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Abstract

We explore whether neural Natural Language
Processing models trained to identify offen-
sive language in tweets contain gender biases.
We add historically gendered and gender am-
biguous American names to an existing of-
fensive language evaluation set to determine
whether models’ predictions are sensitive or ro-
bust to gendered names. While we see some
evidence that these models might be prone to
biased stereotypes that men use more offen-
sive language than women, our results indicate
that these models’ binary predictions might not
greatly change based upon gendered names.

1 Introduction

Identifying offensive language in text is an in-
creasingly important challenge that has sparked
the release of datasets and advanced models fo-
cused on toxic language detection in multiple lan-
guages (Razavi et al., 2010; Pitenis et al., 2020; Sig-
urbergsson and Derczynski, 2020; Çöltekin, 2020;
Founta et al., 2018). For these models to be trust-
worthy when deployed in sensitive, real-world con-
texts, they must perform equally well for text writ-
ten by male, female, or non-binary authors.

However, based on known gender-based biases
in NLP systems (Rudinger et al., 2018; Zhao et al.,
2018; Sun et al., 2019; Gaut et al., 2020; Stanovsky
et al., 2019; Savoldi et al., 2021), especially among
models trained to detect abusive language (Park
et al., 2018), we hypothesize that existing NLP
systems that incorporate pre-trained word embed-
dings or transformer-based language models will
perform differently given access to authors’ names
if those names are generally associated with a par-
ticular gender.1 To test the hypothesis that offen-
sive language identification models exhibit gender

* Work performed while at Barnard College
1 In this paper we use an author’s name assigned at birth

as a proxy for their gender. While we acknowledge the limi-
tations associated with inferring gender from an individual’s
name, in doing so we recreate real-world circumstances in

Figure 1: F1 Scores of the CBoW, BiLSTM, and BERT
models isolated by each gender. The models’ predic-
tions do not noticeably change based on the gender of
named examples.

biases, we adopt the Perturbation Sensitivity Anal-
ysis framework (Prabhakaran et al., 2019). We
perturb examples of an existing dataset by adding
historically gendered or gender-ambiguous names
to the original texts. We evaluate whether three
classes of NLP models (bag of words, BiLSTM,
and transformers) systematically change their pre-
dictions on our modified gendered examples.

Although we see statistically significant differ-
ences when comparing a bag of words model’s
and transformer model’s predictions between male
and female examples, we do not see convincingly
strong evidence that the models’ binary predictions
for offensiveness consistently change with the ad-
dition of gendered names (Figure 1). Therefore,
we compare how the model’s predicted offensive-
ness probability changes for perturbed examples.
We also explore if there are specific names for
which the predicted class probability consistently
changes. While we see some remnants of gendered

which NLP systems would make gendered associations based
upon a speaker’s or author’s name even when their gender is
not explicitly mentioned.
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Example CBoW BiLSTM BERT

▶ @USER You are missing brains? 0.741306 0.999869 0.839001
~ Vanessa tweeted @USER You are missing brains? 0.859568 0.999833 0.755025
| Matthew tweeted @USER You are missing brains? 0.859568 0.999833 0.756230
{ Oakley tweeted @USER You are missing brains? 0.859568 0.999833 0.735549

Table 1: An example of an offensive tweet from the development set and the offensiveness probability each model
(CBoW, BiLSTM, BERT) assigned to the unmodified (▶ ), female (~), male (|), and gender-neutral versions ({).

biases, our results offer encouraging evidence that
downstream models using pre-trained representa-
tions that are known to encode gendered stereo-
types (Bolukbasi et al., 2016; Garg et al., 2018;
Zhao et al., 2018) might overcome these biases.

2 Motivation & Bias Statement

As user-generated content gradually dominates on-
line spaces, offensive text has become more ubiq-
uitous (Banks, 2010; Kumar et al., 2020). Unreg-
ulated inflammatory or hateful online discourse
can have profound effects that extend beyond the
web, from negative mental health impacts for tar-
geted individuals to instigation of physical vio-
lence (Safi Samghabadi et al., 2020; Siegel, 2020).
Hence, identifying and moderating toxic dialogue
efficiently and accurately is a task that only grows
more crucial, and developing automatic methods
to detect and flag offensive language is critical.

