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Abstract

Hope is considered significant for the well-
being, recuperation and restoration of human
life by health professionals. Hope speech re-
flects the belief that one can discover pathways
to their desired objectives and become roused
to utilise those pathways. Hope speech offers
support, reassurance, suggestions, inspiration
and insight. Hate speech is a prevalent prac-
tice that society has to struggle with everyday.
The freedom of speech and ease of anonymity
granted by social media has also resulted in
incitement to hatred. In this paper, we work
to identify and promote positive and support-
ive content on these platforms. We work with
several machine learning models to classify so-
cial media comments as hope speech or non-
hope speech in English. This paper portrays
our work for the Shared Task on Hope Speech
Detection for Equality, Diversity, and Inclusion
at LT-EDI-ACL 2022.

1 Introduction

Nowadays, social media has become a significant
part of our lives and just like everything it has
its pros and cons. Various benefits of social me-
dia come with several challenges including hate
speech, offensive and profane content getting pub-
lished targeting an individual, a group or a soci-
ety. Social media has become a breeding ground
for hate speech and cyberbullying (Chakravarthi,
2020; Chakravarthi and Muralidaran, 2021). Of-
fensive content in online socialization have seri-
ously affected daily life of people (Priyadharshini
et al., 2021; Kumaresan et al., 2021; Chakravarthi
et al., 2020). Social media companies such as,
YouTube, Facebook, and Twitter have their own
approaches to eliminate the hate speech content or
anything which negatively affects the society. How-
ever, detecting such objectionable content at the
earliest to curb the menace of spreading such news
online is still a major challenge faced by social
media companies and researchers (Chakravarthi

et al., 2021). It is very essential to detect such be-
haviour. The amount of data generated on social
media sites can be estimated from the fact that,
every second,on average, around 6,000 tweets are
generated (Sakuntharaj and Mahesan, 2021, 2017,
2016; Thavareesan and Mahesan, 2019, 2020a,b,
2021). Content moderation of such a huge data is
difficult to achieve exclusively through man power.
Social networking sites are struggling with content
moderation (Sampath et al., 2022; Ravikiran et al.,
2022; Chakravarthi et al., 2022; Bharathi et al.,
2022; Priyadharshini et al., 2022). Our work aims
to change the prevalent way of thinking by moving
away from a preoccupation with discrimination,
loneliness or the worst things in life to building the
confidence, support and good qualities based on
comments by individuals.

In this paper, we have explored several machine
learning models for classification of social media
comments as hope speech or non-hope speech in
English.

2 Related Works

Several works have been proposed to detect hope
speech across social platforms. (Puranik et al.,
2021) proposed a work with several transformer-
based models to classify social media comments as
hope speech or not hope speech in English, Malay-
alam and Tamil languages. (Ghanghor et al., 2021)
have used the transformer-based pretrained models
along with the customized versions of those models
for detecting hope and not hope speech for equality,
diversity and inclusion in Dravidian languages .
(Upadhyay et al., 2021) experimented with two
approaches. They used contextual embeddings
to train classifiers using logistic regression, ran-
dom forest, SVM, and LSTM based models.They
also used a majority voting ensemble of 11 mod-
els which were obtained by fine-tuning pre-trained
transformer models (BERT, ALBERT, RoBERTa,
IndicBERT) after adding an output layer.
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(Saumya and Mishra, 2021) proposed various
machine learning and deep learning-based mod-
els (such as support vector machine, logistics
regression, convolutional neural network, recur-
rent neural network) are employed to identify the
hope speech in the given YouTube comments.The
YouTube comments are available in English, Tamil,
and Malayalam languages.
(Vijayaraghavan et al., 2021) proposed a deep neu-
ral multi-modal model that can: (a) detect hate
speech by effectively capturing the semantics of
the text along with socio-cultural context in which
a particular hate expression is made, and (b) pro-
vide interpretable insights into decisions of their
model. (Gomez et al., 2020) target the problem
of hate speech detection in multimodal publica-
tions formed by a text and an image. They gather
and annotate a large scale dataset from Twitter,
MMHS150K, and propose different models that
jointly analyze textual and visual information for
hate speech detection, comparing them with uni-
modal detection.
(Chang, 1998) shows the influence of high versus
low hope on problem-solving ability of college stu-
dents.It show that high-hope students were found
to have greater problem-solving abilities than low-
hope students. (Youssef and Luthans, 2007) shows
the impact of hope, optimism, and resilience in
the workplace. The outcomes of there work in-
cludes performance, job satisfaction, work hap-
piness, and organizational commitment. (Snyder
and P) shows development and validation of an
individual-differences measure of hope.

