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Abstract

The tree model is well known for express-
ing the historic evolution of languages. This
model has been considered as a method of
describing genetic relationships between lan-
guages. Nevertheless, some researchers ques-
tion the model’s ability to predict the prox-
imity between two languages, since it repre-
sents genetic relatedness rather than linguistic
resemblance. Defining other language proxim-
ity models has been an active research area
for many years. In this paper we explore a
part-of-speech model for defining proximity
between languages using a multilingual lan-
guage model that was fine-tuned on the task
of cross-lingual part-of-speech tagging. We
train the model on one language and evaluate it
on another; the measured performance is then
used to define the proximity between the two
languages. By further developing the model,
we show that it can reconstruct some parts of
the tree model.

1 Introduction

Language families are defined by the evolution of
languages over the history, providing indications
regarding the proximity between them. The tree
model, which was first introduced by Augustus
Schleicher (Schleicher, 1853) is considered as the
consensual language-family model. For example,
Figure 1 shows the Indo-European branch of the
tree model; a full version of the model is nicely
presented on Ethnologue1. In this paper, we refer
to this source as a reference for the classic family
tree model.

Concomitantly, there have been theories that
question the tree model as being an indicator for
language proximity, since it represents genetic relat-
edness rather than lexical resemblance. Loanwords,

∗∗Equal contribution.
1https://www.ethnologue.com/browse/families

as well as other lexical influences are usually not
expressed in the classic tree model. Representing
historical relatedness, the tree is agnostic to various
linguistic influences. Consequently, some claim
that language families should be defined by alter-
native models (Geisler and List, 2013).

The Universal Grammar, introduced by Noam
Chomsky, is usually defined as the “system of cate-
gories, mechanisms and constraints shared by all
human languages and considered to be innate” (Do-
brovolsky et al., 2016). In other words, a human
language is derived from a set of structural rules,
typically referred to as generative grammar, which
we are usually totally unaware of. We can intu-
itively distinguish between nouns and verbs; chil-
dren can phrase a sentence they have not heard
before by ordering parts of speech they are famil-
iar with in a valid grammatical order. A child can
identify a noun without knowing what a noun is,
or without even understanding the meaning of that
specific noun.

It may be assumed that rather than this aspect
of universal grammar being specific to language, it
is more generally a part of human cognition, and
there might be a common structure for different
languages. Still, the ability to classify words into
parts of speech requires some knowledge of the
structure of the specific language.

The hypothesis we examine in this paper relies
on the assumption that historically close languages,
like French and Spanish, share some information
that may help the classification of words into part-
of-speech (POS) tags. While identifying this type
of information is out of scope for this paper, we will
show that this information can be used by a neural
network for predicting POS tags of one language
only using examples from another language.

Our goal is to redefine the proximity between
languages to achieve a comparable model to the
classic tree model, by considering only POS tags.
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Figure 1: The Indo-European language branch; the graph was created by the igraph package for Python (Csardi
and Nepusz, 2006). The languages are represented using their equivalent two-letter ISO 639-1 code.

To enable transferability between languages, we
suggest using a multilingual pre-trained language
model (MPLM), fine-tuned for the POS tagging
task in a multilingual environment. Specifically, we
take a multilingual zero-shot training approach by
fine-tuning an MPLM to predict POS tags for texts
written in one language, the source language, and
evaluating it on texts written in another language,
the target language. The performance metrics are
then used to estimate the similarity between the
source and target languages. As a final step, we
generate a language-similarity graph, which we
describe as an approximation for the classic tree
model. We make two main contributions: (1) Re-
constructing part of the classic tree model using

POS-based similarity scores; and, (2) Providing
some insights into the cross-lingual generalization
of MPLMs.

We proceed as follows: In Section 2 we cite
some related studies, following by a detailed de-
scription of our method, provided in Section 3. We
end Section 3 with reporting on some results. We
discuss the results in Section 4 and make some
conclusions.