Psychological studies spanning the past four
decades conclude that, on average, "men use of-
fensive language more than women" (although this
gap has shrunk over time), likely as a result of how
women are "socialized into subordinate roles and
a less inflammatory manner of communicating"
(Sapolsky and Kaye, 2005). Moreover, these ob-
served patterns of offensive or abusive content au-
thorship translate to online communities like Twit-
ter (Mubarak et al., 2021).

Research into fairness in NLP indicates that sys-
tems trained on large corpora of human-written
text tend to replicate existing stereotypes about
gendered behavior (Sun et al., 2019; Babaeianjelo-
dar et al., 2020). Thus, offensive language detec-
tion classifiers based on social-media data risk in-
heriting these underlying assumptions that male-
authored tweets are more likely to utilize offensive
language than text written by female individuals.

As it becomes more common for social media
platforms to rely on NLP systems to detect and
remove profane or hateful content online, it be-

comes increasingly vital that these classification
models are robust to gender biases. While previ-
ous research has considered identity-based bias
against a gendered subject in abusive language
tasks (Park et al., 2018; Prabhakaran et al., 2019)
and gender-based biases among annotations (Ex-
cell and Al Moubayed, 2021), how the perceived
gender of a speaker or author affects output model
classification remains understudied.

3 Experimental Setup

Our goal is to determine whether offensive lan-
guage identification models are prone to gender
biases. We train bag of word, BiLSTM, and
transformer-based models on the Offensive Lan-
guage Identification Dataset (OLID; Zampieri et al.,
2019a). OLID is the official dataset used in the
OffensEval shared tasks (Zampieri et al., 2019b,
2020), where tweets containing profanity, insults,
threats, hate speech, etc, are labeled as offen-
sive (Zampieri et al., 2019a). OLID contains
13,240 annotated English-language tweets (4400 of-
fensive, 8840 not offensive) and 860 test examples
(240 offensive, 620 not offensive). For model train-
ing, we split the original training set into 12,380
training and 860 dev examples.2

3.1 Gendered Test Set Creation

In order to evaluate whether the models’ predic-
tions change when the text explicitly mentions the
author of the tweet, we modify the 860 test set
examples using the following template:3

(1) Name tweeted original tweet

where original tweet is the original test example

2We provide all model implementation and hyper-
parameter tuning details in subsection 3.2.

3This template is similar to those previously used to eval-
uate natural language inference systems’ abilities to capture
different semantic phenomena (Poliak et al., 2018) and gen-
der bias in named entity recognition systems (Mehrabi et al.,
2020).
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Hyper-parameter Options Models Used

Batch Size 16, 32, 64, 128 CBoW, BiLSTM, BERT*
Num. Hidden Features 1, 3, 5, 16, 64 CBoW, BiLSTM

Learning Rate 0.1, 0.01, 0.001, 0.0001 CBoW, BiLSTM
Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 CBoW

Table 2: Permutations of hyper-parameter configurations tested, with the models that use each hyper-parameter.
*Due to machine memory constraints, only batch sizes of 16 and 32 were tested for BERT.

and Name is replaced with a name from an aggre-
gated list of 212 historically gendered and gender
ambiguous names in the United States to create a
test set of 182,320 named tweets. Table 1 provides
an example from our dataset.

Using standard practice (Vogel and Jurafsky,
2012; Bamman et al., 2014), we create a list
of traditionally gendered names using publicly
available government statistics. In particular, we
compile data from the Social Security Admin-
istration’s annual list of American baby names
from 2000-2018.4 We aggregate names with
p(gender|name) ≥ 0.9, filter out those names
not recognized as singular tokens by the BERT and
GloVe vocabularies, preventing OOV issues.5 We
select the top 100 most frequent names ascribed to
newborns assigned female or male at birth.

While current research suggests that toxic lan-
guage models may perform differentially on gen-
dered input (Park et al., 2018), work remains to
be done on how these models may misclassify
text written by authors who do not conform to
the gender binary. Therefore, we also include
six gender-neutral names (Justice, Milan, Lennon,
Oakley, Marion, and Jackie) that appear at ap-
proximately similar gender frequencies in the SSA

data (0.9 ≥ p(male|name)

p(female|name)
≥ 1.1), are recog-

nized by both pre-trained vocabularies, and were
assigned to at least 4,000 newborns over the consid-
ered time-frame. We add one male (he), one female
(she), and four gender-neutral pronouns (one, they,
someone and a person).

