54.50 (±1.40) 49.27 (±0.64) 54.03 (±0.45) 53.77 (±1.81) 33.90 (±1.22) 31.19 (±3.79) 51.11 (±1.72) 33.12 (±1.24)

UnifiedQAT5 ∗ - 60.90 (±0.00) - 68.40 (±0.00) - 65.90 (±0.00) - 54.40 (±0.00) - 43.30 (±0.00)

UnifiedQAT5 55.28 (±0.00) 61.34 (±0.00) 70.40 (±0.00) 68.40 (±0.00) 69.31 (±0.00) 66.43 (±0.00) 56.61 (±0.00) 54.33 (±0.00) 29.24 (±0.00) 43.74 (±0.00)

UnifiedQAT5-FT 69.00 (±0.51) 73.60 (±0.45) 70.53 (±0.23) 68.80 (±0.69) 69.72 (±0.71) 66.92 (±0.85) 56.84 (±0.39) 54.42 (±0.15) 66.63 (±1.56) 58.71 (±0.90)

GenMCT5 71.10 (±0.41) 72.67 (±1.02) 71.60 (±0.92) 66.87 (±1.33) 72.49 (±0.77) 69.01 (±1.97) 49.83 (±2.06) 47.41 (±2.00) 67.61 (±1.14) 58.06 (±0.92)

Table 3: Comparison with other models. (* indicates the results reported by Khashabi et al. (2020).)

CSQA OBQA ARC-Easy ARC-Challenge QASC
dev test dev test dev test dev test dev test

BASE

UnifiedQAT5-FT 56.81 (±0.49) 62.35 (±0.80) 60.80 (±0.72) 58.47 (±0.64) 54.97 (±0.20) 53.88 (±0.39) 45.31 (±0.39) 42.43 (±0.47) 55.57 (±0.58) 43.20 (±0.57)

GenMCT5-U 61.24 (±0.45) 63.45 (±0.76) 62.33 (±0.81) 59.20 (±1.91) 61.73 (±0.35) 59.35 (±0.43) 45.54 (±0.20) 43.98 (±0.36) 60.16 (±0.07) 45.43 (±0.87)

LARGE

UnifiedQAT5-FT 69.00 (±0.51) 73.60 (±0.45) 70.53 (±0.23) 68.80 (±0.69) 69.72 (±0.71) 66.92 (±0.85) 56.84 (±0.39) 54.42 (±0.15) 66.63 (±1.56) 58.71 (±0.90)

GenMCT5-U 71.58 (±0.25) 72.26 (±0.31) 71.67 (±0.46) 69.00 (±0.69) 73.90 (±0.47) 72.87 (±0.50) 59.55 (±1.09) 55.97 (±0.62) 68.55 (±0.81) 58.75 (±0.56)

Table 4: Comparison with UnifiedQA after unifying training sets.

dataset’s own training data.

RoBERTa and ALBERT In addition, we com-
pare with two encoder-only models, RoBERTa (Liu
et al., 2019) and ALBERT (Lan et al., 2020), which
have served as the basis of many MCQA models.

All models are of comparable model size to ours.

5.2.2 Results

The results in Table 3 show that GenMCT5 sig-
nificantly (with p-value < 0.01) outperforms the
two encoder-only strong baselines RoBERTa and
ALBERT. More interestingly, GenMCT5 also per-
forms better than UnifiedQAT5 on most datasets.
Moreover, for UnifiedQAT5-FT, which further fine-
tunes the model on the training set of the target
dataset, GenMCT5 outperforms it on the test sets
of CSQA, OBQA, and ARC-Easy for the base
models and ARC-Easy for the large models. It
also achieves comparable results on the remain-
ing datasets. These results are impressive because
UnifiedQA uses more datasets (i.e., eight different
QA datasets) for training. The promising results
of GenMC further reveals that our model can learn
to effectively extract knowledge from pre-trained
encoder-decoders with limited training data.

As a fairer comparison in Table 4, by unify-
ing the training sets of all the five datasets, our
GenMCT5-U outperforms UnifiedQAT5-FT on all
datasets except for CSQA with large models.

5.3 Ablation Study: Influence of Clues
Our main results in Section 5.1 have demonstrated
the effectiveness of our model. To better under-
stand its superior results and the influence of our
clue generation, we compare with two variants.

