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Abstract
Large language models appear to learn facts
from the large text corpora they are trained
on. Such facts are encoded implicitly within
their many parameters, making it difficult
to verify or manipulate what knowledge has
been learned. Language models have recently
been extended to multilingual language models
(MLLMs), enabling knowledge to be learned
across hundreds of languages. Meanwhile,
knowledge graphs contain facts in an explicit
triple format, which require careful and costly
curation and are only available in a few high-
resource languages, restricting their research
and application. To address these issues, we
propose to enhance MLLMs with knowledge
from multilingual knowledge graphs (MLKGs)
so as to tackle language and knowledge graph
tasks across many languages, including low-
resource ones. Specifically, we introduce a
lightweight adapter set to enhance MLLMs
with cross-lingual entity alignment and facts
from MLKGs for many languages. Exper-
iments on common benchmarks show that
such enhancement benefits both MLLMs and
MLKGs, achieving: (1) comparable or im-
proved performance for knowledge graph com-
pletion and entity alignment relative to base-
lines, especially for low-resource languages
(for which knowledge graphs are unavailable);
and (2) improved MLLM performance on lan-
guage understanding tasks that require multilin-
gual factual knowledge; all while maintaining
performance on other general language tasks.1

1 Introduction

Knowledge graphs serve as a source of explicit fac-
tual information for various NLP tasks. However,
language models (Devlin et al., 2019; Brown et al.,
2020), which capture implicit knowledge from vast
text corpora, are already being used in knowledge-
intensive tasks. Recently, language models have

1Our code, models, and data (e.g., integration corpus and
extended datasets) are available at https://github.com/yifan-
h/Multilingual_Space.
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Figure 1: Combining MLLMs and MLKGs benefits both:
MLKGs suffer from incompleteness and are limited to few
languages, which MLLMs can supplement. MLLMs lack
entity alignment and firm facts, which MLKGs can provide.

been successfully extended to multilingual lan-
guage models (MLLMs) that integrate information
sourced across hundreds of languages (Devlin et al.,
2019; Conneau and Lample, 2019; Conneau et al.,
2020). However, as with most neural networks, the
information is encoded in a diffused and opaque
manner that is difficult to interpret, verify or uti-
lize (AlKhamissi et al., 2022).

Meanwhile, multilingual knowledge graphs
(MLKGs) require careful curation of explicit facts
and annotation of entities that occur in languages
(cross-lingual entity alignment), making knowl-
edge graphs expensive and time-consuming to ex-
tend to new languages, restricting knowledge graph
research to a few high-resource languages. Fur-
ther, open-source MLKGs such as WordNet (Bond
and Foster, 2013) and Wikidata (Vrandečić and
Krötzsch, 2014) suffer from incompleteness as
many true facts (or triples) and entity alignments
are missing (Chen et al., 2017, 2020).

In this work, we propose to overcome the above
limitations of each knowledge source by integrat-
ing MLKGs into MLLMs (as shown in Figure 1),
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to enable (i) the transfer of MLKG knowledge
from high-resource languages to low-resource lan-
guages; and (ii) explicit knowledge of MLKGs
to supplement MLLMs for knowledge-intensive
language tasks, one of the key challenges in
MLLMs (AlKhamissi et al., 2022).

While this idea seems intuitive, there is no
easy way to incorporate the explicit knowledge of
MLKGs into the parametrically stored information
of MLLMs. Existing knowledge integration meth-
ods utilize language models and knowledge graphs
in two ways: (1) training knowledge graph embed-
dings individually and combining the embeddings
corresponding to linked entities in sentences with
the language model representations (e.g., Know-
BERT (Peters et al., 2019) and ERNIE (Zhang et al.,
2019)); or (2) absorbing the knowledge in knowl-
edge graphs into the language model’s parameters
via joint training (e.g., K-BERT (Liu et al., 2020)
and K-Adapter (Wang et al., 2021)).

The first method requires embedding knowl-
edge graph entities and accurately extracting en-
tities in sentences across hundreds of languages,
which is highly challenging. The second method
typically suffers from the curse of multilingual-
ity (Conneau et al., 2020; Doddapaneni et al., 2021;
Jiao et al., 2022) and catastrophic forgetting (Kirk-
patrick et al., 2016) due to limited model capacity.
Most importantly, both methods integrate knowl-
edge implicitly such that it is difficult to access
and extend to low-resource languages (AlKhamissi
et al., 2022). Furthermore, both methods require
large sets of aligned sentences and knowledge
triples, which is costly to gather and accurately
annotate across hundreds of languages.

To address above issues, we first collect
and clean multilingual data from Wikidata2 and
Wikipedia3 for the enhancement, where rich fac-
tual knowledge and cross-lingual alignments are
available. Then, we propose to enhance MLLMs
with the MLKG information by using a set
of adapters (Houlsby et al., 2019), which are
lightweight, collectively having only around 0.5%
extra parameters than the MLLM. Each adapter
integrates information from either MLKG Triples
(i.e. facts) or cross-lingual Entity alignments, and
is trained on either Phrase or Sentence level data.
Each of the resulting four adapters (EP/TP/ES/TS)
is trained individually to learn information sup-

2https://www.wikidata.org/wiki/Wikidata:Main_Page
3https://en.wikipedia.org/wiki/Main_Page

plemental to that already learned by the MLLM.
Adapter outputs are combined by a fusion mecha-
nism (Pfeiffer et al., 2021). Training objectives are
similar to those for MLKG embedding (Chen et al.,
2017) instead of mask language modeling, which
are more efficient with large corpus.