3 Task and Dataset Description

Here we have described the dataset and task pro-
vided by Hope Speech Detection for Equality, Di-
versity, and Inclusion challenge.
This is a comment / post level classification task.In
this, Youtube comments are given and the sys-
tems submitted by us should classify it into ’Hope
speech’ and ’Not hope speech’. (shown in Table
1).
Here training, development and test data is given
in English .Distributions of these data is shown in
Table 2. The distributions of imbalanced classes in
training data is shown in Table 3.

• Hope Speech (HS): Posts that offer support,
reassurance, suggestions, inspiration and in-
sight.

• Non Hope Speech (NHS): Posts that explicitly
seeks violence and uses gender-based insults.

4 Methodology

4.1 Data Preprocessing

We have performed following steps in data prepro-
cessing :-

• Puntuations,links and numbers removal.

• Lower the letter case.

• Tokenization.

• Turning the texts into sequences.

• Pad the sequences to have the same size.

• Balancing the given imbalanced dataset.

We have used Tokenizer class in TensorFlow for
handling above process. The unknown token
(UNK) is used when what remains of the token is
not in the vocabulary, or if the token is too long.We
have used post padding to pad the sequences. We
have balanced the imbalanced classes of training
data using Synthetic Minority Oversampling Tech-
nique (SMOTE)(Chawla et al., 2002) which uses
KNN for balancing minority classes.Balanced train-
ing data is shown in Table 4.

4.2 Models Proposed

We have used various machine learning algorithms,
namely- Logistic Regression (Wright, 1995), Multi-
nomial Naive Bayes classifier (Kibriya et al., 2004),
Random forest classifier (Liaw et al., 2002) and
XGBoost (Ren et al., 2017). We have used the
scikit-learn library for logistic regression, Multi-
nomialNB and Random forest classifier. We have
used the following values of the parameter :

• In Random Forest, we have used n estima-
tors=1000 and random state=42.

• In XGBoost, we have used learning rate=0.01,
max depth=50 and n estimators=300.

All the models have used balanced pre-processed
training data for training and we have tested the
models on the test data provided in challenge.
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Text Category
@Champions Again He got killed for using false money Non hope speech
It’s not that all lives don’t matter Non hope speech
she is not 60. He is 60 Non hope speech
I’m still hiding my gender to my parents and they don’t know I’m dating someone. Hope speech
Sasha Dumse God accepts everyone. Hope speech
all lives matter .without that we never have peace so to me forever all lives matter. Hope speech

Table 1: Examples of hope speech or not hope speech

Type English
Training 22739
Development 2841
Test 2843
Total 28423

Table 2: Train-Development-Test Data Distribution

Classes Counts
Non hope Speech 20777
Hope Speech 1962
Total 22739

Table 3: Imbalanced classes distribution in training data

5 Result and Discussions

The results of task are represented in terms of
Accuracy, Macro-F1, Micro-F1 and Weighted-F1
(shown in Table 5). The best score as Macro-F1
for the task we get is 0.6130. The XGBoost system
have performed better than all other models. There
is imbalance between the classes of test data due to
which there is more differences between accuracy
and Macro-F1 score of each system.

6 Conclusions and Future Work

We have completed the task using various classifi-
cation algorithms and evaluated the performance
of different classification algorithms for Hope
Speech Detection for Equality, Diversity, and
Inclusion shared task. Our overall best score is
0.6130. We look forward to experimenting with
different advance algorithm or neural network
models. We are also looking forward to work
on random multi model classification algorithm
for better accuracy and classification. Also, fine
tuning the parameters of the algorithm can help in
improvement of the overall performance. We shall
be exploring these tasks in the coming days.

Classes Counts
Non hope Speech 20777
Hope Speech 20777
Total 41554

Table 4: Balanced classes distribution in training data
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