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Abstract
Knowledge graphs applications, in industry and academia, motivate substantial research directions towards large-scale infor-
mation extraction from various types of resources. Nowadays, most of the available knowledge graphs are either in English or
multilingual. In this paper, we introduce RezoJDM16k, a French knowledge graph dataset based on RezoJDM (Lafourcade,
2007). With 16k nodes, 832k triplets and 53 relation types, RezoJDM16k can be employed in many NLP downstream tasks for
the French language such as machine translation, question-answering and recommendation systems. In addition, we provide
strong knowledge graph embedding baselines that are used in link prediction task for future benchmarking. Compared to the
state-of-the-art English knowledge graph datasets used in link prediction, RezoJDM16k shows a similar promising predictive
behavior.

Keywords: language resource, knowledge graph dataset, link prediction, knowledge graph embedding, knowledge
graph completion, lexical-semantic network

1. Introduction
Knowledge Graphs (KGs) are structured representa-
tions of semantic information mainly used for different
tasks in artificial intelligence such as information
extraction, search engines, question answering, and
recommendation systems. KGs are often represented
as multi-relational graphs with nodes and different
types of edges. In a KG, each link is a triplet of the
form (head, relation, tail). A triplet is a semantic
representation of external world fact in which head
and tail are entities. They are connected by a rela-
tion which acts as the semantic predicate between
the entities. For instance the triplet (hunt

r agent−−−−−→
lion) indicates that lion is the agent of verb hunt,
and the (coffee r carac−−−−−→ hot) indicates that coffee
has the characteristic of being hot. There is no lim-
itation to have a large number of facts collected in KGs.

Although the basic idea behind KGs seems very
promising, there is a crucial problem about KGs that
makes them challenging to utilize: they are always
incomplete (Wang et al., 2021). We can observe a lot
of missing information (links or relations) between the
entities in KGs. Moreover, real-world data are often
dynamic and evolving, which makes it hard to build
complete KGs (Cai et al., 2018; Arora, 2020). This is
the reason behind the necessity of predicting missing
information in KGs to make them as complete as
possible. This task is called Link Prediction or Graph
Completion which semantically refer to a unique

notion. The most successful approach to address Link
Prediction problem is based on Knowledge Graph
Embedding (KGE) methods which transform KGs
into a low-dimensional vector space. This transforma-
tion, in principle, should preserve the structure of the
KG and their underlying semantics (Wang et al., 2021).

There are famous KGs such as Freebase (Bollacker
et al., 2008), DBpedia (Lehmann et al., 2015) and
WordNet (Miller, 1995) which contain huge number
of entities and relations. As for Freebase, there are
currently around 3.1 billion triplets and more than 110
million entities. Some studies show that working with
huge KGs can impact the quality and interpretability
of the evaluations (Socher et al., 2013). This suggests
a kind of filtering or graph subselection algorithm. For
instance, we can mention FB15k and FB1M datasets
(Bordes et al., 2013) which are created by selecting
the most frequently occurring of triplets in Freebase
KG. The FB15k dataset suffered from major test
leakage through inverse relations, where several test
triplets could be obtained by inverting triplets in the
training set. As a result, another subset of FB15k,
which is called FB15k-237, introduced in (Toutanova
et al., 2015). The same practice is done for creating
WN18RR, which is a subset of dataset WN18 created
from WordNet (Toutanova et al., 2015).

The above-mentioned KG datasets have been widely
accepted for the English language. But, to the best of



5164

our knowledge, there is no efficient proposal to create
KG datasets for the French language. There are some
multilingual KGs such as ConceptNet (Speer et al.,
2017), BabelNet (Navigli and Ponzetto, 2012) which
can be partially used in order to create a French KG.
Nevertheless, working with specialized French large
lexical-semantic network seems a more promising
strategy. For doing such a task, we have focused
our study on RezoJDM, which is a lexical-semantic
network for the French language (Lafourcade, 2007).
It contains commonsense knowledge that is lacking in
ConceptNet and BabelNet (Lafourcade and Le Brun,
2017). Any KG, such as ConceptNet, that only focuses
on concept can potentially miss important relations. In
contrast, lexico-semantic approach combines lexical
level and conceptual level information. Also, Con-
ceptNet has no explicit representation of polysemy
which is the case in RezoJDM (Chatzikyriakidis et
al., 2017). As for BabelNet, the French side has some
errors, mainly due to the automatic approach of linking
the English and the French entities through machine
translation. Building RezoJDM is performed by
crowd-sourcing through several games with a purpose1

(GWAPs), direct contributions2 and a set of automatic
inference processes.

