
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 118–129
December 7-11, 2022 ©2022 Association for Computational Linguistics

Soft-Labeled Contrastive Pre-training for Function-level
Code Representation

Xiaonan Li1∗, Daya Guo2∗, Yeyun Gong2, Yun Lin3, Yelong Shen2,
Xipeng Qiu1†, Daxin Jiang2, Weizhu Chen2, Nan Duan2

1 Shanghai Key Laboratory of Intelligent Information Processing, Fudan University
1 School of Computer Science, Fudan University 2Microsoft 3National University of Singapore

1{lixn20, xpqiu}@fudan.edu.cn, 2{t-dayaguo, yegong, yeshe,
djiang, wzchen, nanduan}@microsoft.com, 3dcsliny@nus.edu.sg

Abstract

Code contrastive pre-training has recently
achieved significant progress on code-related
tasks. In this paper, we present SCodeR, a
Soft-labeled contrastive pre-training framework
with two positive sample construction methods
to learn functional-level Code Representation.
Considering the relevance between codes in a
large-scale code corpus, the soft-labeled con-
trastive pre-training can obtain fine-grained
soft-labels through an iterative adversarial man-
ner and use them to learn better code repre-
sentation. The positive sample construction is
another key for contrastive pre-training. Previ-
ous works use transformation-based methods
like variable renaming to generate semantically
equal positive codes. However, they usually re-
sult in the generated code with a highly similar
surface form, and thus mislead the model to
focus on superficial code structure instead of
code semantics. To encourage SCodeR to cap-
ture semantic information from the code, we
utilize code comments and abstract syntax sub-
trees of the code to build positive samples. We
conduct experiments on four code-related tasks
over seven datasets. Extensive experimental
results show that SCodeR achieves new state-
of-the-art performance on all of them, which
illustrates the effectiveness of the proposed pre-
training method.

1 Introduction

Function-level code representation learning aims to
learn continuous distributed vectors that represent
the semantics of code snippets (Alon et al., 2019),
which has led to dramatic empirical improvements
on a variety of code-related tasks such as code
search, clone detection, code summarization, etc.
To learn function-level code representation on unla-
beled code corpus with self-supervised objectives,
recent works (Jain et al., 2021; Bui et al., 2021;

∗Equal contribution and work is done during the intern-
ship at Microsoft Research Asia.

†Corresponding author.

Sort the input array
def bubbleSort(arr):

n = len(arr)
for i in range(n):

for j in range(0,n-i-1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Original Code

Sort the input array
def Fun(v1):

v2 = len(v1)
for v3 in range(v2):

for v4 in range(0,v2-v3-1):
if v1[v4] > v1[v4+1]:

v1[v4], v1[v4+1] = v1[v4+1], v1[v4]

Variable Renaming

conditional statement

conditional statement

Figure 1: An example of applying variable renaming.

Ding et al., 2022; Wang et al., 2022a) propose con-
trastive pre-training methods for programming lan-
guage. In their contrastive pre-training, they usu-
ally pull positive code pairs together in representa-
tion space and regard different codes as negative
pairs via pushing their representation apart. How-
ever, they ignore the potential relevance between
codes since different programs in a large code cor-
pus may have some similarities. For example, an
ascending sort program and a descending sort pro-
gram are somewhat similar since they both sort
their input in a certain order. More seriously, there
are a lot of duplications in code corpus (Lopes
et al., 2017; Allamanis, 2019), which can cause
the “false negative” problem and deteriorate the
model (Huynh et al., 2022; Chen et al., 2021b).
The other problem of current code contrastive pre-
training methods is their positive sample construc-
tion. ContraCode (Jain et al., 2021) and Corder
(Bui et al., 2021) design code transformation algo-
rithms like variable renaming and dead code inser-
tion to generate semantically equivalent programs
as positive samples, while Code-MVP (Wang et al.,
2022a) leverages code structures like abstract syn-
tax tree (AST) and control flow graphs (CFG) to
transform a program to different variants. However,
as shown in Figure 1, these methods usually result

118

in generated positive samples with highly similar
structures (e.g. double loop statements with a con-
ditional statement) to the original program. To pull
such positive pairs closer in representation space,
the model will tend to learn function-level code rep-
resentation from superficial code structure rather
than substantial code semantics. To address these
limitations, we present SCodeR, a Soft-labeled
contrastive pre-training framework with two posi-
tive sample construction methods to learn function-
level Code Representation.

The soft-labeled contrastive pre-training frame-
work can obtain relevance scores between samples
and the original program as soft-labels in an itera-
tive adversarial manner to improve code represen-
tation. Specifically, we first leverage hard-negative
samples from contrastive pre-training to fool dis-
criminators that can explore finer-grained token-
level interactions, while discriminators learn to dis-
tinguish them and predict relevance scores among
samples as soft-labels for contrastive pre-training.
Through this adversarial iteration, discriminators
can provide progressive feedback to improve code
contrastive pre-training through soft-labels.

As for positive sample construction, we propose
to utilize code comment and abstract syntax sub-
tree of the source code to construct positive samples
for SCodeR pre-training. Generally, user-written
code comments highly describe the function of a
source code like “sort the input array” in Figure
1, which provides crucial semantic information for
the model to capture code semantics. Besides the
comment, the code itself also contains rich informa-
tion. To further explore the intra-code correlation
and contextual knowledge for code contrastive pre-
training, we randomly select a piece of code via
AST like the conditional statement of Figure 1 and
its context as a positive pair. These positive pairs re-
quire the model to understand code semantics and
learn to infer the selected code based on its context
and can help the model learn representation from
code semantics.