5.3.1 Variants of GenMC
Weak Clue We train this variant only using the
classification loss LREAD, so only the encoder part
is updated, while the decoder part is left untouched
from pre-training. Intuitively, under this setting,
the generated clue is weaker than GenMC which
learns how to generate a clue with supervision.

Token Clue In this setting, we separately train
a clue generator and a reader. We first collect the
generated clue text C (instead of its representation)
from the decoder. We then directly concatenate C
with Q and Oi to compute a score for Oi using
the model’s encoder part stacked with an MLP
layer. This variant is indeed very similar to Liu et al.
(2020c), which also adopts a pipeline framework to
first generate a token-level evidence and then use
the evidence to expand the question.

5.3.2 Results
Table 5 shows that masking out generation loss
leads to substantial performance drops across all
datasets, demonstrating that fine-tuning the decoder
with generation loss LGEN helps to derive useful
clues from pre-trained encoder-decoder models.
We also observe that the performance of using
token-level clues lags much behind GenMC. This
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CSQA OBQA ARC-Easy ARC-Challenge QASC
dev test dev test dev test dev test dev test

BARTBASE

GenMC 54.82 (±0.61) 56.40 (±0.61) 58.53 (±0.31) 57.53 (±2.91) 59.38 (±1.60) 56.80 (±0.28) 38.64 (±0.90) 33.82 (±1.66) 57.70 (±0.43) 35.96 (±1.70)

Weak Clue 53.96 (±1.01) 54.35 (±1.97) 55.53 (±1.27) 54.27 (±0.92) 57.20 (±1.80) 55.42 (±1.26) 39.89 (±0.20) 32.62 (±0.31) 54.05 (±0.21) 25.99 (±0.82)

Token Clue 45.53 (±1.28) 46.41 (±1.79) 54.07 (±1.72) 52.93 (±1.10) 48.97 (±0.91) 48.87 (±1.29) 31.19 (±0.59) 27.64 (±0.69) 49.06 (±0.39) 21.31 (±1.03)

T5BASE

GenMC 60.65 (±0.47) 63.45 (±0.29) 62.07 (±1.01) 61.67 (±0.58) 62.38 (±0.67) 58.82 (±0.37) 43.62 (±0.52) 39.00 (±0.30) 58.93 (±1.76) 41.72 (±1.18)

Weak Clue 58.80 (±0.70) 60.88 (±1.89) 61.47 (±0.95) 59.73 (±0.90) 58.97 (±0.54) 57.10 (±0.72) 42.26 (±2.21) 37.54 (±0.64) 57.37 (±1.40) 36.29 (±1.66)

Token Clue 50.55 (±0.44) 48.79 (±0.87) 56.00 (±1.25) 54.93 (±1.63) 46.50 (±0.83) 46.65 (±0.54) 32.66 (±0.20) 26.01 (±1.28) 43.69 (±1.52) 27.50 (±1.56)

BARTLARGE

GenMC 69.57 (±0.89) 72.26 (±0.70) 68.93 (±1.17) 68.07 (±1.70) 72.43 (±0.54) 68.68 (±0.34) 48.93 (±0.98) 45.52 (±1.54) 68.39 (±0.68) 55.90 (±0.92)

Weak Clue 67.28 (±2.39) 69.64 (±2.76) 66.20 (±0.53) 64.47 (±1.40) 70.66 (±1.50) 65.71 (±1.47) 27.80 (±2.06) 24.92 (±2.06) 65.68 (±1.31) 52.02 (±1.44)

Token Clue 53.85 (±0.47) 55.23 (±0.62) 61.20 (±3.14) 59.20 (±0.69) 58.02 (±0.98) 54.22 (±1.27) 41.81 (±1.19) 37.60 (±0.90) 48.65 (±1.23) 32.47 (±1.11)

T5LARGE

GenMC 71.10 (±0.41) 72.67 (±1.02) 71.60 (±0.92) 66.87 (±1.33) 72.49 (±0.77) 69.01 (±1.97) 49.83 (±2.06) 47.41 (±2.00) 67.61 (±1.14) 58.06 (±0.92)

Weak Clue 68.33 (±1.62) 71.66 (±1.28) 69.27 (±0.42) 65.87 (±0.90) 69.66 (±0.77) 66.24 (±0.79) 47.57 (±2.04) 46.24 (±1.29) 64.99 (±0.74) 53.35 (±1.35)

Token Clue 59.47 (±0.08) 60.74 (±0.29) 62.80 (±1.44) 57.73 (±1.10) 48.85 (±1.62) 48.36 (±2.15) 37.97 (±0.90) 30.50 (±1.46) 49.22 (±0.62) 38.77 (±1.74)

Table 5: Influence of clues.