We conduct experiments on various downstream
tasks to demonstrate the effectiveness of our ap-
proach. For MLKG tasks, following the data col-
lection methods of two existing benchmarks (Chen
et al., 2020, 2017), we extended them from 2-5
languages to 22 languages, including two rare lan-
guages.4 Results show that our method obtains
comparable performance to existing state-of-the-
art baselines on the knowledge graph completion
benchmark, and significantly better performance on
the entity alignment benchmark. More importantly,
we can perform these knowledge graph tasks in low-
resource languages for which no knowledge graph
exists, and achieve comparable results to the high-
resource languages. Improvements over baseline
MLLMs are significant. The results demonstrate
that our proposed method integrates the explicit
knowledge from MLKGs into MLLMs that can be
used across many languages. Our method also im-
proves existing MLLMs noticeably on knowledge-
intensive language tasks, such as cross-lingual rela-
tion classification, whilst maintaining performance
on general language tasks such as named entity
recognition (NER) and question answering (QA).

2 Multilingual Knowledge Integration

In this paper, we fuse knowledge from a MLKG
into a MLLM. Following previous works (Wang
et al., 2021; Liu et al., 2021), we make use of an
entity tagged corpus of text (called a knowledge
integration corpus) for knowledge integration. We
formally introduce these concepts below.

MLLM. A multilingual LM can be thought of
as an encoder that can represent text in any lan-
guage l in a set of languages L. Let V denote the
shared vocabulary over all languages. Let tl ∈ V
denote a token in language l. A sentence sl in a
language l can be denoted as a sequence of tokens:
sl=(tl1, t

l
2, ...). The output representations of the

MLLM for sl can be denoted by a sequence of
vectors: LM(sl)=(h1,h2, ...). These vectors cor-
respond to representations for each token in the

4The extended datasets as well as KI corpus are published
with our code implementation.
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sentence, one representation per input token. Var-
ious tokenization schemes such as wordpiece or
BPE might be considered here. We use the aver-
age of the token representations as the representa-
tion of the sentence: LM(sl) = mean(h1,h2, ...).
Similarly, for a phrase slij (starting from the i-th
token and ending in the j-th token in the sentence),
we can obtain its contextualized representation as
LM(slij) = mean(hi,hi+1, . . .hj).

MLKG. A multilingual knowledge graph is a
graph with entities and knowledge triples in each
language l ∈ L. Let E denote the set of entities
and T denote the set of knowledge triples. In a
MLKG, each entity indexed i might appear in sev-
eral languages. Let eli denote the entity label of the
i-th entity in language l. Furthermore, we denote a
knowledge triple in the MLKG as (eli, r

l′′
k , el

′
j ) ∈ T ,

where rl
′′
k is the kth relation. Note that since en-

tities (as well as relations) may appear in various
languages under different labels, knowledge triples
can be defined across languages.

Knowledge Integration Corpus. For knowledge
integration, besides the MLKG, we make use of
a corpus of text C (as shown in the right part of
Figure 2). The corpus C comprises of two kinds
of texts. First, we have a set of texts C1 for the
cross-lingual entity alignment, which comprise of
sentences with mentions of entities in the MLKG.
For example in Figure 2, given the sentence De
Botton spent his early years in Zurich, we have the
aligned entity Zurich and its cross-lingual labels.
The second set of texts C2 is for the knowledge
triple, which comprises of sentences aligned with
knowledge triples in the MLKG. For example in
Figure 2, given the sentence Zurich is the largest
city in Switzerland, we have its aligned knowledge
triple (Zurich, is located in, Switzerland).

3 Adapters and Adapter Fusion

In this section, we first describe how we incorporate
adapters into language models and how they can
be used to enhance them with different sources of
knowledge from knowledge graphs.

Adapter. Adapters have become a popular choice
for parameter-efficient finetuning of language mod-
els on downstream tasks (Houlsby et al., 2019) due
to their flexibility, effectiveness, low cost and scal-
ability (Pfeiffer et al., 2021). Adapters are new
modules that are added between layers of language

models5, the parameters of which are updated only
during finetuning while the language model pa-
rameters are frozen. An adapter is a bottleneck
layer composed of two feed-forward layers with
one non-linear activation function. For hm, the
hidden representation of token tli at layer m, the
adapter acts as

A(hm) = Wup · σ(Wdown · hm + bdown) + bup. (1)

Here, Wdown and Wup are weight matrices,
which map the hidden representations to the low-
dimensional space and then map them back. bdown
and bup are bias parameters, and σ is a nonlinear
activation function.

Adapter Fusion. We follow the architecture
of Pfeiffer et al. (2021), but instead of using
adapters for finetuning, we use them to enhance
MLLMs with knowledge. Our approach is similar
to Wang et al. (2021), but our adapters supplement
and augment the existing implicit knowledge of
MLLMs (into the explicit geometric properties of
hidden representations), And our approach is more
lightweight, with only c.0.5% additional parame-
ters (cf >10% in Wang et al. (2021)).