RezoJDM aims at providing general lexical and
semantic knowledge with a strong focus on common
sense. The network’s nodes represent any type of
lexical item from single words (such as chair) to
more complex expressions (such as to sit on a chair).
Edges are typed so to express a particular relationship
between two lexical items. Relationship types can be
divided into different categories: lexical (synonymy,
antonymy, . . . ), ontological (hyperonymy, meronymy,
. . . ) and predicative (agent, consequence, . . . ). Tables
(1) and (2) show the definition and typical examples of
most frequent relation types. RezoJDM currently has
around 5.2 millions nodes, 400 millions edges and 140
relationship types.

Type Description
r agent Entity that performs the action
r patient Entity that undergoes the action
r carac Object’s characteristic
r causatif Possible cause
r conseq Possible consequence
r has part Whole to part
r holo Part to whole
r instr Action’s instrument
r isa Specific to general
r lieu Typical place

Table 1: Descriptions of relation types in RezoJDM

1http://www.jeuxdemots.org
2http://www.jeuxdemots.org/diko.php

Type Example
r agent hunt

r agent−−−−−→ lion

r patient hunt
r patient−−−−−−→ antelope

r carac coffee r carac−−−−−→ hot

r causatif hunting
r causatif−−−−−−−→ hunger

r conseq hunger
r conseq−−−−−→ eat

r has part house
r has part−−−−−−−→ room

r holo room r holo−−−−→ house

r instr fishing r instr−−−−→ fishing rod

r isa mammal r isa−−−→ animal

r lieu Times Square r lieu−−−−→ New York

Table 2: Examples of relation types in RezoJDM

In this research, we mainly focused on the creation
of an efficient French KG dataset that can straight-
forwardly be fed into current state-of-the-art KGE
models. Such models for the French language can
be used in different tasks such as predicting miss-
ing information, recommender systems, question
answering, query expansion, etc. As discussed, we
explore different sub-graph selection criteria to make
an efficient algorithm to get the most informative
part of RezoJDM. We also provide some predictive
model baselines for further benchmarking which can
be useful for the evaluation of potential KGE models
in the future. This provides a reasonable ground
to compare our results against the existing English
language datasets. Moreover, KGE models can be
verified for our new dataset.

The rest of the paper is organized as follows: In
section 2, we discuss related work about French KG
and link prediction tasks. Section 3 explains our
proposed methodology for building RezoJDM16k
and also describes some of the state-of-the-arts KGE
models used as our baselines. Section 4 explains
our experimental setups and the parameters used for
training KGE models with some discussions on the
results. In the last section, we conclude our paper and
discuss possible future works.

RezoJDM16k is freely available for public use3.

2. Related Work
Current KGE models use extensively English KG
datasets such as FB15k-237 and WN18RR (Toutanova
et al., 2015). The models can be used for non-English
KGs, nevertheless, there is no attempt for creation
an efficient dataset for the French language usable
for embedding models. There is RezoJDM15k4, a
dataset created by sub-selecting RezoJDM (Cousot et

3github.com/ContentSide/French Knowledge Graph
4The French KG dataset introduced in (Cousot et al.,

2019) has no explicit name. We call it RezoJDM15k to dis-
criminate it from our dataset in this paper.
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al., 2019). It has 15K nodes, 43K triplets, 6 relation
types and is used for link prediction tasks employing
Random Forest Classifier. Since applying any classical
machine learning algorithm demands feature engi-
neering, Node2Vec approach (Grover and Leskovec,
2016) is used for converting nodes in RezoJDM15k
to 20-dimension vectors. The Node2Vec approach
can be categorized as a path-based model since it
utilizes a second-order random walk approach to
generate (sample) network neighborhoods for nodes.
Path-based approaches have their own limitations : the
larger the step size is, the larger the optimal solution
space, but the computational complexity is higher
(Wang et al., 2021).

RezoJDM15k has some technical limitations that can
not efficiently be used in most of KGE algorithms:
(i) the test dataset has a few common nodes with the
training dataset, and it makes it difficult for modern
KGE models to infer for instance a tail from a given
head and relation as input; (ii) the number of relation
types are 6 which is very limited from a practical point
of view; (iii) there is no well-defined filtration criteria
for KGE models since it was initially designed to be
feature engineered from Node2Vec embedding and to
be fed into Random Forest Classifier model. These are
the limitations that we must evidently avoid in order to
have more efficient KGE models.