Clue Type Percentage
Example

Instance Clue

Irrelevant 23.60%
Which would you likely find inside a beach ball?
(A) cheese (B) steam (C) water (D) air a squid

Relevant but unhelpful 52.40%
What may have been formed by a volcano?
(A) Mt. McKinley (B) Lake Pontchartrain (C) The great lakes
(D) Niagara Falls

a lake

Helpful 24.00%
Where would there be an auditorium with only a single person speaking?
(A) lights (B) crowd (C) university campus (D) theater (E) park

school

Table 6: Distribution of clue types in negative cases with examples. Bold underline indicates the correct answer, and
italic indicates the predicted label.

demonstrates that naively using explicit knowledge
in plain text, instead of using implicit clues from
the decoder’s hidden state, is inferior as it may
unnecessarily bring information loss and noise.

5.4 Error Analysis

We analyze the clues generated by GenMC using
T5LARGE with a focus on instances that are correctly
predicted by the baseline in our main experiments
(i.e., T5LARGE + Text2Textvanilla), while our GenMC
fails. The intuition is that in these negative cases,
the clues generated by GenMC may play a negative
role. By studying these potentially negative clues,
we can gain more insights into how GenMC fails
and discuss venues for future improvement.

Specifically, we randomly sample 50 negative
cases from T5LARGE + GenMC for each dataset. We
show six graduate students of computer science4

an instance along with the generated clue, correct
answer, and predicted answer. We then ask them to
categorize clues into the following families:5

• Irrelevant: The clue is off topic or is not

4They are volunteers recruited from the contact author’s
research group. They know and agree that their annotations
will be used for error analysis in a research paper.

5We follow a similar definition by Shwartz et al. (2020).

understandable.

• Relevant but unhelpful: Though relevant,
the clue makes a factually incorrect statement,
often on the contrary of the main question, or
the clue contributes relevant but insufficient
knowledge for prediction, such as repetition
of the question or other distractors.

• Helpful: The clue adds helpful information
to answer the question.

To ensure the annotation quality, we aggregate
annotated results from three students for every
dataset using majority vote. If all three students
annotate differently from each other for an instance,
we introduce a fourth student to arbitrate.

Table 6 shows the percent of each clue type
across all datasets with an example for each type.
Figure 4 breaks down by dataset. Though the ma-
jority of our clues are relevant (i.e., 76.4% of them
are relevant across all datasets), which seems posi-
tive, only 24% of the clues are deemed as helpful.
This suggests a great room for improvement. In our
future research, we will focus on how to generate
more helpful clues from questions.
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CSQA OBQA ARC-Easy ARC-Challenge QASC
T5BASE

Text2Textvanilla 0.040 (±0.007) 0.035 (±0.002) 0.035 (±0.002) 0.039 (±0.004) 0.035 (±0.002)
UnifiedQA 0.059 (±0.041) 0.089 (±0.047) 0.097 (±0.055) 0.129 (±0.075) 0.068 (±0.027)
GenMC 0.069 (±0.019) 0.107 (±0.046) 0.113 (±0.060) 0.121 (±0.053) 0.072 (±0.027)

T5LARGE

Text2Textvanilla 0.077 (±0.008) 0.083 (±0.012) 0.081 (±0.012) 0.084 (±0.014) 0.078 (±0.011)
UnifiedQA 0.108 (±0.037) 0.178 (±0.096) 0.190 (±0.107) 0.257 (±0.127) 0.130 (±0.052)
GenMC 0.105 (±0.027) 0.178 (±0.078) 0.219 (±0.120) 0.242 (±0.112) 0.127 (±0.048)

Table 7: Inference time for answering a question (seconds).

0%

20%

40%

60%

80%

100%

CSQA OBQA ARC-Easy ARC-Challenge QASC

Helpful Relevant but unhelpful Irrelevant

Figure 4: Distribution of clue types in negative cases on
each dataset.

5.5 Inference Time and Model Size

Table 7 shows the inference time for answering a
question. GenMC is slower than Text2Textvanilla,
but their inference time has the same scale, suggest-
ing that GenMC is more cost-effective considering
its superior accuracy. GenMC and UnifiedQA are
comparable in inference time.