As shown in Figure 2 (left), still considering
the m-th layer, the output representations of the
feedforward layer (denoted hm as in Eq. 1) are
input to the adapters. A fusion layer aggregates
all adapter outputs An(h

m) (n∈{1...N} indexes
each adapter) and the un-adapted representations
with a multiplicative attention mechanism:

Afusion(h
m) =

N∑

n=0

am
n · V m ·An(h

m),

am
n = softmax(hmQm ⊗An(h

m)Km).

Here, A0(·) is the identity function; Qm, Km, V m

are parameters in the multiplicative attention mech-
anism; and ⊗ is the Hadamard product.

The additional knowledge to be learned by the
adapters comes from knowledge Triples and Entity
alignments, each provided in both Phrase and
Sentence format (hence N = 2 × 2 = 4). As
shown in Figure 2 (center), for a given entity in
two languages l and l′, Adapter-EP. learns to align

the two (multilingual) representations of eli and el
′
i ,

e.g., Zurich is aligned with Zurigo. Adapter-TP.
learns knowledge triples, e.g., predicting Switzer-
land given entity and relation (Zurich, is located

5Where to insert adapters is flexible but a common choice
is after the feedforward layer of a transformer layer.
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Figure 2: The architecture of MLLMs with adapters and their roles. We enhance multilingual and factual knowledge in phrase
and sentence levels using different knowledge integration corpus.

in,). Besides these non-contextualized settings, en-
tities within context can be considered also (MLLM
corpus). Thus, Adapter-ES. and Adapter-TS.
have the similar objectives but use contextualized
representations from input sentences.

4 Knowledgeable Adapters

Next, we design objectives with corresponding
knowledge integration datasets to train a set of
adapters. Similar to MLKG embedding (Chen et al.,
2017), we aim to encode knowledge into the geo-
metric properties of the adapted MLLM representa-
tions, i.e., the MLLM and adapters collectively act
as an MLKG embedding model. Specifically, we
use cosine distance within the contrastive learning
loss of InfoNCE (van den Oord et al., 2018):

INCE(x,x′) = log
cos(x,x′)∑

x′′∈X cos(x,x′′)
,

where X is a batch that includes the positive sample
x′ and a number of negative samples.6

Adapter-EP. We use Wikidata (Vrandečić and
Krötzsch, 2014) to enhance MLLMs with the
knowledge of cross-lingual entity alignments. In-
spired by the idea that languages are aligned im-
plicitly in a universal space in MLLMs (Wu and
Dredze, 2019; Wei et al., 2021), we train the
aligned entities to have closer representations. De-
noting the MLLM with this adapter as LM(·), the
objective used to train EP is:

LEP =
∑

(eli,e
l′
i )∈E

INCE
(
LM(eli),LM(el

′
i )

)
,

6We use in-batch negative sampling, where entities (with
labels in any languages) in the batch are randomly selected.

where LM(·) means we take the mean of token
representations as the entity representation vector.

Adapter-TP. We train this adapter using the
knowledge triples in Wikidata. Inspired by pre-
vious knowledge graph embedding algorithms (e.g.
Bordes et al., 2013), for a given fact triple, we
train the (adapted) object entity embedding to be
close to the (adapted) joint embedding of the sub-
ject entity and relation. The objective used to train
TP is quite different from existing mask language
modeling-based ones:

LTP =
∑

(eli,r
l′′
k

,el
′
j )∈T

INCE
(
LM([eli; r

l′′
k ]),LM(el

′
j )

)
,

where [; ] denotes text concatenation. Note that we
apply code-switching (Liu et al., 2021), and thus
entities and relations can be in different languages.
This is helpful to capture knowledge triples for
low-resource languages.

Adapter-ES. Entity alignment can also be ap-
plied to contextualized embeddings produced by
the MLLM when entities are input within natural
language sentences. For this purpose, we use sum-
maries taken from multilingual Wikipedia. Specifi-
cally, we first align the entity in Wikidata with the
Wikipedia title, and extract sentences that contain
the entity label in its summary. As described ear-
lier, we denoted this corpus as C1. Thus, similar
to Adapter-EP, we train ES by aligning contex-
tualized entity representations of cross-lingually
aligned entities with the objective:

LES =
∑

(el
′
,sl)∈C1

INCE
(
LM(slij),LM(el′)

)
,
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Figure 3: Four stages of using the knowledge adapter set in MLLMs. The dashed outlines mean the parameters are frozen.

where slij means that we input sentence sl into an
MLLM but keep only the representation of entity
label el (indexed from i-th token to j-th token). As
in Figure 2 (right), sl is: De Botton spent his early
years in Zurich, and slij here is the entity label of
el as: Zurich. The difference between this adapter
and Adapter-EP is that contextual information is
included within the entity representation.