We evaluate SCodeR on four code-related down-
stream tasks over seven datasets, including code
search, clone detection, zero-shot code-to-code
search, and markdown ordering in python note-
books. Results show that SCodeR achieves
state-of-the-art performance and ablation studies
demonstrate the effectiveness of positive sam-
ple construction and soft-labeled contrastive pre-
training. We release the codes and resources
at https://github.com/microsoft/AR2/tree/

main/SCodeR.

2 Related Works

Pre-trained Models for Programming Language.
With the great success of pre-trained models in nat-
ural language processing field (Devlin et al., 2018;
Lewis et al., 2019; Raffel et al., 2019; Brown et al.,
2020), recent works attempt to apply pre-training
techniques on programming languages to facili-
tate the development of code intelligence. Kanade
et al. (2019) pre-train CuBERT on a large-scale
Python corpus using masked language modeling
(MLM) and next sentence prediction objectives.
Feng et al. (2020) pre-train CodeBERT on code-
text pairs in six programming languages via MLM
and replaced token detection objectives to support
text-code related tasks such as code search. Graph-
CodeBERT (Guo et al., 2020) leverages data flow
as additional semantic information to enhance code
representation. To support code completion, Svy-
atkovskiy et al. (2020) and Lu et al. (2021) respec-
tively propose GPT-C and CodeGPT. Both of them
are decoder-only models and pre-trained by unidi-
rectional language modeling. Some recent works
(Ahmad et al., 2021; Wang et al., 2021; Guo et al.,
2022) explore unified pre-trained models to support
both understanding and generation tasks. PLBART
(Ahmad et al., 2021) and CodeT5 (Wang et al.,
2021) are based on the encoder-decoder framework.
PLBART uses denoising objective to pre-train the
model and CodeT5 considers the crucial token type
information from identifiers. However, these pre-
trained models usually result in poor function-level
code representation (Guo et al., 2022) due to the
anisotropy representation issue (Li et al., 2020).
In this work, we mainly investigate how to learn
function-level code semantic representations.

Contrastive Pre-training for Code Representa-
tion. To learn function-level code semantic repre-
sentation, several attempts have been made to lever-
age contrastive pre-training on programming lan-
guages. ContraCode (Jain et al., 2021) and Corder
(Bui et al., 2021) design transformation algorithms
like variable renaming and dead code insertion to
generate semantically equivalent programs as pos-
itive instances, while Ding et al. (2022) design
structure-guided code transformation algorithms
that inject real-world security bugs to build hard
negative pairs for contrastive pre-training. Instead
of using semantic-preserving program transforma-
tions, SynCoBERT (Wang et al., 2022b) and Code-

119

https://github.com/microsoft/AR2/tree/main/SCodeR
https://github.com/microsoft/AR2/tree/main/SCodeR

MVP (Wang et al., 2022a) construct the positive
pairs through the compilation process of programs
like AST and CFG. However, these works usually
generate positive samples with highly similar struc-
tures as the original program. To distinguish these
positive samples from candidates, the model might
learn code representation from code surface forms
according to hand-written patterns, instead of code
semantics. In this paper, we propose to utilize the
comment and abstract syntax sub-tree of the code
to construct positive samples and present a method
to obtain relevance scores among samples as soft-
labels for contrastive pre-training.

3 Positive Sample Construction

In this section, we describe how to construct pos-
itive pairs for SCodeR. Different from previous
works that design transformation algorithms to gen-
erate semantically equivalent but highly similar
programs, we propose to leverage comment and
abstract syntax sub-tree of the code for positive
sample construction to encourage the model to cap-
ture semantic information.

3.1 Code Comment
User-written code comments usually summarize
the functionality of the codes and provide crucial
semantic information about the source code. Tak-
ing the code in Figure 2 as an example, the com-
ment “sort the input array” highly describes the
goal of the code and can help the model to under-
stand code semantics from the natural language.
Therefore, we take source code c with the corre-
sponding comment t as positive pair (t, c). Such
positive pairs not only enable the model to under-
stand the code semantics but also align the repre-
sentation of different programming languages with
a unified natural language description as a pivot.

3.2 Abstract Syntax Sub-Tree
Besides the comment, the code itself also con-
tains rich information. To further explore the intra-
code correlation and contextual knowledge for con-
trastive pre-training, we propose a method, called
Abstract Syntax Sub-Tree Extraction (ASST), that
leverages the abstract syntax sub-tree of the source
code to construct positive code pairs. We give an
example of a Python code with its AST in Figure 2.
We first randomly select the sub-tree of the AST
like “if statement”, and then take the correspond-
ing code of the sub-tree and the remaining code as
positive code pairs. The procedure of extraction is

Sort the input array
def bubbleSort(arr):

n = len(arr)
for i in range(n):

for j in range(0,n-i-1):
if arr[j] > arr[j+1]:

arr[j], arr[j+1] = arr[j+1], arr[j]

Original Code

AST Parser

module

function_definition

def bubbleSort parameters : block

(arr)

assignment_statement for_statement

for_statement

if_statement

Non-terminal symbols (nodes)

Terminal symbols (leaves)

for i …in

for j in …

if binary_expression

…
assignment_statement

…
:

…

Parent-to-child relation

Figure 2: An ASST example of bubble sort.

illustrated in Algorithm 1. Specifically, we first pre-
define a set N of node types whose sub-trees can be
used to construct positive pairs. The set mainly con-
sists of statement-level types like “for_statement”
that usually contain a complete and functional code
snippet. We then start from a randomly selected
leaf node (line 1-2) and find an eligible node in the
pre-defined set N along the direction of the root
node (line 3-10). Finally, we take the correspond-
ing code s (i.e. leaf children) of the eligible node
and the remaining code context s̃ as a positive code
pairs (s, s̃) for contrastive pre-training. To avoid
extracting those code spans that are too short or
meaningless, we set a minimum length lmin for the
extracted code spans s.