Among T5BASE based models, Text2Textvanilla
and UnifiedQA have 223 M parameters, while
GenMC is slightly larger with 234 M parameters.
Among T5LARGE based models, Text2Textvanilla and
UnifiedQA have 738 M parameters, while GenMC
has 757 M parameters.

6 Conclusion

We present GenMC, a simple yet effective model
which tailors pre-trained encoder-decoders for
MCQA tasks. Compared with existing usages
of pre-trained encoder-decoders for MCQA, our
model fully exploits the pre-trained encoder-
decoders’ NLG capabilities to generate a clue from
the input question, which facilitates deep under-
standing of question-option pairs. Experimental
results further verify the superiority of GenMC
over existing usages. Notably, our model achieves
promising results without using any provided doc-
uments or external corpora, showing an interesting
application of PLMs by directly inducing either
commonsense or scientific knowledge from them

through clue generation.
In the future, we will focus on how to further

improve the clue generation quality, which remains
a bottleneck of GenMC. We hope this work will
spur more research in how to better use pre-trained
encoder-decoders for not only MCQA, but also
beyond; for tasks with divergent structures from
the pre-training, a smarter use of PLMs can boost
the performance significantly.

Acknowledgments

This work was supported in part by the NSFC
(62072224) and in part by the Beijing Academy
of Artificial Intelligence (BAAI).

References
Zhipeng Chen, Yiming Cui, Wentao Ma, Shijin Wang,

and Guoping Hu. 2019. Convolutional spatial atten-
tion model for reading comprehension with multiple-
choice questions. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 6276–6283.
AAAI Press.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Zixian Huang, Yulin Shen, Xiao Li, Yuang Wei, Gong
Cheng, Lin Zhou, Xinyu Dai, and Yuzhong Qu. 2019.

3280

https://doi.org/10.1609/aaai.v33i01.33016276
https://doi.org/10.1609/aaai.v33i01.33016276
https://doi.org/10.1609/aaai.v33i01.33016276
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423


Geosqa: A benchmark for scenario-based question
answering in the geography domain at high school
level. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 5865–5870.
Association for Computational Linguistics.

Zixian Huang, Ao Wu, Yulin Shen, Gong Cheng, and
Yuzhong Qu. 2021. When retriever-reader meets
scenario-based multiple-choice questions. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 16-20 November, 2021, pages 985–994.
Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know. Trans. Assoc. Comput. Linguistics,
8:423–438.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter Clark, and Hannaneh
Hajishirzi. 2020. Unifiedqa: Crossing format bound-
aries with a single QA system. In Findings of the
Association for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, volume
EMNLP 2020 of Findings of ACL, pages 1896–1907.
Association for Computational Linguistics.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. QASC: A
dataset for question answering via sentence compo-
sition. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020,
pages 8082–8090. AAAI Press.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2019.
What’s missing: A knowledge gap guided approach
for multi-hop question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2814–2828. Association for
Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Veronica Latcinnik and Jonathan Berant. 2020. Explain-
ing question answering models through text genera-
tion. CoRR, abs/2004.05569.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,

Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics.

Xiao Li, Gong Cheng, Ziheng Chen, Yawei Sun, and
Yuzhong Qu. 2022. Adalogn: Adaptive logic graph
network for reasoning-based machine reading com-
prehension. CoRR, abs/2203.08992.

Xiao Li, Yawei Sun, and Gong Cheng. 2021. TSQA:
tabular scenario based question answering. In Thirty-
Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative
Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, Febru-
ary 2-9, 2021, pages 13297–13305. AAAI Press.

Dayiheng Liu, Yeyun Gong, Jie Fu, Yu Yan, Jiusheng
Chen, Daxin Jiang, Jiancheng Lv, and Nan Duan.
2020a. RikiNet: reading Wikipedia pages for natural
question answering. In ACL, pages 6762–6771.

Frederick Liu, Siamak Shakeri, Hongkun Yu, and Jing
Li. 2021. Enct5: Fine-tuning T5 encoder for non-
autoregressive tasks. CoRR, abs/2110.08426.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020b. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 3622–3628. ijcai.org.