Adapter-TS. Knowledge triples can also be
learned with contextualized embeddings. This re-
quires paired data in which triples (entities and
relations) are annotated in natural sentences. How-
ever, no such multilingual corpus exists. Thus, we
use the T-REx-RC dataset (Elsahar et al., 2018)7,
which provides aligned data in English and con-
tains sentence and triple pairs. Thus, the objective
used to train TS is:

LTS =
∑

(sk,(ei,r,ej))∈C2

INCE
(
LM(sk\ej),LM(ej)

)
,

where sk\ej represents the sentence sk with entity
label ej masked. As the example in Figure 2 (right),
sk\ej is: [MASK] is the largest city in Switzerland,
and the aligned triple is: (Zurich, is located in,
Switzerland. In contrast to Adapter-TP, subject
entities and relations occur in natural sentences.

4.1 Enhancement Workflow
We introduce our overall enhancement workflow,
which contains four stages. In the first stage, an
MLLM is pretrained on a large amount of data.
In the second stage, the MLLM is frozen while
each adapter is trained separately on its particular
dataset (knowledge integration corpus) to extract
additional information. Adapter outputs are aggre-
gated in the fusion layer to enable their collective
knowledge to be pooled (Pfeiffer et al., 2021). For
example, we lack knowledge graph data for low-
resource languages, however we have two adapters
(TP, TS) that learn facts in a particular language
(English) and two adapters (EP, ES) that learn cross-
lingual alignment. By aggregating them, we can
effectively integrate factual knowledge into the rep-
resentations of low-resource languages. In the third

7We denoted this aligned corpus earlier by C2

and final stages, all parameters of the MLLM, the
adapters, and the fusion module are finetuned on a
training set for a specific downstream task resulting
in a specialized model for the task (see Figure 3).

5 Experiments

This section first introduces the general experi-
mental settings (§5.1). We then show that our
adapter set can enhance MLLMs with the knowl-
edge of MLKGs and, in particular, that the en-
hanced MLLMs generalize well to perform MLKG-
related tasks in low-resource languages (§5.2). We
also show that enhancing MLLMs with MLKGs im-
proves their performance on knowledge-intensive
language tasks (§5.3). We compare our ap-
proach with the only existing MLKG integration
work (§5.4). Finally, we present an ablation study
of the adapter set to demonstrate the effectiveness
of each adapter (§5.5).

5.1 MLLMs and Integration Corpus
We select three representative MLLMs imple-
mented by Huggingface8 and train a set of adapters
for each: the base version of mBERT (Devlin
et al., 2019), and both the base and large versions
of XLMR (i.e., XLM-RoBERTa) (Conneau et al.,
2020). Since mBERT and XLMR cover different
sets of languages, we consider the intersecting 84
languages supported by both models. All adapters
are trained with the same hyperparameters (see Ap-
pendix A for details).

Table 1: Statistics of knowledge integration corpora for train-
ing adapters. Align.: all aligned multilingual entities; Relat.:
all relations in triples; Sent.: sentences.

Module Source Statistics

Adapter-EP Wikidata (MLKG) Entity / Align.: 1.55M / 63.25M
Adapter-TP Wikidata (MLKG) Triple / Relat.: 9.42M / 1422
Adapter-ES Wikipedia (C1) Entity / Sent.: 0.20M / 1.93M
Adapter-TS T-REx-RC (C2) Triple-Sent. Pair: 0.97M

The statistics of the knowledge integration cor-
pora are summarized in Table 1. Next, we introduce
their preprocessing steps. The set of entity align-
ments used to train Adapter-EP is extracted from
Wikidata by keeping only entities that have more

8https://huggingface.co/
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than 10 multilingual entity labels among the 84
considered languages. Knowledge graph triples are
used to train Adapter-TP if both entities are in that
entity set (see Table 8 of Appendix B for further
details). For the Wikipedia dataset, we use entities
in the Wikidata subset and query their descriptions
(the first sentence in the Wikipedia summary that
contains the entity label). We remove entities that
have less than 2 multilingual descriptions, which re-
sults in 1.93 million multilingual sentences to train
Adapter-ES. For Adapter-TS, we use the mono-
lingual dataset T-REx-RC (Elsahar et al., 2018),
which has 0.97 million alignments between knowl-
edge triples and sentences in English.

5.2 MLKG Benchmarks

We show that our knowledge adapter set can en-
hance MLLM performance at MLKG-related tasks.
We select two popular MLKG benchmarks for eval-
uation: DBP5L (Chen et al., 2020) for the knowl-
edge graph completion task, and WK3L (Chen
et al., 2017) for the cross-lingual entity alignment
task. These tasks require the MLLM to identify the
correct entity, which is performed by maximizing
the similarity of output representations.
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Figure 4: Statistics of the size of test sets for MLKG com-
pletion and entity alignment tasks. We can see that extended
test sets for zero-shot languages have comparable number of
samples as original test sets.

To evaluate MLLMs in a more comprehensive
setting, we extend their test sets (from 2−5 lan-
guages) to 22 languages following their data con-
struction settings9, where languages that contain

9We follow settings of data collection pipelines described

the most entity labels are selected. Statistics are
in Figure 4. We split these languages into three
categories to show the generalizability of enhanced
MLLMs: Sup.: supervised languages, which are
used to train adapters and for finetuning; ZS-In:
zero-shot languages, which are used for adapter
training but not for finetuning; ZS-Un.: unseen lan-
guages, which are unseen in both adapter training
and finetuning.