While transformation-based methods generate
programs with similar structures, the structures of
positive code pairs generated by ASST are different
since they belong to different parts of a program.
Meanwhile, they are logically relevant because they
compose a program of full functionality. To esti-
mate which code is complementary to a given code
context in contrastive pre-training, the model needs
to understand code semantics and learn to reason
based on its context, which encourages the model
to understand code semantics.

There are similar mechanisms to learn text rep-
resentation such as Inversed Cloze Task (ICT) (Lee
et al., 2019) that takes a random span of natural
language tokens and their context as a positive pair.
However, ICT cannot be directly applied to code be-
cause code has an explicit structure. If we randomly
select code spans on token-level, the selected code

120

Algorithm 1 Abstract Syntax Sub-Tree Extraction
Require: The AST T of a code c and pre-defined selectable

node types N .
1: Collect leaf children C of nodes whose types are in N
2: Randomly sample a node a from C
3: while True do
4: s← the corresponding code of a
5: if length(s) ≥ lmin and a ∈ N then
6: return s
7: else
8: a← the parent node of a
9: end if

10: end while

spans might be ungrammatical such as “for i”,
which will mislead the model to focus on structural
matching rather than semantic matching.

4 Soft-Labeled Contrastive Pre-training

Previous code contrastive pre-training methods usu-
ally take different programs in a code corpus as
negative pairs and push them apart in the represen-
tation space. However, different programs in an
unlabeled code corpus may have some similarities.
Taking a program that sorts the input in ascending
order as an example, even though another “descend-
ingly sort” program is not semantically equal with
it, they both sort their input in a certain order and
thus are somewhat similar. Another problem is the
“false negative” issue (Huynh et al., 2022; Chen
et al., 2021b) due to the duplication in the code
corpus (Lopes et al., 2017; Allamanis, 2019). To
alleviate these problems, we propose soft-labeled
contrastive pre-training framework that uses rel-
evance scores between different samples as soft-
labels to learn function-level code representation.

4.1 Overview
The soft-labeled contrastive pre-training framework
involves three components: (1) A dual-encoder
Gθ that aims to learn function-level code repre-
sentation (2) Two discriminators Dϕ and Dψ that
calculate relevance scores between two inputs for
text-code and code-code pairs, respectively. These
components compute the similarity between two
samples (x, y) as follows:

Gθ(x, y) = Eθ(x)
TEθ(y) (1)

Dϕ(x, y) = wϕ
TEϕ ([x; y]) (2)

Dψ(x, y) = wψ
TEψ ([x; y]) (3)

where Eθ, Eϕ and Eψ are multi-layer Transformer
(Vaswani et al., 2017) encoders with mean-pooling.
wϕ (wψ) is a linear layer to obtain similarity score

Algorithm 2 Soft-Labeled contrastive pre-training
Require: A dual-encoder Gθ , two discriminators Dϕ(ψ), and

a set X of positive pairs with a unlabeled code corpus C.
1: Initialize the dual-encoder and discriminators.
2: Train the warm-up dual-encoder.
3: Get top-K negative codes Cxkhard from C for each positive

pair (xk, x+
k) ∈ X using the dual-encoder.

4: for i in 1 · · · I do
5: for Discriminators training step do
6: Sample hard negative codes from C

xk
hard.

7: Update parameters of discriminators Dϕ and Dψ .
8: end for
9: for Dual-encoder training step do

10: Sample hard negative codes from C
xk
hard and obtain

relevance scores from discriminators.
11: Update parameters of the dual-encoder Gθ .
12: end for
13: Refresh Top-K negative codes Cxkhard using new Gθ .
14: end for

and [·; ·] indicates the concatenation operator. If
the input (x, y) is a text-code pair, we use Dϕ to
calculate the similarity, otherwise we use Dψ.

While the dual-encoder encodes samples sepa-
rately, discriminators take the concatenation of two
samples as the input and fully explore finer-grained
token-level interactions through the self-attention
mechanism, which can predict more accurate rele-
vance scores between two samples. Therefore, we
propose to utilize relevance scores from discrimi-
nators as soft-labels to help the encoder Eθ learn
better code representation.

We show the detailed illustration of our proposed
soft-labeled contrastive pre-training in Algorithm 2.
Specifically, we first initialize all encoders with
a pre-trained model like UniXcoder (Guo et al.,
2022) and follow Li et al. (2022) to train a warm-up
dual-encoder using a simple strategy where nega-
tive samples come from other positive pairs in the
same batch Xb (line 1-2 of Algorithm 2). The loss
is calculated as follows,

pθ(x
+|x,Xb) =

eGθ(x,x
+)

∑
x′∈Xb e

Gθ(x,x′)
(4)

Lθwarm = − log pθ(x
+|x,Xb), (5)

where (x, x+) ∈ X is a positive pair as described
by Section 3.