2 Related Work

There have been some prior studies on measur-
ing distance between languages. In their paper,
Chiswick and Miller (2005) presented some em-
pirical observations of how rapidly speakers of
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a given language gained proficiency in another
tongue. Specifically, they measured the speed
of English acquisition by immigrants of various
linguistic backgrounds in the United States and
Canada. Their first languages were ranked for the
distance from English, on a scale from 1.0 (very
different than English) to 3.0 (closest to English). It
has been found empirically that the greater the dis-
tance between an immigrant’s origin language and
English, the lower is the level of the immigrant’s
English language proficiency.

There have been many attempts to use compu-
tational tools to infer the relations between lan-
guages; the dominant approach is known as phy-
logenetic linguistics. Phylogenetic linguistics is
about establishing historical relationships among
languages, by considering the evolutionary nature
of human languages. In computational phylogenet-
ics, words and/or phonemes of what counts as the
same language over time, are analyzed and com-
pared among languages.

Specifically, Swadesh (1950) was first to in-
troduce a computational phylogenetic technique
called lexicostatistics for comparing between two
languages. In lexicostatistics, the similarity be-
tween two languages is calculated by a function of
the percentage of cognates found in a predefined
list of words of the two languages. Swadesh’s work
has been followed by a number of studies that use
lexicostatistics or a minor variation of it (Nakhleh
et al., 2005; Holman et al., 2008; Bakker et al.,
2009; Petroni and Serva, 2010; Barbançon et al.,
2013).

Instead of measuring the percentage of cognates,
Petroni and Serva (Petroni and Serva, 2008; Serva
and Petroni, 2008) proposed to calculate a normal-
ized Levenstein distance among words with the
same meaning and then to take the average over the
words contained in a cross-lingual list. Müller et al.
(2010) conducted a lexical comparison using the
Levenstein distance approach, between 4,350 lan-
guages of the ASJP database (Brown et al., 2008),
and created a full diagram of lexical proximity.
They showed that lexical resemblance is related to
genetic affiliation. However, some of the languages
that have been found as lexically similar, accord-
ing to their technique, are not closely genetically
associated.

Another computational approach for measur-
ing language similarity is based on corpus anal-
ysis. Gamallo et al. (2017) used the known per-

plexity score of a probabilistic n-gram language
model to measure the distance between European
languages. Asgari and Mofrad (2016) compared
50 languages from different families by training
a monolingual language model on each language
individually, using a parallel corpus of the Bible
(Christodouloupoulos and Steedman, 2015), and
apply them to calculate perplexity on all the other
languages. In some of the works that are men-
tioned above, the proximity between languages is
not perfectly aligned with the classic tree model.

While the main focus has always been on lex-
ical similarity, some attempts were made to com-
pare languages on the syntactic level. Longobardi
and Guardiano (2009) characterized 28 languages,
mostly Indo-European ones, using a set of 63 pre-
defined morpho-syntactic parameters. They calcu-
lated a normalized Hamming distance over those
parametric representations, with which they were
able to generate a language tree. They showed that
this tree is equivalent to a tree that was generated
based on a traditional lexicostatistics approach, sug-
gesting that syntactic characteristics are sufficiently
robust to reconstruct a plausible historical language
tree. The same method was re-used in (Longob-
ardi et al., 2013), which was concluded in a similar
way. In a recent work, Shu et al. (2021) applied a
different comparison technique on the same syntac-
tic characteristics, using Markov models. In all of
those works, the selection of the syntactic character-
istics to be used for comparison, plays an important
role in the creation of a language proximity model.

To the best of our knowledge, there have not
been attempts to compare languages using syntac-
tic information in a non-parametric way. In this
work, we take a corpus-based approach to automat-
ically extract part-of-speech tags from a given text
in order to generate a language-proximity model.
In that sense, we consider our approach as a non-
parametric estimation method, since we do not
need to manually define specific syntactic parame-
ters to consider for calculating similarity between
languages.