5.2.1 Knowledge Graph Completion
The knowledge graph completion task tests if the
model can find the missing triples in different lan-
guages. Specifically, for each test triple of a given
language, the model is asked to retrieve the correct
object entity from the entity set of that language
given the subject entity and relation.

Settings. We follow the settings of DBP5L.10

Specifically, we use the training set of knowledge
triples of the five languages (i.e. the Sup. set) to
finetune the model, and then use the provided test
sets, as well as our extended test sets to evaluate
it. For comparison, we select two typical knowl-
edge graph embedding methods, TransE (Bordes
et al., 2013) and DistMult (Yang et al., 2015), as
baselines and compare the performance of MLLMs
and MLLMs-AFusion, enhanced with the knowledge
adapter and fusion mechanism (see Appendix A for
further implementation details).

Table 2: Results on the knowledge graph completion task.
We attach the number of languages to each type. We can see
that for zero-shot languages and unseen languages, using our
adapters can significantly improve the performance of LMs
on knowledge graph completion.

Model Sup. (5) ZS-In (15) ZS-Un. (2’)

Hit@1↑ MRR↑ Hit@1↑ MRR↑ Hit@1↑ MRR↑

TransE 14.5 23.7 -/- -/- -/- -/-
DistMult 8.1 14.3 -/- -/- -/- -/-
mBERT 11.2 13.8 12.8 15.7 48.2 49.1

mBERT-AFusion 13.1 15.7 16.1 18.8 51.8 52.4
XLMRbase 5.9 7.8 6.7 9.1 8.2 11.8

XLMRbase-AFusion 9.1 11.8 10.6 13.5 16.6 19.6
XLMRlarge 7.3 9.7 8.9 11.5 16.8 20.8

XLMRlarge-AFusion 13.1 15.6 14.3 17.3 23.9 27.4

Results. Results are summarized in Table 2 (with
further detail in Table 9 of Appendix C). We re-
port both Hit@1 score and Mean Reciprocal Rank
(MRR) for evaluation. We find that enhancing
MLLMs with adapters can improve performance
for the supervised languages, which is compara-
ble to existing knowledge graph embedding meth-

in Chen et al. (2020, 2017) for the extension.
10Note that some entity alignments across 5 languages are

provided. We only consider the triple data for simplicity and
test entity alignment with another benchmark: WK3L.
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ods. For the zero-shot languages and unseen lan-
guages, existing (transductive) knowledge graph
embedding methods cannot perform the task since
entities must be in the training set. Here we find
that MLLMs still perform comparably to the su-
pervised languages11, and the enhanced MLLMs-
AFusion models outperform MLLMs on zero-shot
languages by significant margins. This indicates
that the adapters allow factual knowledge to be
transferred across languages.

5.2.2 Entity Alignment
The entity alignment task is to align entities in
different languages. Specifically, given a target lan-
guage and an entity in a source language (typically
English), the model should retrieve that entity from
the set of all entities in the target language.

Settings. We follow settings of WK3L.12 Specif-
ically, we train models using the entity alignments
English to German, and English to French. We
test models on those two supervised languages, as
well as our extended 17 zero-shot languages and 2
unseen languages.13 We select one typical MLKG
embedding method, MTransE (Chen et al., 2017),
and a state-of-the-art method, JEANS (Chen et al.,
2021), as baselines (see Appendix A for details).

Table 3: Results on multilingual entity alignment tasks. We
can find that using our adapters can significantly enhance
MLLMs’ performance on entity alignment tasks, which also
outperforms existing MLKG embedding baselines.

Model Sup. (2) ZS-In (18) ZS-Un (2’)

Hit@1 MRR Hit@1 MRR Hit@1 MRR

MTransE 8.7 12.5 -/- -/- -/- -/-
JEANS 40.0 47.5 -/- -/- -/- -/-
mBERT 83.6 83.2 31.8 32.2 50.5 50.8

mBERT-AFusion 88.9 88.4 77.6 76.2 91.7 89.3
XLMRbase 54.8 54.8 9.4 9.7 10.9 11.1

XLMRbase-AFusion 88.6 88.0 82.4 81.8 85.4 84.3
XLMRlarge 65.0 65.1 23.9 24.1 28.9 28.9

XLMRlarge-AFusion 90.2 89.5 90.8 89.0 89.8 88.5

Results. The results are summarized in Table 3
(with further detail in Table 10 of Appendix C). Per-
formance is evaluated again by Hits@1 and MRR.
As previously, the (transductive) baselines cannot
be extended to languages not in the training set.
For the supervised languages, we can find that
existing MLLMs often outperform classic base-

11Note that due the variable size of entity sets, the task
difficulty varies across languages (see Table 9 in Appendix C).

12Even if side information such as the entity description is
provided, we only consider the alignment data for simplicity.

13Note that we select the extended language only by the size
of test set. The ZS-In set is slightly different from the DBP5L,
where ar and cs are newly added and el is not included.

lines. However, performance of MLLMs on zero-
shot languages is noticeably worse. This indicates
that existing MLLMs do not transfer entity align-
ment knowledge well to other languages. However,
MLLMs enhanced with the adapter set, MLLMs-
AFusion, generally achieve the best performance,
often with significant improvement. The results
indicate that our adapter set successfully enhances
MLLMs with multilingual knowledge.