We then iteratively alternate two training proce-
dures: (1) The dual-encoder is used to obtain hard-
negative codes to train the discriminators (line 5-8).
(2) The optimized discriminators predict relevance
scores among samples as soft-labels to improve
the dual-encoder (line 9-12). Through this itera-
tive training, the dual-encoder gradually produces

121

harder negative samples to train better discrimina-
tors, whereas the discriminators provide better pro-
gressive feedback to improve the dual-encoder. The
details about training procedures for the discrimi-
nators and dual-encoder will be described next.

4.2 Discriminators Training
Given a text x from positive text-code pairs (x, x+),
the discriminator Dϕ is optimized by maximizing
the log likelihood of selecting positive code x+

from candidates X as follows,

pϕ(x
+|x,X) = eDϕ(x,x

+)

∑
x′∈X eDϕ(x,x

′)
(6)

Lϕ = −logpϕ(x
+|x,X), (7)

where X is the set of negative codes X− with a
positive code x+. If x is a code from positive
code-code pairs, the calculation of pψ and Lψ are
analogous to pϕ and Lϕ, respectively.

To better train discriminators, we take those hard-
negative examples that are not positive samples but
closed to the original example x in the vector space
as the negative candidates X−. In practice, we first
get the top-K code samples that are closest to x
using Gθ as the distance function and randomly
sample examples from them to obtain a subset X−.

4.3 Dual-Encoder Training
After training discriminators, we utilize relevance
scores predicted by discriminators as soft-labels
and follow Zhang et al. (2021) to use adversarial
and distillation losses to optimize the dual-encoder.

Adversarial loss:

Lθadv = −
∑

x−∈X−
w(x−) ∗ log pθ(x−|x,X−) (8)

where w(x−) is − log pϕ(x
+|x, {x+, x−}) if x is a

text otherwise w is − log pψ(x
+|x, {x+, x−}). We

apply the same approach to obtain hard-negative
candidates X− as described in Section 4.2.

When optimizing Gθ, w in Equation 8 is a con-
stant and adjusts weight for each negative exam-
ple. When − log pϕ(ψ)(x

+|x, {x+, x−}) is small,
i.e. discriminators predict that x and x− are se-
mantically relevant, w will be a high weight and
force Gθ to draw the representation of x and x−

closer among X−. Since we optimize the dual-
encoder on negative codes under different weight
w, the representation of negative codes with high
relevance score will be closer to x, and those with
low relevance score will be pushed away.

Distillation loss:

Lθdistill = H(pϕ(ψ)(·|x,X), pθ(·|x,X)) (9)

We also use a distillation loss function (Hinton
et al., 2015) to encourage the dual-encoder to fit
the probability distribution of discriminators over
{x+} ∪ X− using KL divergence loss H . Through
Lθdistill, we can inject discriminators’ knowledge
into the dual-encoder by soft-labels pϕ(ψ).

Training Objective of Dual-Encoder The over-
all loss function of the dual-encoder is the inte-
gration of adversarial loss and distillation loss as
follows, where λ is a pre-defined hyper-parameter.

Lθ = λ ∗ Lθadv + (1− λ) ∗ Lθdistill (10)

Through Lθ, we can provide discriminators’ pro-
gressive feedback to the dual-encoder through soft-
labels. After this adversarial iteration, we will use
Eθ to serve for downstream tasks.

5 Experiment

5.1 Model Comparison
We compare SCodeR with various state-of-the-
art pre-trained models. RoBERTa (Liu et al.,
2019) is pre-trained on text corpus by masked lan-
guage model (MLM). CodeBERT (Feng et al.,
2020) is pre-trained on large scale code corpus
with MLM and replaced token detection. Graph-
CodeBERT (Guo et al., 2020) is based on Code-
BERT and integrates the data flow information to
enhance code representation. PLBART (Ahmad
et al., 2021) is adapted from the BART (Lewis et al.,
2019) architecture and pre-trained using denoising
objective on Java, Python and stackoverflow cor-
pus. CodeT5 (Wang et al., 2021) is based on the
T5 (Raffel et al., 2020) architecture, considering
the identifier token information and applying multi-
task learning. UniXcoder (Guo et al., 2022) is
adapted from the UniLM (Dong et al., 2019) archi-
tecture, pretrained by different tasks (understand-
ing and generation) on unified cross-modal data
(code, AST and text). We also compare SCodeR
with those code pre-trained models that utilize con-
trastive pre-training. SynCoBERT (Wang et al.,
2022b) and Code-MVP (Wang et al., 2022a) con-
struct positive pairs through multiple views of code
like AST and CFG. Corder (Bui et al., 2021)
and DISCO (Ding et al., 2022) construct positive
code pairs from semantic-preserving transforma-
tions, and the latter additionally uses bug-injected

122

Dataset CSN AdvTest CosQA

Lang Ruby Javascript Go Python Java PHP Average Python Python

CodeBERT 67.9 62.0 88.2 67.2 67.6 62.8 69.3 27.2 64.7
GraphCodeBERT 70.3 64.4 89.7 69.2 69.1 64.9 71.3 35.2 67.5
SyncoBERT 72.2 67.7 91.3 72.4 72.3 67.8 74.0 38.1 -
CodeRetriever 75.3 69.5 91.6 73.3 74.0 68.2 75.3 43.0 69.6
Code-MVP - - - - - - - 40.4 72.1
UniXcoder 74.0 68.4 91.5 72.0 72.6 67.6 74.4 41.3 70.1
SCodeR 77.5 72.0 92.7 74.2 74.8 69.2 76.7 45.5 74.5

Table 1: The comparison on code search task. The results of compared models are from their original papers.

codes as hard negatives. CodeRetriever (Li et al.,
2022) builds code-code pairs by corresponding
documents and function name automatically. For
fair comparison, we use the same model architec-
ture, pre-training corpus, and downstream hyper-
parameters as previous works (Li et al., 2022; Guo
et al., 2022). To accelerate the training process,
we initialize dual-encoder and discriminators with
the released parameters of UniXcoder (Guo et al.,
2022). More details about pre-training and fine-
tuning can be found in the Appendix A and B.