The problem of path-based approaches (such as
Node2Vec) can be treated by employing knowledge
graph embedding (KGE) methods which have signifi-
cantly advanced the state of the art. Knowledge graph
embedding (KGE) or knowledge representation learn-
ing (KRL) is defined as learning a low-dimensional
representations of a given knowledge graph. The
low-dimensional embedding must preserve meanings
of entities and relations in the original KG. KGE
models are mainly used for missing link prediction
task . According to (Wang et al., 2021) KGEs models
can be categorized into three groups:

(i) The first category is translational-distance-based (or
additive) models such as TransE (Bordes et al., 2013),
TransH (Wang et al., 2014) and TransD (Ji et al., 2015).
TransE regards the relations in KGs as translation vec-
tors. Given a triplet (h, r, t), the relation r translates
the head entity h to the tail entity t. It defines a scoring
function (ψ) to measure the correctness of the triplet in
the embedding space (eo, r, es) as follows:

ψ(eo, r, es) = −||h+ r − t||22
TransH defines a hyperplane for each relations, and
translation property should be established on that hy-
perplane as follows:

h⊥ = w⊥
r hwr , t⊥ = w⊥

r twr

ψ(eo, r, es) = −||h⊥ + r − t⊥||22

TransD creates a dynamic matrix for all entity-relation
pairs and maps the head and tail into M1 and M2, re-
spectively. The transition from head to tail is as follow:

M1
r = wrw

⊥
h + I , M2

r = wrw
⊥
t + I

h⊥ =M1
r h , t⊥ =M2

r t

ψ(eo, r, es) = −||h⊥ + r − t⊥||22

(ii) Semantic-matching-based (or multiplicative)
models: DistMult (Yang et al., 2014) and ComplEx
(Trouillon et al., 2016), which can outperform the ad-
ditive models by capturing more semantic information.
These models first embed entities and relations into
a unified continuous vector space and then define a
scoring function to measure its authenticity.

(iii) Neural-network-based models: such as ConvE
(Dettmers et al., 2018) and SACN (Shang et al.,
2019). These models consider the type of entity or
relation, temporal information, path information and
substructure information.

3. Proposed Methodology

In this section, we introduce our methodology for
building the RezoJDM16k dataset. Firstly, we describe
how the sub-selection on RezoJDM is performed. Con-
sequently, we describe the performance indicators we
used.

3.1. Graph Sub-Selection Algorithm

As we discussed in section 1, several sub-selection
criteria are needed to make an efficient KG dataset
(Socher et al., 2013; Bordes et al., 2013; Toutanova
et al., 2015). These criteria are supposed to impact
the quality and interpretability of the evaluations. For
building our French KG dataset, we have taken into
account some of these general criteria and guidelines.
In addition, we have employed some specific filter-
ing criteria that are only meaningful for RezoJDM
lexical-semantic networks. Table 3 and the succeed-
ing algorithm show in an abstract way, our input/output
variables and our KG sub-selection algorithm, respec-
tively:

Variable Description
Vin Set of nodes in RezoJDM
Ein Set of edges in RezoJDM
rmin Lowest frequency of relations
ndmin Minimum node degrees
Vout Set of nodes after filtering
Eout Set of edges after filtering

Table 3: Inputs and outputs of the algorithm
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Algorithm: Graph Sub-Selection Algorithm

GraphSubSelect (Vin, Ein, rmin, ndmin)
V1 ← FilterNodes(Vin)
E1 ← FilterEdges(Ein)
V2 ← UpdateNodes(V1)
E2 ← RemoveInverseRelations(E1)
Eout ← FilterByRelationOccur(E2, rmin)
Vout ← FilterByNodesDegree(V2, ndmin)
return (Vout, Eout)

The algorithm operates on the original RezoJDM data.
We note Vin and Ein the sets of nodes and edges,
respectively. After applying a sequence of filters, the
filtered graph, Vout and Eout, is obtained. Firstly, we
filter out nodes and edges based on their types and
weights. For nodes, only terms and their morpho-
logical variations are kept. Just a few relationship
types are excluded, namely those related to chunks
or internal implementation details irrelevant to our
concerns. Both nodes and edges are filtered if their
weight is lesser than 50. It is mandatory to apply
UpdateNodes to remove the nodes that has no edges
after applying the FilterEdges. RezoJDM contains
some relationship types that are symmetric, such as
hypernymy/hyponymy or holonymy/meronymy. Such
property allow the model to get the correct predictions
by simply learning that a certain type is the inverse
of another instead of actually modeling the relation-
ship. Therefore the next essential step is applying
RemoveInverseRelations to prevent test leakage
through inverse relations as described in (Toutanova et
al., 2015). To do so, we look for the pattern x t−→ y and

x t−1

←−− y and remove the edge with the lesser weights.