To transfer information across languages, we use
mBERT, a multilingual version of BERT (Devlin
et al., 2019), that was pre-trained on texts written
in over 100 languages based on a shared vocabu-
lary.2 During pre-training, the training documents
are given to mBERT without any indication on the
language that they have been written with. Like

2Similar to BERT, mBERT’s tokens are subwords.
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every other pre-trained language model (PLM), the
pre-trained mBERT model is typically fine-tuned
on a training set of a specific downstream task,
which could be either monolingual or multilingual.
This unique multilingual design allows mBERT
to handle multilingual tasks in a transfer-learning
way. In another study, Wu and Dredze (2019) re-
ported an impressive performance using mBERT in
a zero-shot cross-lingual transfer learning setting
on several NLP tasks, including POS tagging. They
claimed that mBERT may learn a cross-lingual rep-
resentation by generalizing and abstracting some
language-specific information. A similar observa-
tion was made by Gonen et al. (2020) who claimed
that mBERT learns information by two compo-
nents, one that encodes the language and another
that encodes some abstract information that can be
used in a cross-lingual way.

3 Methodology

3.1 Language Similarity Score

For every pair of languages, source language and
target language, we measure their similarity as the
performance of an mBERT-based POS tagger fine-
tuned on the source language, and evaluated on
the target language. For training and evaluation,
we use treebanks from Universal Dependencies
(UD).3 In particular, we use the Universal POS la-
bels4 assigned for every syntactic word in the text.
The Universal POS tagset contains the following
core part-of-speech categories that can be used for
any UD language: adjective, adposition, adverb,
auxiliary, coordinating conjunction, determiner, in-
terjection, noun, numeral, particle, pronoun, proper
noun, punctuation, subordinating conjunction, sym-
bol, verb and other. Each treebank is divided to
train and test sets. Therefore, we fine-tune mBERT
on the UPOS (universal POS) tagging task using
the source language’s training set, and evaluate it
on the target language’s testing set.

Our selected evaluation metric is the micro
average F1 score. Clearly, for every pair of
languages we calculate two F1 scores, one for
each direction. The two scores are not necessarily
equivalent.
In all our experiments, we use the com-
monly used pre-trained language model
bert-base-multilingual-cased,

3https://universaldependencies.org
4https://universaldependencies.org/u/

pos

provided by the Hugging Face transformers
library (Wolf et al., 2019). For every language
we fine-tune the model for the standard token
classification downstream task for three epochs,
using a learning rate value of 5e− 5.

We include 36 languages in our study, taken from
a diversity of language families and subfamilies.
The full list of languages is provided in Figure 2.
For each language we indicate its two-letter ISO
639-1 code, which we use throughout the paper.
All the 36 languages we process are covered by
mBERT.

Overall, we calculate the F1 score for every pair
of languages, resulting in 362 = 1296 scores. A
partial list of the scores is provided in Table 1,
while the full set of results is added as Appendix
A. Clearly, the model that is trained on English
performs better on Spanish than on Russian and
Hindi.

Src/Trgt EN ES RU HI
EN 0.97 0.84 0.80 0.64
ES 0.80 0.99 0.80 0.58
RU 0.74 0.81 0.98 0.64
HI 0.61 0.57 0.67 0.97

Table 1: F1 scores for some of the language pairs.
Rows represent source languages, while columns rep-
resent the target languages. For example, the first
row represents the F1 scores resulted from evaluating
mBERT on the UPOS tagged test sets in English, Span-
ish, Russian and Hindi, after previously fine-tuned on
the English UPOS tagged train set.

As mentioned before, the two F1 scores that
were calculated for each pair of different languages,
are not necessarily equal. In fact, they are very un-
likely to be equal, since the performance of the
tagger is affected not only by the difference be-
tween the languages, but also by the size and the
quality of the training sets, as well as the volume
and quality of the texts in each relevant language,
which were used for training mBERT.

The average of the absolute difference between
all language pairs is 0.0874 and the standard de-
viation is 0.074. While some pairs have relatively
similar scores in both directions, some other have
significantly different ones. However, as we show
later, we do not use the F1 scores directly as some
sort of a distance function between the languages.
Instead, we represent each language l by a vector
of F1 scores calculated by all other models during
evaluation on l’s testing set, and use a clustering
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Figure 2: The 36 languages we include in our study. We chose languages from different families and subfamilies.
The two-letter ISO 639-1 code is provided in parentheses next to each language name.

algorithm to organize these vectors into language
families.