5.2 Natural Language Code Search

Given a natural language query as the input, code
search aims to retrieve the most semantically rele-
vant code from a collection of code candidates. We
conduct experiments on CSN (Guo et al., 2020),
AdvTest (Lu et al., 2021) and CosQA (Huang et al.,
2021) to evaluate SCodeR. CSN contains six pro-
gramming languages, including Ruby, Javascript,
Python, Java, PHP and Go. The dataset is con-
structed from CodeSearchNet Dataset (Husain
et al., 2019) and noisy queries with low quality are
filtered. AdvTest normalizes the function name and
variable name of python code and thus is more chal-
lenging. The queries of CosQA are from Microsoft
Bing search engine, which makes it closer to real-
world code search scenario. Following previous
works (Feng et al., 2020; Guo et al., 2020, 2022),
we adopt Mean Reciprocal Rank (MRR) (Hull,
1999) as the evaluation metric.

The results are shown in Table 1. We can see
that SCodeR outperforms previous code pre-trained
models and achieves the new state-of-the-art per-
formance on all datasets. Specifically, SCodeR
outperforms UniXcoder by 2.3 points on the CSN
dataset, and improves over state-of-the-art models
about 2.5 points on AdvTest and CosQA datasets,
which demonstrates the effectiveness of SCodeR.

POJ-104 BigCloneBench

MAP@R Recall Precision F1-score
RoBERTa 76.67 95.1 87.8 91.3
CodeBERT 82.67 94.7 93.4 94.1
GraphCodeBERT 85.16 94.8 95.2 95.0
SyncoBERT 88.24 - - -
CodeRetriever 88.85 - - -
Corder 84.10 - - -
DISCO 82.77 94.6 94.2 94.4
PLBART 86.27 94.8 92.5 93.6
CodeT5-base 88.65 94.8 94.7 95.0
UniXcoder 90.52 92.9 97.6 95.2
SCodeR 92.45 96.2 94.5 95.3

Table 2: Performance on code clone detection. The re-
sults of compared models are from their original papers.

5.3 Code Clone Detection

Code clone detection aims to identify the semantic
similarity between two codes. We consider POJ-
104 (Mou et al., 2016) and BigCloneBench (Sva-
jlenko et al., 2014a) to evaluate SCodeR. POJ-
104 dataset (C/C++) consists of codes from on-
line judge (OJ) system. It aims to find the seman-
tically similar codes given a code as query and
evaluates by Mean Average Precision (MAP). Big-
CloneBench dataset (Java) is to judge whether two
codes are similar and evaluates by Precision, Re-
call, and F1-score. We show the results in Table 2.

Compared with previous pre-trained models,
SCodeR achieves the overall best performance on
both datasets. On POJ-104 dataset, SCodeR sur-
passes all other methods. Specifically, SCodeR out-
performs UniXcoder by 1.93 points. Although the
pre-training corpus does not cover C/C++ program-
ming languages, the superior performance reflects
that SCodeR learns better general code knowl-
edge. On the BigCloneBench dataset, SCodeR also
achieves comparable performance. These results
show that SCodeR learns better function-level code
representation for code clone detection.

123

Query PL Ruby Python Java Overall
Target PL Ruby Python Java Ruby Python Java Ruby Python Java

CodeBERT 13.55 3.18 0.71 3.12 14.39 0.96 0.55 0.42 7.62 4.94
GraphCodeBERT 17.01 9.29 6.38 5.01 19.34 6.92 1.77 3.50 13.31 9.17
PLBART 18.60 10.76 1.90 8.27 19.55 1.98 1.47 1.27 10.41 8.25
CodeT5-base 18.22 10.02 1.81 8.74 17.83 1.58 1.13 0.81 10.18 7.81
UniXcoder 29.05 26.36 15.16 23.96 30.15 15.07 13.61 14.53 16.12 20.45
SCodeR 33.87 30.25 17.10 26.48 33.02 16.95 16.5 19.06 18.87 23.57

Table 3: The comparison on zero-shot code-to-code search. Baselines’ results are reported by Guo et al. (2022).

Model Kendall’s Tau

CodeBERT (Feng et al., 2020) 81.9
GraphCodeBERT (Guo et al., 2020) 84.7
PLBART (Ahmad et al., 2021) 84.7
CodeT5 (Wang et al., 2021) 84.7
UniXcoder (Guo et al., 2022) 85.9
SCodeR 86.6

Table 4: Experiment results on markdown ordering in
python notebooks.

5.4 Zero-Shot Code-to-Code Search
We also evaluate SCodeR in zero-shot code-to-
code search. Given a code snippet as query, the
task aims to find semantically similar codes from
a collection of code candidates in zero-shot set-
ting. Since the annotation of code-to-code search is
labor-intensive and costly (Svajlenko et al., 2014b;
Li et al., 2022), the zero-shot performance can in-
dicate the model’s utility in real-world scenario,
where a lot of programming languages do not have
an annotated dataset for code-to-code search. We
follow Guo et al. (2022) to conduct the experiment
on CodeNet (Puri et al., 2021) and evaluate models
using MAP score. The results are listed in Table 3.
The first and the second row correspond to query
and target programming languages.