In order to make the Knowledge Graph more efficient
for graph embedding models, we need to apply two
more filters: FilterByRelationOccur removes
relationships with less than rmin occurrences; and
FilterByNodesDegree removes nodes with degrees
less than ndmin. The experimental results show the
near average choice of rmin = 100 and ndmin = 45
works more efficiently for building KGE models. We
end up with 16k nodes, 832k triplets and 53 relation
types. Following the common practice, we have named
our dataset RezoJDM16k.

Finally, we splitted RezoJDM16k into three train, vali-
dation and test samples (90%, 5% and 5%). The statis-
tics of RezoJDM16k are shown in Table 4. The com-
parison between RezoJDM16k with two popular En-
glish datasets are also available. WN18RR (Toutanova
et al., 2015) is build from WordNet and is centered
around hyponym/hyperonym relations. FB15k-237
(Dettmers et al., 2017) is based on Freebase.

Resource Entities triplets Types
WN18RR (Train) 41k 87k 11
WN18RR (Validation) 41k 3k 11
WN18RR (Test) 41k 3k 11
FB15k-237 (Train) 15k 272k 237
FB15k-237 (Validation) 15k 17k 237
FB15k-237 (Test) 15k 20k 237
RezoJDM16k (Train) 16k 666k 53
RezoJDM16k (Validation) 16k 83k 53
RezoJDM16k (Test) 16k 83k 53

Table 4: Dataset statistics of the RezoJDM10k split
compared to FB15k-237 and WN18RR splits

3.2. Performance Indicators
In the literature, there are three major metrics for
measuring the quality of embedding models, namely,
Hits@K, MR, and MRR (Chen et al., 2020). These
metrics are frequently used and are fairly simple:

(i) Hits@K: is a performance index that measures
the probability to find the correct prediction in the
first top K model predictions (Chen et al., 2020). By
convention K values varies between 1, 3, 5 and 10.
The larger Hits@K values are, the better predictive
performances.

(ii) Mean Rank (MR): is the average ranking position
of the items predicted by the model among all the
possible items (Chen et al., 2020). The smaller the
value, the better the model

(i) Mean Reciprocal Rank (MRR): measures the num-
ber of triples predicted correctly (Chen et al., 2020).
The larger the index, the better the model.

4. Experimental Setup
We used translational-based and semantic-based KGE
modeling. In particular, we utilized TransE, TransH,
TransD, DistMult and ComplEx for our KGE model-
ings. These models, unlike deep neural-network, are
faster and computationally very efficient, as we dis-
cussed in section 2.

4.1. Baseline Graph Embedding Models
We tested the overall methodology described in
section 3 to measure the performance on the Re-
zoJDM16k dataset. We used the accuracy metrics
MRR, MR, Hits@10, Hits@3 and Hits@1 to enable
the head-to-head comparison with the state of the
arts models and other reported baselines results.
We chose our experimental hyper-parameters as
follow: AdaGrad as optimizer (Duchi et al., 2011),
alpha=0.5, batch size = 100 and number of epoch=200.
The KGE models performance are illustrated in table 5.

Table 6 presents state-of-the-art performance on Rezo-
JDM16k and the two English KG datasets (FB15K237
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Model MRR MR Hits@10 Hits@3 Hits@1
TransE 0.179 203.31 0.432 0.242 0.041
TransH 0.218 177.12 0.498 0.291 0.069
TransD 0.216 170.68 0.500 0.287 0.066
DistMult 0.220 194.47 0.445 0.252 0.109
ComplEx 0.253 201.58 0.533 0.304 0.117

Table 5: Performance of knowledge graph embedding
models for RezoJDM16k

and WN18RR). To enable the head-to-head caparison
with the English datasets, we used Hits@10 evaluation
metric as reported in the original papers for TransE
(Bordes et al., 2013), TransH (Wang et al., 2014),
TransD (Ji et al., 2015), DisMult (Yang et al., 2014)
and ComplEx (Trouillon et al., 2016)