5.3 MLLM Benchmarks
Above results show that our adapter set can en-
hance MLLMs to perform well on MLKG-related
tasks on both previously seen and unseen lan-
guages. Here, we show that our knowledge adapter
set can allow MLKGs to enhance MLLM perfor-
mance on language tasks. In particular, the en-
hanced MLLMs achieve improved performance on
knowledge-intensive language task while maintain-
ing performance on other general language tasks.

5.3.1 Cross-Lingual Relation Classification
We select a popular relation classification bench-
mark: RELX (Köksal and Özgür, 2020), for which
MLLMs must extract relations from sentences in
a cross-lingual setting. Models are finetuned on a
high-resource corpus, and tested on low-resource
languages in a zero-shot setting. For this task,
MLLMs are required to transfer the knowledge
across languages, as well as capture factual knowl-
edge for the relation classification.

Settings. Our training data is only in English, and
test data contains 4 more (zero-shot) languages. We
follow the exact setting of Köksal and Özgür (2020)
and use the same provided set of hyperparameters
to evaluate all MLLMs. We also report the per-
formance of the enhanced BERT model of Köksal
and Özgür (2020) called Matching the Multilingual
Blanks (MTMB) as a baseline.

Table 4: Results on the multilingual relation classification
task (F1 score). We can find that our adapters can effectively
enhance MLLMs on the knowledge-intensive downstream
tasks, especially for the performance on zero-shot languages.

Model Sup. (En) ZS-In (4) Ave.

mBERT 61.8 57.4 58.3
MTMB 63.6 59.6 60.4

mBERT-AFusion 64.0 60.9 61.5
XLMRbase 61.4 56.1 57.1

XLMRbase-AFusion 61.3 58.0 58.6
XLMRlarge 63.1 59.1 59.9

XLMRlarge-AFusion 64.2 60.4 61.1

Results. Results are summarized in Table 4 (see
Table 11 of Appendix D for further detail). We
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find that for supervised languages, mBERT-AFusion
outperforms both the base version of mBERT as
well as the knowledge-enhanced version (MTMB),
whereas XLMR with adapters obtains comparable
performance. As for zero-shot languages, MLLMs-
AFusion achieve consistent and significant improve-
ments over baselines. This demonstrates that our
knowledge adapter set can enhance MLLMs for
knowledge-intensive tasks.

5.3.2 General Language Tasks
Besides above knowledge-intensive tasks, we show
that our knowledge adapter set can maintain the
performance of MLLMs on general multilingual
language tasks. We select the popular multilin-
gual benchmark called XTREME (Hu et al., 2020)
to evaluate the enhanced MLLMs, which are fine-
tuned on English training data, and tested with
many other languages. We select cross-lingual
NER and QA as two general tasks. We follow
the settings of the XTREME benchmark.

Table 5: Results on the multilingual NER task (F1 score).
We can find that our adapters can enhance MLLMs on the
performance of NER task for zero-shot languages.

Model Sup. (En) ZS-In (39) Ave.

mBERT 85.2 61.6 62.2
mBERT-AFusion 84.0 62.3 62.9

XLMRlarge 84.7 64.9 65.4
XLMRlarge-AFusion 85.0 65.3 65.8

NER. We select the WikiAnn dataset (Pan et al.,
2017) (under the setting of XTREME) for the NER
task, where 40 languages are included for evalua-
tion. The results are summarized in Table 5, and
detailed results can be found in Table 12 in Ap-
pendix D. We find that MLLMs with our adapter
set perform as well as the baseline MLLMs with
slight improvements on the zero-shot languages.

Table 6: Results on the multilingual QA tasks. Using our
adapters would not reduce the performance on language mod-
eling tasks, while marginal improvement can even achieved.

Model Sup. (En) ZS-In (10) Ave.

F1 EM F1 EM F1 EM

mBERT 83.5 72.2 62.6 47.2 64.5 49.4
mBERT-AFusion 83.5 72.0 62.1 47.2 62.2 49.5

XLMRlarge 86.5 75.7 75.6 59.3 76.6 60.8
XLMRlarge-AFusion 88.0 77.6 75.7 59.7 76.8 61.3

Question Answering. Following the setting
of XTREME, We finetune the models on the
SQuAD (Rajpurkar et al., 2016) dataset (in
English), and evaluate on the test sets of
XQuAD (Artetxe et al., 2020) involving 11 lan-
guges. Detailed results are in Table 13 in Ap-
pendix D. We find that mBERT-AFusion maintains

the performance as its original version, while
XLMRlarge-AFusion can be boosted slightly. In gen-
eral, MLLMs-AFusion with our adapters can obtain
comparable or slightly better performance across
different language tasks. For those tasks requiring
rich knowledge about triples and entity alignments,
our adapter set can indeed enhance the MLLMs.

5.4 Comparison with Existing Methods

We compare our approach with the only existing
related work (Liu et al., 2021) that attempts to in-
tegrate MLKGs into MLLMs. However, it only
considers a relatively small set of 10 languages and
finetunes the entire MLLM with a joint objective,
which is computationally expensive. In contrast,
as shown below, our knowledge adapter set can
achieve better performance at a much lower cost.