4Prior research has similarly extracted gendered names
from the Social Security Administration (Smith et al., 2013;
Mohammad, 2019; Garg et al., 2018; HallMaudslay et al.,
2019; Mehrabi et al., 2020; Shwartz et al., 2020)

5Filtering for names recognized by the BERT and GloVe
vocabularies when collecting the top 100 gendered names rec-
ognized by pre-trained embeddings removed 11 more female
names than male names. This might illustrate a bias against
traditionally female names in these representations.

3.2 Implementation Details

We explore classifiers based on three different
classes of neural encoders. Each model was tested
on a range of hyper-parameter configurations (Ta-
ble 2), and the best configuration was chosen based
on maximizing F1-Score on the validation set. Our
trained models achieve comparable performance
on the unnamed validation set to published results
for similar classes of models on OLID (Ramakr-
ishnan et al., 2019; Mahata et al., 2019; Zampieri
et al., 2019a; Wu et al., 2019; Pavlopoulos et al.,
2019; Aggarwal et al., 2019; Zhu et al., 2019).

Neural Bag of Words We trained a Continuous
Bag of Words model (CBoW) to build classifiers
for offensive and not offensive tweets and predict
the output class of a new tweet based on the average
vector representation of its tokens. To process the
input examples, we use the NLTK tweet tokenizer
and 100-dimensional GloVe embeddings (Penning-
ton et al., 2014) pre-trained specifically for Twitter-
sourced text.6 Our CBoW model consists of a
multi-layer perceptron (MLP) with a single hidden
layer with one feature built on top of an embedding
layer. The best performing model uses a batch size
of 16 for training and validation, a learning rate of
0.001, and a dropout rate of 0.9 for regularization.

BiLSTM encoder The second type of encoder
we consider is a Bidirectional LSTM (BiLSTM)
(Schuster and Paliwal, 1997; Hochreiter and
Schmidhuber, 1997). We process the input using
the same tweet tokenizer and Twitter-trained GloVe
embeddings as in the CBoW model. The best per-
forming BiLSTM model architecture consists of a
bidirectional LSTM layer with 128 output features
and a MLP with 64 features in the hidden layer.
For this model, weights are updated during training
with a learning rate of 0.001 in an Adam optimizer
and a training and validation batch size of 64.

6Twitter GloVe embeddings downloaded from
https://nlp.stanford.edu/projects/glove/
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CBoW BiLSTM BERT
TN FN TP FP TN FN TP FP TN FN TP FP

- 62.79 12.44 15.47 09.30 58.95 13.37 14.53 13.14 65.12 07.91 20.00 06.98
| 61.52 11.87 16.03 10.57 58.19 13.43 14.48 13.91 65.11 08.28 19.62 06.98
~ 61.92 11.93 15.97 10.17 58.47 13.48 14.42 13.62 65.35 08.55 19.36 06.75
{ 61.51 12.05 15.86 10.58 58.09 13.41 14.50 14.00 65.13 08.43 19.48 06.97

Table 3: Aggregated confusion matrices of the CBoW, BiLSTM, and BERT models evaluated on the original,
unmodified (-) test tweets and each named gender subgroup (male |, female ~, and gender neutral {). To enable
easier comparisons, we normalized counts in the confusion matrices so that each cell represents the percentages of
each type of prediction the models made across each gender.

Model

Gender
- | ~ {

CBoW 71.98 71.70 71.98 71.41

BiLSTM 66.97 66.21 66.37 66.16

BERT 81.31 80.75 80.60 80.55

Table 4: F1 scores for each model on the original un-
named (-) and male (|), female (~), and gender neutral
({) examples.

Transformers We fine-tune a HuggingFace pre-
trained BERT base-uncased model (Wolf et al.,
2020) on our offensive training set using 2 epochs,
50 warm-up steps, a weight decay of 0.01, and a
batch size of 16. We process the input examples
using the BERT base-uncased tokenizer, the same
tokenizer used when identifying OOV names.

3.3 Results

In our experiments, the models’ F1-performances7

slightly change on our examples modified with gen-
dered or gender-neutral names (Figure 1 and Ta-
ble 4). Compared to the original, unmodified test
examples, the models’ performance drops on the
named examples and it seems that BERT’s perfor-
mance is most affected by the named examples
compared to the other models. By adding the True
Positives and False Positives rates in the confusion
matrices Table 3, we notice an increase in offen-
sive predictions across all genders for CBoW, a
smaller increase for BiLSTM, and a slight decrease
in offensive predictions for BERT.8 In other words,

7We report F1-Score since both the training and test
datasets are not balanced.