We can see that SCodeR outperforms all other
compared models and improves over the state-of-
the-art model, i.e. UniXcoder, by 3.12 average
absolute points. Meanwhile, SCodeR has a consis-
tent improvement on the cross-PL setting, which
can help users to translate programs from one PL to
another via retrieving semantically relevant codes.

5.5 Markdown Ordering in Python Notebooks
This task is to reconstruct the order of markdown
cells in a given notebook according to the ordered
code cells. We conduct experiments on the dataset
provided by Kaggle1 and use the official evaluation
metric, Kendall’s tau (τ). It is computed as 1 −
2 ∗ N/

(
n
r

)
where N is the number of pairs in the

1https://www.kaggle.com/competitions/AI4Code/overview

predicted sequence with incorrect relative order
and n is the sequence length.

We take the normalized markdown cell’s posi-
tion in a given notebook as labels for each mark-
down cell (0∼1), and solve this task as a regres-
sion task. To test performance of function-level
code representation, we use pre-trained models
to encode each cell to function-level representa-
tion as features. We use a randomly initialized
Transformer that takes extracted features of cells
in the python notebook to predict position of each
cell. Note that parameters of pre-trained models
are fixed in the fine-tuning procedure, and thus the
performance of this task depends on function-level
feature extracted from pre-trained models.

We show the results in Table 4. SCodeR out-
performs other pre-trained models and achieves
0.5 points higher than UniXcoder. This indicates
that SCodeR learns better representation for both
code and natural language comments, and can help
better understand the fine-grained relationship of
codes and comments in the python notebook.

5.6 Analysis

Ablation Study To evaluate the effect of our pos-
itive sample construction methods and soft-labeled
contrastive pre-training framework, we conduct ab-
lation study on the CSN dataset and take the pre-
trained model with no enhancement as the baseline
(i.e. UniXcoder). At first, we individually compare
the proposed ASST with the transformation-based
positive sample construction method (Jain et al.,
2020; Bui et al., 2021). Notice that previous works
do not apply their transformation-based methods
on all six programming languages covered by our
pre-training corpus. For fair comparison and keep-
ing the pre-training corpus consistent, we follow Lu
et al. (2022) to implement the widely used trans-
formations including variable renaming and dead
code insertion on six programming languages by
ourselves. Then, we add the remaining modules of
SCodeR to evaluate their performance. The results

124

Methods Ruby Javascript Go Python Java Php Overall

Baseline 74.0 68.4 91.5 72.0 72.6 67.6 74.4
Baseline + Code Transformation 74.5 68.7 91.9 72.2 72.6 67.7 74.6
Baseline + ASST 76.1 70.1 92.1 73.0 73.3 68.1 75.4
Baseline + ASST + Code Comment 76.2 71.2 92.2 73.4 73.7 68.5 75.9
Baseline + ASST + Code Comment + Soft-Labled 77.5 72.0 92.7 74.2 74.9 69.2 76.8

Table 5: Ablation study on natural language code search.

are shown in Table 5.
Compared with transformation-based methods,

we can see that our positive sample construction
(ASST) achieves better performance. Meanwhile,
positive pairs from ASST can bring significant im-
provement over the baseline, which reflects its ef-
fectiveness. After using the text-code pairs, the per-
formance improves over 0.5 points, which shows
that code comments provide rich semantic informa-
tion to help model learn better code representation.
When adding soft-labeled contrastive pre-training,
the model performance increases by 0.9 points,
which demonstrates that applying relevance among
samples as soft-labels for contrastive learning can
further improve code representation.

Ruby Python Java Overall

SCodeR 33.87 33.02 18.87 28.6
SCodeRT 32.97 30.78 18.01 27.2
SCodeRL 33.22 31.31 18.23 27.6

Table 6: Experiment results of different strategies
of code splitting on zero-shot code-to-code search.
SCodeRT and SCodeRL use token-level and line-level
ICT to replace ASST.

Effect of AST-based Splitting We conduct ex-
periments on zero-shot code-to-code search to an-
alyze the effect of AST-based splitting strategy of
ASST by comparing ASST with two variants of
splitting strategy. The first strategy is token-level
ICT that takes a random span of code tokens and
their context as positive pairs. The second strategy
is line-level ICT that considers random consecutive
code lines and the remaining lines as positive pairs.
Compared with our AST-based splitting method,
these two splitting strategies will cause ungram-
matical codes and mislead the model to focus on
structural matching rather than semantic matching.
The results are shown in Table 6 and we can see
that the two variants of splitting strategy lead to
worse performance, which shows the effectiveness
of our AST-based splitting method.

Comment : Compute Mean Value

Code id Code Content

Code+
def mean(x):
result = sum(x)/len(x)
return result

0.5284

Code1
− def sort(inp):

inp.sort(reversed=True)
0.0003

Code2
−

def average(inp):
total = 0
for i in inp:
total += i

return total/len(inp)

0.4713

Soft Label

Figure 3: Case study on the discriminator. The soft-
label is the relevance scores between the comment and
codes from the discriminator, pϕ(·|x,X).