Settings. We follow settings and metrics in Liu
et al. (2021), which are slightly different from orig-
inal settings of RELX and WikiAnn (XTREME)
datasets. We only report the performance for
MLLMs that are implemented in their study.

Table 7: Comparison with Liu et al. (2021) (denoted by △)
on RELX, WikiAnn and XQuAD datasets involving 4, 10
and 11 languages, respectively. We can find that our light
adapter-based knowledge enhancement method significantly
outperforms previous finetuning-based enhancement method.

Model RELX (4) WikiAnn (10) XQuAD (11)

Acc. F1 F1 EM

mBERT 60.1 -/- -/- -/-
mBERT△ 61.1 -/- -/- -/-

mBERT-MLKG 64.7 -/- -/- -/-
XLMRbase 56.7 -/- -/- -/-
XLMR△

base 58.3 -/- -/- -/-
XLMRbase-AFusion 61.7 -/- -/- -/-

XLMRlarge 61.3 68.5 76.6 60.8
XLMR△

large 61.9 66.9 76.5 60.6
XLMRlarge-AFusion 64.6 67.6 76.8 61.3

Results. In Table 7, for the relation classifica-
tion task, where Liu et al. (2021) outperforms the
MLLM baseline, our method achieves significant
further improvement. For NER, only 10 popular
zero-shot languages (instead of 40 languages in
XTREME) are selected for their knowledge integra-
tion and evaluation. Even if generally our method
achieves better performance for XMLRlarge-AFusion
(40 languages) in Table 5, it performs slightly
worse than the original version here (10 popular
languages). However, the performance of Liu et al.
(2021) is worse still. For QA, similar performance
is achieved by all three MLLMs, although our en-
hanced MLLM slightly outperforms other methods.
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Figure 5: Ablation study results. We select two MLKG-related tasks and the relation classification task for evaluation. We
can find that adapters that integrate factual knowledge into MLLMs achieve better performance than others on the MLKG
completion task, while adapters that integrate cross-lingual alignments outperform others on the entity alignment task. For the
relation classification task, sentence-level adapters achieve better performance. For our adapter set, it can achieve roughly the
best performance under all conditions.

5.5 Ablation Study

We conduct ablation studies to understand our
knowledge adapters and show that they work as ex-
pected.14 We also compare against a large adapter
(ALarge) with a comparable total number of param-
eters (including fusion layers). The large adapter is
trained with the same settings as our adapter set and
has one set of parameters that integrate all knowl-
edge types at once. As previously, we finetune the
original mBERT, mBERT-ALarge, and mBERT with
our adapters on each downstream task.

In Figure 5, for the knowledge graph completion
task (left), mBERT-ATP and mBERT-ATS perform
better than their entity-based counterparts. While
mBERT-ALarge also performs well, mBERT-AFusion
outperforms it significantly. For the entity align-
ment task (center), the situation is reversed such
that better performance is achieved by mBERT-
AEP and, mBERT-AES. Our mBERT-AFusion also
achieves comparable performance which is much
better than mBERT-ALarge with shared parame-
ters. As for the relation classification task (right),
sentence-level adapters outperform phrase-level
adapters, which is intuitive since the task requires
sentence-level context. Fusing all four adapters
(i.e., mBERT-AFusion) gives the best performance
while mBERT-ALarge performs worse than single
smaller adapters. In summary, with our method,
we learn different types of knowledge in separate
adapters, which can be fused in different propor-
tions according to the downstream task at hand to
typically perform better and more consistently than
any single adapter-enhanced MLLMs.

14Since the improvements brought by our adapters are con-
sistent across different MLLMs, we mainly consider mBERT
for analysis. We report results on the knowledge graph comple-
tion, entity alignment and relation classification tasks, which
each require different aspects of knowledge.

6 Other Related Work

MLLM for MLKG. Several works use the im-
plicit knowledge in language models to improve
knowledge graph-related tasks (Yao et al., 2019;
Niu et al., 2022). However, these approaches are
for monolingual knowledge triples and can not
easily incorporate cross-lingual entity alignment.
Huang et al. (2022) use MLLMs for knowledge
graph completion, but language models only en-
code entities, and the task itself is achieved by
graph neural networks. Previous MLKG embed-
ding methods consider entity alignment (Chen
et al., 2017, 2020), but are designed for exist-
ing MLKGs, and can not generalize to other, e.g.
low-resource, languages without the multilingual
knowledge in MLLMs (Pires et al., 2019; Wu and
Dredze, 2019).

MLKG for MLLM. Liu et al. (2021) propose
to synthesize code-switched sentences to solve
the problem but the resulting MLKG-enhanced
MLLMs achieve minimal improvement on lan-
guage understanding tasks as shown in our ex-
periment, and it cannot benefit the MLKG field.
In summary, our work first combine MLKG and
MLLM, showing that combining them using our
light knowledge adapter set can effectively improve
the downstream task performance on both sides.