Ye Liu, Tao Yang, Zeyu You, Wei Fan, and Philip S. Yu.
2020c. Commonsense evidence generation and injec-
tion in reading comprehension. In Proceedings of the
21th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, SIGdial 2020, 1st virtual
meeting, July 1-3, 2020, pages 61–73. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Generation-augmented retrieval for open-
domain question answering. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual
Event, August 1-6, 2021, pages 4089–4100. Associa-
tion for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? A new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on

3281

https://doi.org/10.18653/v1/D19-1597
https://doi.org/10.18653/v1/D19-1597
https://doi.org/10.18653/v1/D19-1597
https://aclanthology.org/2021.findings-emnlp.84
https://aclanthology.org/2021.findings-emnlp.84
https://transacl.org/ojs/index.php/tacl/article/view/1983
https://transacl.org/ojs/index.php/tacl/article/view/1983
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://aaai.org/ojs/index.php/AAAI/article/view/6319
https://aaai.org/ojs/index.php/AAAI/article/view/6319
https://aaai.org/ojs/index.php/AAAI/article/view/6319
https://doi.org/10.18653/v1/D19-1281
https://doi.org/10.18653/v1/D19-1281
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
http://arxiv.org/abs/2004.05569
http://arxiv.org/abs/2004.05569
http://arxiv.org/abs/2004.05569
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.48550/arXiv.2203.08992
https://doi.org/10.48550/arXiv.2203.08992
https://doi.org/10.48550/arXiv.2203.08992
https://ojs.aaai.org/index.php/AAAI/article/view/17570
https://ojs.aaai.org/index.php/AAAI/article/view/17570
http://arxiv.org/abs/2110.08426
http://arxiv.org/abs/2110.08426
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://aclanthology.org/2020.sigdial-1.9/
https://aclanthology.org/2020.sigdial-1.9/
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.18653/v1/d18-1260


Empirical Methods in Natural Language Processing,
Brussels, Belgium, October 31 - November 4, 2018,
pages 2381–2391. Association for Computational
Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander H. Miller. 2019. Language mod-
els as knowledge bases? In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 2463–2473. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 4932–4942. Association
for Computational Linguistics.

Qiu Ran, Peng Li, Weiwei Hu, and Jie Zhou. 2019. Op-
tion comparison network for multiple-choice reading
comprehension. CoRR, abs/1903.03033.

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai,
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu.
2021. CPT: A pre-trained unbalanced transformer for
both chinese language understanding and generation.
CoRR, abs/2109.05729.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 4222–4235. Association for
Computational Linguistics.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 4615–
4629. Association for Computational Linguistics.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2019.
Improving machine reading comprehension with gen-
eral reading strategies. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Min-
neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long

and Short Papers), pages 2633–2643. Association for
Computational Linguistics.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding,
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen,
Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu,
Weibao Gong, Jianzhong Liang, Zhizhou Shang,
Peng Sun, Wei Liu, Xuan Ouyang, Dianhai Yu, Hao
Tian, Hua Wu, and Haifeng Wang. 2021. ERNIE
3.0: Large-scale knowledge enhanced pre-training
for language understanding and generation. CoRR,
abs/2107.02137.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4149–4158. Association for Computational
Linguistics.

Min Tang, Jiaran Cai, and Hankz Hankui Zhuo. 2019.
Multi-matching network for multiple choice read-
ing comprehension. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 7088–7095.
AAAI Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791–4800, Florence,
Italy. Association for Computational Linguistics.

Shuailiang Zhang, Hai Zhao, Yuwei Wu, Zhuosheng
Zhang, Xi Zhou, and Xiang Zhou. 2020. DCMN+:
dual co-matching network for multi-choice reading
comprehension. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI

3282

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/p19-1487
https://doi.org/10.18653/v1/p19-1487
https://doi.org/10.18653/v1/p19-1487
http://arxiv.org/abs/1903.03033
http://arxiv.org/abs/1903.03033
http://arxiv.org/abs/1903.03033
http://arxiv.org/abs/2109.05729
http://arxiv.org/abs/2109.05729
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/v1/2020.emnlp-main.373
https://doi.org/10.18653/v1/n19-1270
https://doi.org/10.18653/v1/n19-1270
http://arxiv.org/abs/2107.02137
http://arxiv.org/abs/2107.02137
http://arxiv.org/abs/2107.02137
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.18653/v1/n19-1421
https://doi.org/10.1609/aaai.v33i01.33017088
https://doi.org/10.1609/aaai.v33i01.33017088
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=HJgJtT4tvB
https://openreview.net/forum?id=HJgJtT4tvB
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://aaai.org/ojs/index.php/AAAI/article/view/6502
https://aaai.org/ojs/index.php/AAAI/article/view/6502
https://aaai.org/ojs/index.php/AAAI/article/view/6502


Symposium on Educational Advances in Artificial In-
telligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 9563–9570. AAAI Press.