Before we show how we do that, first, we argue
that our cross-lingual F1 score is an important
piece of information for reconstructing the
classic tree model. Our argument is based on the
correlation between our cross-lingual F1 score
and the proximity of language pairs in the classic
tree model. In order to measure the proximity
between two languages in the classic tree model,
we use the Wu-Palmer similarity (Wu and Palmer,
1994) metric, which was originally invented for
measuring relatedness of two synsets in a WordNet
taxonomy. For the context of using Wu-Palmer,
the tree model has the same characteristics as
WordNet; language family names are represented
by intermediate nodes, while language names
are represented by the leaves. Therefore, the
Wu-Palmer score for two languages L1, L2 is
calculated as follows:

2 · depth(lcs(L1, L2))

depth(L1) + depth(L2)

with lcs representing the least common subsumer,
that is, the first common ancestor of the two lan-
guages in the language-family tree. The score
ranges between 0 and 1, but it can never go to
zero since the depth of lcs(L1, L2) is never zero
(the model tree has a single root).

We denote the Wu-Palmer score as WP. As opposed
to our cross-lingual F1 score, WP is symmetric.

We calculate WP for every language pair, and
compare with our F1; the results are shown in Fig-
ure 3. Every data point in this chart represents a
single language pair out of the 362 pairs. Overall,
we learn that the F1 score increases along with WP,
except maybe on relatively small WP values, repre-
senting pairs of languages taken from significantly
different branches of the language-family tree.

Furthermore, we measure the correlation be-
tween the two metrics using Pearson (for linear
correlation) and Spearman (for monotonic corre-
lation) and realize that both are strongly corre-
lated with Pearson= 0.64 (at p < 0.001), and
Spearman= 0.59, (at p < 0.001).

Figure 4 visualizes the F1 scores of all language
pairs as a heatmap, with target languages provided
as rows and source languages as columns. For each
target language, all the 36 source languages are
sorted according to the F1 scores (from the highest
to the lowest). The color represents the proximity,
as calculated by the WP score; a lighter color is
equivalent to a higher proximity. For example in
the fifth row, the best performance on the Spanish
test set is observed by the Spanish model, followed
by other Romance languages, Catalan, Italian, Por-
tuguese and so on. The worst performance was
recorded by the Welsh model. Evidently, higher
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Figure 3: UPOS F1 scores compared with WP scores.

proximity values (light boxes on the left side of the
heatmap) derive higher performance on the cross-
lingual POS task, indicating that the closer two
languages are, the encoded information in their cor-
responding models tends to be more helpful for
POS tagging.

3.2 Reconstructing Language Families
In this section we show how we use the resulting
F1 scores, calculated for every language pair, to
reconstruct the language-family tree.

We represent every language l by a 36-
dimensional vector consisted of the F1 scores of
the models that have been trained on all other lan-
guages, evaluated on l. We generate exactly 36
vectors, one for each language. Conceptually, the
vector of language l represents the similarity of
l to all the other languages, by considering only
cross-lingual UPOS information, as captured by
mBERT.

To identify families and subfamilies of lan-
guages, we use k-means (Lloyd, 1982) to cluster
the 36 vectors. In addition to the collection of vec-
tors, k-means receives as input a parameter k that
denotes the number of clusters.

According to Figure 2, the tree model organizes
the 36 languages into 9 families; therefore, we run
k-means with value of k = 9. In Figure 5 we
visualize the resulting clusters. The color of the

circle next to the language name marks the cluster.
Note that while the k-means algorithm works with
36-dimensional vectors given as an input, we vi-
sualize the vectors on a 2-dimensional axis, which
we calculate using the principal component analy-
sis (PCA) algorithm for reducing dimensions. The
clusters are summarized in Table 2. We discuss the
results in the following section.