8CBoW classifies 24.77% of the unnamed test examples
as offensive compared to 26.60% for male, 26.14% for female,
and 26.44% for gender neutral examples. BiLSTM classifies
27.67% of the unnamed test examples as offensive compared

t-stat p-value

CBoW 2.1615 0.0153
BiLSTM 1.5833 0.0567
BERT 2.3691 0.0089

Table 5: Result of one-sided t-test comparing each mod-
els’ predictions for male vs female authored-examples.

just by adding a name or pronoun, the Glove-based
models predict more examples as offensive and the
BERT model predict fewer examples as offensive.
However, across all models, the difference in pre-
dictions on the gendered and original examples is
not statistically significant, as measured by t-tests.

Focusing just on the named examples, the mod-
els that do not use contextualized word representa-
tions (CBoW and BiLSTM) perform better on the
female examples than the male or gender neutral
examples, while the BERT model achieves a higher
F1 score on the male examples than on the female
or gender neutral examples. Turning towards our
goal of identifying whether the models are prone
to the stereotype that men use more offensive lan-
guage than women, we notice that all models clas-
sify more male authored tweets as offensive than
female authored tweets. Specifically the CBoW,
BiLSTM, and BERT models respectively classify
0.46% (397), 0.35% (297), and 0.49% (435) more
male authored-examples as offensive than female
authored-examples.9 While one-sided10 t-tests (Ta-
ble 5) comparing the models’ predictions between

to 28.39% for male, 28.04% for female, and 28.50% for gender
neutral. BERT classifies 26.98% of the unnamed examples as
offensive compared to 26.60% for male, 26.11% for female,
and 26.45% for gender neutral examples.

9These are absolute differences between male TP + FP
rates and female TP + FP rates.

10Specifically that the models categorize more male-
authored than female-authored tweets as offensive.
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male and female authored-examples indicate that
these are statistically significant differences for
CBoW and BERT, the small differences in mag-
nitude might suggest that adding historically gen-
dered names as speakers in our examples does not
consistently or convincingly alter the models’ class
predictions for whether or not a tweet is offensive.
The statistical significance for CBoW and BERT
might be due to the large sample size in our study.

4 Further Analysis

Since our results do not conclusively support our
hypothesis that the models’ binary predictions
change for all considered models when explicitly
adding gendered names to our test examples, we
turn our attention towards exploring whether, and
to what extent, the models’ assigned probabilities
change for our perturbed dataset. We also investi-
gate whether these predicted probabilities consis-
tently change for any specific names.

4.1 Offensiveness Probability Scores

Solely investigating whether a model’s binary pre-
dictions change might mask gender biases should
the model’s predicted probabilities vary largely
without crossing the label decision boundary. To
explore whether this is the case, we compute the dif-
ference between a model’s predicted offensiveness
probability for every modified and corresponding
unmodified example. The average differences are
0.021 (σ = 0.059) for CBoW, 0.007 (σ = 0.059)
for BiLSTM, and −0.007 (σ = 0.47) for BERT.

Figure 2 plots the distribution of these differ-
ences grouped by gender for each model. These
histograms illustrate that across all three models,
for the majority of modified examples, the change
in offensiveness probability is very small.

Additionally, these histograms further confirm
our initial findings. For the CBoW model (Fig-
ure 2a), adding a gendered name seems to more
likely lead to an increase in predicted offensive
probability, and male names lead to larger increases.
For the BiLSTM model (Figure 2b), the distri-
butions of the differences for male and female
examples almost match and a large majority of
male (88.64%) and female (90.22%) examples
have an absolute difference less than 0.025%. For
the BERT model (Figure 2c), including gendered
names in the examples lead to a decrease in pre-
dicted offensive probability, with more pronounced
decreases for female names.

(a) CBoW

(b) BiLSTM

(c) BERT

Figure 2: Histograms plotting the change in offensive
class probability between named and unnamed exam-
ples, grouped by gender (m: male, f: female, n: gender-
neutral). A positive difference indicates that the model
determined the named tweet to be more offensive than
the base tweet.