Wangchunshu Zhou, Dong-Ho Lee, Ravi Kiran Sel-
vam, Seyeon Lee, and Xiang Ren. 2021. Pre-training
text-to-text transformers for concept-centric common
sense. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Pengfei Zhu, Hai Zhao, and Xiaoguang Li. 2020. Dual
multi-head co-attention for multi-choice reading com-
prehension. CoRR, abs/2001.09415.

3283

https://openreview.net/forum?id=3k20LAiHYL2
https://openreview.net/forum?id=3k20LAiHYL2
https://openreview.net/forum?id=3k20LAiHYL2
http://arxiv.org/abs/2001.09415
http://arxiv.org/abs/2001.09415
http://arxiv.org/abs/2001.09415


Responsible NLP Research Checklist 
Members of the ACL are responsible for adhering to the ACL code of ethics. The ARR Responsible NLP 
Research checklist is designed to encourage best practices for responsible research, addressing issues of 
research ethics, societal impact and reproducibility.  

Please read the Responsible NLP Research checklist guidelines for information on how to answer these 
questions. Note that not answering positively to a question is not grounds for rejection.  

All supporting evidence can appear either in the main paper or the supplemental material. For each 
question, if you answer Yes, provide the section number; if you answer No, provide a justification.  

Please do not modify, reorder, delete or add questions, question options or other wording of this 
document. 

A For every submission 

A1 Did you discuss the limitations of your work?  

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes  

Section or justification   Section 5.4, Section 6 

A2 Did you discuss any potential risks of your work? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

N/A 

Section or justification   Click or tap here to enter text. 

A3 Do the abstract and introduction summarize the paper’s main claims? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Abstract, Section 1 

B Did you use or create scientific artifacts?  

If you answer Yes, provide the section number; if you answer No, you can skip the rest of this section. 

Yes 

If yes: 

B1 Did you cite the creators of artifacts you used? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

3284



Section or justification   Section 4.1 

B2 Did you discuss the license or terms for use and/or distribution of any artifacts? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 1 

B3 Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided 
that it was specified? For the artifacts you create, do you specify intended use and whether that is 
compatible with the original access conditions (in particular, derivatives of data accessed for research 
purposes should not be used outside of research contexts)? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.1 

B4 Did you discuss the steps taken to check whether the data that was collected/used contains any 
information that names or uniquely identifies individual people or offensive content, and the steps 
taken to protect / anonymize it? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

No 

Section or justification   They are widely used datasets containing commonsense/scientific information. 

B5 Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and 
linguistic phenomena, demographic groups represented, etc.? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.1 

B6 Did you report relevant statistics like the number of examples, details of train/test/dev splits, etc. 
for the data that you used/created? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.1 

C Did you run computational experiments? 

If you answer Yes, provide the section number; if you answer No, you can skip the rest of this section. 

Yes 

3285



If yes:  

C1 Did you report the number of parameters in the models used, the total computational budget (e.g., 
GPU hours), and computing infrastructure used? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.2, Section 5.5 

C2 Did you discuss the experimental setup, including hyperparameter search and best-found 
hyperparameter values?  

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.2 

C3 Did you report descriptive statistics about your results (e.g., error bars around results, summary 
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean, 
etc. or just a single run? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.2, Section 5 

C4 If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did you 
report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE, etc.)? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 4.2 

D Did you use human annotators (e.g., crowdworkers) or research with human 
subjects? 

If you answer Yes, provide the section number; if you answer No, you can skip the rest of this section. 

Yes 

If yes:  

D1 Did you report the full text of instructions given to participants, including e.g., screenshots, 
disclaimers of any risks to participants or annotators, etc.? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

3286



Section or justification   Section 5.4 

D2 Did you report information about how you recruited (e.g., crowdsourcing platform, students) and 
paid participants, and discuss if such payment is adequate given the participants’ demographic (e.g., 
country of residence)? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 5.4 

D3 Did you discuss whether and how consent was obtained from people whose data you’re 
using/curating (e.g., did your instructions explain how the data would be used)? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 5.4 

D4 Was the data collection protocol approved (or determined exempt) by an ethics review board? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

N/A 

Section or justification   Click or tap here to enter text. 

D5 Did you report the basic demographic and geographic characteristics of the annotator population 
that is the source of the data? 

If you answer Yes, provide the section number; if you answer No, provide a justification. 

Yes 

Section or justification   Section 5.4 

3287