3.3 Results
The alternative partitioning for language families
that we get, partially align with the classic tree
model.

Cluster 1 contains only Romance languages. All
languages in cluster 2, except Romanian, are con-
sidered as Germanic in the classic tree model. Clus-
ter 3 contains all Slavic languages excluding the
Baltic languages. Cluster 4 includes the Baltic lan-
guages (Lithuanian and Latvian) as well as two
Uralic languages (Finnish and Estonian). Those
four languages are spoken in the geographically
close countries Lithuania, Latvia, Finland and Es-
tonia, respectively, suggesting that there might be
a geographical dimension in our POS-based lan-
guage proximity method. We plan to further inves-
tigate this discovery as one of our future directions.
Cluster 6 contains only Hindustani languages. The
two Semitic languages (Hebrew and Arabic) are
grouped together in cluster 7, which also includes
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Figure 4: A heatmap of the WP scores calculated for all language pairs, sorted according to F1 scores. For more
information about this arrangement see the text.

Cluster Languages Family
1 Spanish, Portuguese, French, Catalan, Italian, Galician Romance
2 English, German, Dutch, Afrikaans, Icelandic, Norwegian, Mostly Germanic

Danish, Swedish, Romanian
3 Russian, Ukrainian, Belarusian, Polish, Czech, Slovak, Bulgarian, Slavic

Croatian, Serbian
4 Lithuanian, Latvian, Finnish, Estonian Baltic and Uralic
5 Hungarian Uralic
6 Hindi, Urdu Hindustani
7 Persian, Hebrew, Arabic Iranian and Semitic
8 Irish Celtic
9 Welsh Celtic

Table 2: The clusters obtained by running k-means with k = 9. We provide some information about the language
families of each cluster in the third column.

Persian probably due to historical influences. Hun-
garian is the only language in cluster 5. Clusters 8
and 9 represents two languages of the Celtic family.
They should have probably been clustered together.

Overall although there are a few misplacements,
our clustering method was able to reconstruct parts
of the tree model. 31 out of 36 languages were
classified correctly according to the classic model.
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Figure 5: The 9 clusters resulted from k-means. The original 36-dimensional vectors are visualized using their first
two principle components.

4 Discussion and Conclusions

In this work we used a cross-lingual model trained
on UPOS for measuring the proximity between
languages. We showed that our new language-
proximity model can reconstruct families of ge-
netically related languages, suggesting that POS
information plays a major role in modelling simi-
larity between languages.

We believe that we have demonstrated the po-
tential of a fine-tuned mBERT model to capture
some cross-lingual information that is needed for
assigning UPOS tags to a text written in an unseen
language. On average, models of genetically re-
lated languages perform better on each other in this
task, even if they are not written in the same script.
For example, in Table 1 we show that a Spanish
(ES) model performs similarly on English (EN)
and Russian (RU), although both Spanish and En-
glish are written in the Latin script while Russian
is written in the Cyrillic script.

There are a few caveats to this research to note.

mBERT was pre-trained on the full collections of
Wikipedia articles in the relevant languages. There-
fore, the size of those collections varies proportion-
ally to the number of active speakers. To handle
that bias, the authors of mBERT had decided to up-
sample the Wikipedia collections of the less domi-
nant languages, in the main training loop. Wu and
Dredze (2020) have recently addressed that prob-
lem and showed that mBERT performs better on
cross-lingual zero-shot tasks on languages that have
large Wikipedia collections. In our work, we han-
dle that bias by designing each individual language
vector to have F1 scores from all other languages,
including both high-resource and low-resource lan-
guages. Therefore, every language is represented
by F1 scores achieved by models trained on exactly
the same language set.

Another caveat is the size and quality of the
treebanks we use for training and testing our mod-
els. As noted before, we believe that our approach
to represent a language using scores from mod-
els trained on all the 36 language included in this
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research, mitigates this risk.
We make a final practical observation. The re-

sults of our study suggest that for UPOS tagging,
mBERT may benefit from training on texts writ-
ten in languages that are genetically similar to the
target language, based on the classic tree model.
These results are aligned with what have been re-
ported by Wu and Dredze (2020).

References
Ehsaneddin Asgari and Mohammad R.K. Mofrad.

2016. Comparing fifty natural languages and twelve
genetic languages using word embedding language
divergence (WELD) as a quantitative measure of lan-
guage distance. In Proceedings of the Workshop
on Multilingual and Cross-lingual Methods in NLP,
pages 65–74, San Diego, California. Association for
Computational Linguistics.
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A Appendix: F1 Scores

Figure 6: F1 Scores for all language pairs.
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