These histograms demonstrates that there are
very few examples where the model’s predicted
probabilities vary largely without crossing the label
decision boundary. However, these histograms,
specifically Figure 2a and Figure 2c, might reflect
the stereotypes discussed by Sapolsky and Kaye
(2005) that men use more offensive language than
women.
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Figure 3: For each model, we plot how (average and standard deviation) the predicted offensiveness probability
changed for each name. Y-axis indicates the difference. We label the names where the average difference was
outside the typical standard deviation across the model.

4.2 Individual Name Impact

Prior work has shown that pre-trained represen-
tations might encode stereotypes about specific
names (Shwartz et al., 2020). To test if these mod-
els similarly contain biases about specific names,
we now group the difference between a model’s
predicted probability for each modified and corre-
sponding unmodified example by prepended name.

Figure 3 plots how these differences vary for
each name. The average differences in the BERT
model’s predictions consistently vary, but insignifi-
cantly. We notice just one name, Jesus, stands out
as more offensive and one pronoun, a person, is
uniquely less offensive. The mean change over all
examples prepended with Jesus in the BERT model
is 0.012, compared to an average change of -0.007
across all named examples. This finding is perhaps
attributable to how Jesus is often used in colloquial
English speech and on online platforms as a form
of exclamation (Goddard, 2015).

For the GloVe-based models, we notice that the
average and standard deviation of differences are
identical for the same set of 158 names (and pro-
nouns).11 These models’ predicted probabilities
changed more for male than female names. Of the
54 names where the models’ average probabilities
differed from that of the 158 names, 36 are male, 13
are female, and 5 are gender-neutral. CBoW’s aver-
age probability increased for 15 male, 0 female, and
2 gender-neutral names, and BiLSTM’s increased
for 21 male, 5 female, and 3 gender-neutral names.
This suggests that the GloVe-based models might

11The mean and standard deviation for these difference in
CBoW’s predictions for these names are respectively 0.025
and 0.049 and 0.005 and 0.031 for the BiLSTM.

find male names to be more offensive than female
names. However, there is little overlap between the
male names that the CBoW and BiLSTM model
usually predict as being more offensive (e.g. Aaron,
David, and Henry for CBoW and Adam, Brandon.
and Jacob for BiLSTM). For the name Robert, both
models typically predict a lower offensive prob-
ability. The greater variations in the CBoW and
BiLSTM predictions suggests that these models are
more sensitive to the presence of specific gendered
names compared to transformer-based models.

5 Conclusion

We asked whether there exists a measurable gender-
based asymmetry in models’ performances for pre-
dicting offensiveness when a tweet explicitly states
the speaker’s name. Our experimental results im-
ply that a range of typical neural models might be
robust to perceived author gender when classify-
ing tweets as offensive though they might perceive
male authored tweets to be slightly more offensive.
Our work supports recent findings that intrinsic
biases in the word embedding space may not cor-
relate to extrinsic measures of bias in downstream
applications (Goldfarb-Tarrant et al., 2021). While
these findings on gender bias in offensive classifi-
cation tasks are promising, we encourage further
research to evaluate the extent to which these re-
sults generalize across more datasets and language
phenomena as well as other social groups and inter-
sectional identities, such as speaker race, age, and
sexual orientation.
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6 Ethical Considerations

As noted in Antoniak and Mimno (2021), collect-
ing gendered names from population-derived data
has the limitation of centering the majority popu-
lation, in this case US-born, white children. More-
over, while filtering for names not recognized by
the GloVe or BERT vocabularies ensures our study
only includes names that have pre-trained represen-
tations, this filtering might perpetuate biases in our
tests since it disproportionately affected non-white
names and female names.

Researchers have called on the NLP community
to move beyond the gender binary (Larson, 2017;
Prabhakaran et al., 2019). While our study included
gender-neutral names and pronouns, we acknowl-
edge that this set is drastically smaller than that
of gendered names. We leave a deep study into
the impact of gender-neutral names or pronouns as
future work.

Using names as a proxy for gender is fraught
with potential limitations and biases, particularly
when an individual’s gender identity does not
match the gender historically associated with their
name. However, NLP systems might make gen-
dered associations based upon a speaker’s name
even when the speaker’s gender is not explicitly
mentioned. As discussed in footnote 1, we ac-
knowledge these issues and strive to parallel the
circumstances in which these systems may be de-
ployed in the real world.
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