Case Study We give a case study in Figure 3 to
show the importance of soft-labels for contrastive
pre-training. The figure includes one paired code
and two other codes with soft-labels provided by
the discriminators. We can see that the soft-label
of negative Code−1 is close to 0 since the code is
unrelated with the comment and the discriminators
can predict correct relevance score between them
for contrastive pre-training. Code−2 is a false nega-
tive that has the same functionality as Code+ and
should be assigned similar weights when we ap-
ply contrastive pre-training. As we can see in the
figure, the discriminator can understand code se-
mantics and provide similar soft-labels (i.e 0.5284
vs 0.4713) about Code+ and Code−2 for contrastive
pre-training, which can alleviate the influence of
false negative issue and learn better code represen-
tation through soft-labels.

6 Conclusion

In this paper, we present SCodeR to learn function-
level code representation with soft-labeled con-
trastive pre-training. To alleviate the “false neg-
ative” issue in code corpus, we propose a soft-
labeled contrastive pre-training framework that
takes relevance scores among samples as soft-
labels for contrastive pre-training in an iterative

125

adversarial manner. Besides, we propose to utilize
code comment and abstract syntax sub-tree of the
source code to build positive samples that can fa-
cilitate the model to capture semantic information
from the source code. Experimental results show
that SCodeR achieves state-of-the-art performance
on four code-related tasks over seven datasets. Fur-
ther ablation studies show the effectiveness of our
soft-labeled contrastive pre-training framework and
positive sample construction methods.

Limitations

There are two limitations of this work: 1) In the ad-
versarial iteration, we introduce discriminators to
provide soft-labels for the training of dual-encoder,
which increases GPU memory occupation. To
solve it, we can obtain these soft-labels offline,
which may complicate the pipeline of data pro-
cessing. 2) We only use UniXcoder as the back-
bone model in the experiments due to the compu-
tation resources limitation. We leave pre-training
based on other code pre-trained models like Code-
BERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2020) and Codex (Chen et al., 2021a) as
future work.

Acknowledgements

This work was supported by the National Key
Research and Development Program of China
(No.2020AAA0106700) and National Natural Sci-
ence Foundation of China (No.62022027).

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668.

Miltiadis Allamanis. 2019. The adverse effects of code
duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, On-
ward! 2019, Athens, Greece, October 23-24, 2019,
pages 143–153. ACM.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1–29.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-
supervised contrastive learning for code retrieval and
summarization via semantic-preserving transforma-
tions. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 511–521.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Tsai-Shien Chen, Wei-Chih Hung, Hung-Yu Tseng,
Shao-Yi Chien, and Ming-Hsuan Yang. 2021b. Incre-
mental false negative detection for contrastive learn-
ing. CoRR, abs/2106.03719.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan-
dro Morari, Baishakhi Ray, and Saikat Chakraborty.
2022. Towards learning (dis)-similarity of source
code from program contrasts. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6300–6312.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
13042–13054.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

126

https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3359591.3359735
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2106.03719
http://arxiv.org/abs/2106.03719
http://arxiv.org/abs/2106.03719
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 7212–7225.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
In International Conference on Learning Representa-
tions.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqa: 20,000+ web queries for code
search and question answering. arXiv preprint
arXiv:2105.13239.

David A. Hull. 1999. Xerox TREC-8 question answer-
ing track report. In Proceedings of The Eighth Text
REtrieval Conference, TREC 1999, Gaithersburg,
Maryland, USA, November 17-19, 1999, volume 500-
246 of NIST Special Publication. National Institute
of Standards and Technology (NIST).

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436.

Tri Huynh, Simon Kornblith, Matthew R. Walter,
Michael Maire, and Maryam Khademi. 2022. Boost-
ing contrastive self-supervised learning with false
negative cancellation. In IEEE/CVF Winter Con-
ference on Applications of Computer Vision, WACV
2022, Waikoloa, HI, USA, January 3-8, 2022, pages
986–996. IEEE.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph Gonzalez, and Ion Stoica. 2021. Contrastive
code representation learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5954–5971.

Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel,
Joseph E. Gonzalez, and Ion Stoica. 2020. Con-
trastive code representation learning. CoRR,
abs/2007.04973.

Aditya Kanade, Petros Maniatis, Gogul Balakrish-
nan, and Kensen Shi. 2019. Pre-trained contex-
tual embedding of source code. arXiv preprint
arXiv:2001.00059.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In ACL, pages 6086–
6096. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130.

Xiaonan Li, Yeyun Gong, Yelong Shen, Xipeng Qiu,
Hang Zhang, Bolun Yao, Weizhen Qi, Daxin Jiang,
Weizhu Chen, and Nan Duan. 2022. Coderetriever:
Unimodal and bimodal contrastive learning. CoRR,
abs/2201.10866.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaib-
hav Saini, Di Yang, Jakub Zitny, Hitesh Sajnani,
and Jan Vitek. 2017. Déjàvu: a map of code du-
plicates on github. Proc. ACM Program. Lang.,
1(OOPSLA):84:1–84:28.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-
won Hwang, and Alexey Svyatkovskiy. 2022. Reacc:
A retrieval-augmented code completion framework.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 6227–6240. Association for Com-
putational Linguistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial
Intelligence, February 12-17, 2016, Phoenix, Ari-
zona, USA, pages 1287–1293. AAAI Press.

Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang,
Giacomo Domeniconi, Vladimir Zolotov, Julian
Dolby, Jie Chen, Mihir R. Choudhury, Lindsey
Decker, Veronika Thost, Luca Buratti, Saurabh Pujar,
and Ulrich Finkler. 2021. Project codenet: A large-
scale AI for code dataset for learning a diversity of
coding tasks. CoRR, abs/2105.12655.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,

127

http://arxiv.org/abs/1503.02531
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
http://trec.nist.gov/pubs/trec8/papers/xerox-QA.pdf
https://doi.org/10.1109/WACV51458.2022.00106
https://doi.org/10.1109/WACV51458.2022.00106
https://doi.org/10.1109/WACV51458.2022.00106
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/2007.04973
http://arxiv.org/abs/2201.10866
http://arxiv.org/abs/2201.10866
https://doi.org/10.1145/3133908
https://doi.org/10.1145/3133908
https://aclanthology.org/2022.acl-long.431
https://aclanthology.org/2022.acl-long.431
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655
http://arxiv.org/abs/2105.12655

Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,
Chanchal Kumar Roy, and Mohammad Mamun Mia.
2014a. Towards a big data curated benchmark of
inter-project code clones. In 30th IEEE International
Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3,
2014, pages 476–480. IEEE Computer Society.

Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo,
Chanchal Kumar Roy, and Mohammad Mamun Mia.
2014b. Towards a big data curated benchmark of
inter-project code clones. In 30th IEEE International
Conference on Software Maintenance and Evolution,
Victoria, BC, Canada, September 29 - October 3,
2014, pages 476–480. IEEE Computer Society.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. arXiv preprint
arXiv:2005.08025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022a.
Code-mvp: Learning to represent source code from
multiple views with contrastive pre-training. arXiv
preprint arXiv:2205.02029.

Xin Wang, Fei Mi Yasheng Wang, Pingyi Zhou, Yao
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang.
2022b. Syncobert: Syntax-guided multi-modal con-
trastive pre-training for code representation.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Hang Zhang, Yeyun Gong, Yelong Shen, Jiancheng
Lv, Nan Duan, and Weizhu Chen. 2021. Adversar-
ial retriever-ranker for dense text retrieval. CoRR,
abs/2110.03611.

128

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1109/ICSME.2014.77
http://arxiv.org/abs/2110.03611
http://arxiv.org/abs/2110.03611

A Pre-training Settings

For fair comparison, we adopt the same model
architecture and the same pre-training corpus as
previous works (Feng et al., 2020; Guo et al.,
2020). The used corpus is CodeSerachNet (Hu-
sain et al., 2019), which includes 2.3M functions
paired with documents in six programming lan-
guages. We leverage tree-sitter2 to get the AST
information for ASST. The node set N for ASST
includes: “for_statement”, “while_statement”,
“if_statement”, “with_statement”, “try_statement”,
“assignment_statement”, etc. We also consider
the “function_call” node if it is not under an in-
divisible node like “assignment_statement”. The
dual-encoder consists of 12 layers transformer with
768 hidden dimensional hidden states and 12 atten-
tion heads. The architecture of discriminators is
the same as dual-encoder. To accelerate the train-
ing process, we adopt the released parameters of
UniXcoder (Guo et al., 2022) to initialize the dual-
encoder and discriminators. ScodeR is trained on 8
Nvidia Tesla A100 with 40GB memory and costs
about 37 hours. We show the pre-training hyper-
parameters in Table 7.

Hyper-Parameters Dual-encoder Discriminators

Initialization UniXcoder UniXcoder
Optimizer AdamW AdamW
Scheduler Linear Linear
Warmup proportion 0.1 0.1
Negative size 7 7
Batch size 64 64
Learning rate 5e-6 1e-5
Max step 24000 16000
Iterations 4 4
Loss Weight λ 0.2 -

Table 7: The hyper-parameters of pre-training.

B Fine-tuning Settings

B.1 Natural Language Code Search
Given a natural language query as the input, code
search aims to retrieve the most semantically rele-
vant code from a collection of code candidates. We
conduct experiments on CSN (Guo et al., 2020),
AdvTest (Lu et al., 2021) and CosQA (Huang et al.,
2021) to evaluate SCodeR.

On CSN, we follow Li et al. (2022) to set the
batch size as 128, learning rate as 2e-5, and max
sequence length of PL and NL as 256 and 128. We
finetune the model for 10 epochs using AdamW

2https://github.com/tree-sitter/tree-sitter

optimzier and select the best checkpoint based on
the development set.

On AdvTest dataset, we finetune the model for 2
epochs and keep other hyper-parameters same as
CSN dataset.

On CosQA dataset, we use the same hyper-
parameters as CSN dataset.

B.2 Code Clone Detection
Code clone detection aims to identify the semantic
similarity between two codes. We consider POJ-
104 (Mou et al., 2016) and BigCloneBench (Sva-
jlenko et al., 2014a) to evaluate SCodeR.

On POJ-104 dataset, we follow Guo et al. (2022)
to set the batch size as 8, the learning rate as 2e-5,
and the max sequence length as 400. We finetune
the model using AdamW optimzier for 2 epochs.

On BigCloneBench dataset, we follow Guo et al.
(2022) to set the batch size as 16, learning rate as
5er-5 and the max sequence length as 512. We use
AdamW optimizer to fine-tune the model and select
the best checkpoint based on the development set.

B.3 Markdown Ordering in Python
Notebooks

This task is to reconstruct the order of markdown
cells in a given notebook according to the ordered
code cells. We conduct experiments on the dataset
provided by Kaggle. we use pre-trained models to
encode each cell to function-level representation
as features and set the max sequence length of
each cell as 128. We use a randomly initialized
Transformer that takes extracted features of cells in
the python notebook to predict position of each cell.
We set this Transformer’s layers, hidden size, and
attention heads as 6, 768, and 12, respectively. For
training it, we set the batch size as 128, learning
rate as 2e-5, the max number of cells as 256, and
the optimizer as AdamW.

129