Model RezoJDM16k WN18RR FB15k-237
TransE 0.432 0.501 0.486
TransH 0.498 0.507 0.490
TransD 0.500 0.508 0.487
DistMult 0.445 0.490 0.419
ComplEx 0.533 0.510 0.428

Table 6: Comparison of KGE state-of-the-models per-
formance (Hits@10) between RezoJDM16k and En-
glish datasets

4.2. Discussions
Table 5 shows the performance of different KGE
models on RezoJDM16k dataset using the evaluation
metrics MRR, MR, Hits@10, Hits@3 and Hits@1.
ComplEx model has the best performance according
to MRR, Hits@10, Hits@3 and Hits@1 indicators.
TranseD shows better performance based on MR
metric. One important observation is the superior-
ity of semantic-based KGE models (DisMult and
Comlex) over the translational-based KGE models
(TransE, TranseH and TranseD) based on MRR, MR,
and Hits@1. This is expected due to complexity of
semantic-based models. Nevertheless, TransH and
TransD provides competing performances based on
Hits@10 and Hits@3 scores.

Table 6 shows the comparison of the performances
of KGE state-of-the-art models trained on Rezo-
JDM16k and two famous English KG datasets, namely,
WN18RR and FB15k-237 using the evaluation met-
ric Hits@10. In general, we observe that the perfor-
mance scores of KGE models range from 0.428 till
0.528. This fact endorses that the learnability of Re-
zoJDM16k is almost the same in terms of quantity,
compared to WN18RR and FB15k-237. TransH, pro-
duce rather close scores for RezoJDM16k and FB15k-
237. Whereas, ComplEx model shows close scores
for RezoJDM16k and FB15k-237. For RezoJDM16k
and WN18RR datasets the best performance score is
for ComplEx model which have the highest number
of triplets per relation type. For FB15k-237 dataset,

the best performance belongs to TransH. To summa-
rize, we can conclude that state of the arts KGE algo-
rithms can learn the structure of KG presented in Re-
zoJDM16k in an acceptable way.

5. Conclusions and Future Works

We introduced RezoJDM16k, a French Knowledge
Graph dataset built from RezoJDM. The dataset
consists of 16k nodes, 832k triplets with 53 different
types in its train/dev/test datasets splits. We consid-
ered the incompleteness of the dataset as any KGs
and addressed the task of link prediction to build a
more complete KG. In this context, we provided a
comparative study of strong predictive knowledge
graph embedding models as baselines for future
references. Furthermore, we compared the perfor-
mance of these models with well-known English KGs,
namely, FB15k-237 and WN18RR (Toutanova et al.,
2015). The models exhibit similar performance of
RezoJDM16k compared to other English KG datasets.

Many possible techniques could either enhance the
quality of RezoJDM16k or empower the predictive ca-
pabilities with a more complex model. This includes,
but is not limited to, enriching the current dataset
with the polysemy that is encoded in RezoJDM.
Additionally, we can employ the neural-network-based
architectures introduced in ConvE (Dettmers et al.,
2018) and SACN (Shang et al., 2019) which are not ex-
plored in this paper. One of the possible future studies
is using/extending these architectures. Consequently,
we can analyze the performance of our model against
available French and English datasets.

The workflow presented in this paper, and availabil-
ity of RezoJDM16k with KGE models, can pave the
way for further directions of research in computa-
tional linguistics for French-based resources. To count
some of them: (i) some symbolic approaches (Lafour-
cade et al., 2018) use RezoJDM to create lexicons
for type-theoretic frameworks for compositional se-
mantics. Our introduced approach can augment this
sort of study with the prediction of complex linguistic
type-shifting cases that do not explicitly exist in Re-
zoJDM; (ii) enhancing the quality of lexical-quantifier
preference problem (Catta and Mirzapour, 2017) with
feeding the systems with semantic relations between
the headwords in multiple-quantifiers ambiguous sen-
tences; (iii) there are some studies for measuring lin-
guistic complexity on syntactic level (Zou et al., 2022;
Mirzapour et al., 2020) that use dependency-like rela-
tions between words in a sentence. The syntactic na-
ture of relations can be augmented with semantic re-
lations. This provides a rich formalism for psycholin-
guistic theories that use semantic relations on the word
level.
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