7 Conclusion

In this paper we propose an approach to enhance
MLLMs with MLKGs using a set of knowledge
adapters, where explicit knowledge from MLKGs
is integrated into the implicit knowledge learned by
MLLMs. In experiments, we show that enhanced
MLLMs can conduct MLKG-related tasks and
achieve better performance on knowledge-intensive
tasks, especially on low-resource languages where
knowledge graphs are not available.
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Limitations

We point out that there are some limitations of our
work. First, even if the adapter set can enhance
MLLMs to perform well on various downstream
tasks, it is not suitable for tasks with the fully zero-
shot setting (without any training data), since the
fusion module has to be tuned to suit the task. Sec-
ond, as shown in our results, the fusion module
cannot always outperform all single adapters. For
some tasks, a better fusion mechanism could be
proposed for the improvement.

Reproducibility Statement

We elaborate the experiment settings and hyperpa-
rameters in the paper and in Appendix A. We have
published our prepossessed multilingual knowl-
edge integration data, extended MLKG-related task
datasets, as well as our code.
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A Implementation Details

We implement the adapters using the AdapterHub
library15, where all Transformer layers in MLLMs
are inserted with adapters.

Adapters in Knowledge Enhancement. To train
these knowledgeable adapters, we use 8 GPUs
(Tesla V100) with batch size as 128. The learning
rate is set as 1e − 4. We use the Adam optimizer
with 1e4 warm-up steps. We train Adapter-EP by
randomly sampling entity alignments in different
languages. The number of sampled alignments
is around 94.2 million. And the training epoch
number for Adapter-TP, Adapter-ES, and Adapter-
TS is all set as 10. As for the InfoNCE loss, we
use the negative sampling within batch. Since we
train adapters with sampling strategy and use the
contrastive learning loss instead of mask language
modeling, it only takes several hours to train one
adapter (1-10 hours). The whole enhancement pro-
cedure would take around half a day.

Adapters in knowledge graph completion. For
MLLM-based methods, we set all hyperparame-
ters as the same to ensure the comparison is fair16.
We use the average value of word(-piece) represen-
tation as the entity embedding. Specifically, we
train MLLMs as well as MLLMs-AF (including
adapters and the fusion mechanism) to embed enti-
ties, where the output representations of the object
entities should be close to the context (subject en-
tities with relations) output representations. The
similarity is measure by cosine17. During the train-
ing, the learning rate is set as 1e− 8, and the epoch
number is set as 10. The batch size is set as 8. We
train MLLMs using the contrastive learning loss
similar to the knowledge integration process.

Adapters in Entity Alignment. Similarly, we
set all hyperparameters as the same for all MLLM-
based methods. Specifically, we set the epoch num-
ber as 1 since the overfitting is easy with training
data only on 2 languages. Other hyperparameters
and settings are the same to that of the MLKG
Completion task.

Adapters in Language Tasks. We evaluate our
adapter set with MLLMs on the XTREME bench-

15https://adapterhub.ml/
16Note that users may search more fine-grained hyperpa-

rameters, but the relative performance would not change.
17We also tried different metrics but find that cosine dis-

tance works well in this task.

mark. The evaluation settings are the same as
theirs.

B Knowledge Integration Dataset
Statistics

The detailed statistics can be found in Table 8 be-
low.

C MLKG Dataset Statistics and Detailed
Results

The detailed statistics and results can be found in
Table 9 and Table 10.

D MLLM Dataset Statistics and Detailed
Results

The detailed statistics and results can be found in
Table 11 (relation classification), Table 12 (name
entity recognition), and Table 13 (question answer-
ing).
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Table 8: Distribution of Wikidata for adapter training. We report the full name and ISO code for all languages. For the entity,
relation, and triple, we report the ratio of the label in that specific language to the total number of it.

ISO Lang. Entity (%) Relation (%) Triple (%) ISO Lang. Entity (%) Relation (%) Triple (%) ISO Lang. Entity (%) Relation (%) Triple (%)

af Afrikaans 56.4 20.5 31.8 gu Gujarati 12.2 14.2 2.1 nn Norwegian Nynorsk 70.6 44.4 57.9
an Aragonese 59.8 0.7 10.7 he Hebrew 25.3 62.2 29.7 no Norwegian 0.0 - -
ar Arabic 33.5 91.0 42.3 hi Hindi 14.8 13.3 4.4 oc Occitan 60.9 23.9 32.1
ast Asturian 84.2 28.3 71.3 hr Croatian 57.8 23.1 33.5 pl Polish 92.5 73.0 85.9
az Azerbaijani 19.3 19.3 9.8 hu Hungarian 71.9 64.6 70.2 pt Portuguese 96.4 80.8 91.0
bar Bavarian 52.4 1.8 10.0 hy Armenian 21.5 21.4 17.0 ro Romanian 81.7 32.8 59.3
be Belarusian 18.0 52.7 11.6 id Indonesian 65.2 48.2 47.7 ru Russian 54.4 88.6 64.1
bg Bulgarian 31.9 22.6 19.4 is Icelandic 52.3 7.6 15.0 scn Sicilian 39.6 25.5 17.7
bn Bengali 18.3 34.6 11.5 it Italian 97.8 78.2 97.0 sco Scots 56.8 27.3 27.3
br Breton 54.5 18.8 30.0 ja Japanese 37.5 77.5 48.3 sh Serbo-Croatian 21.7 9.2 6.9
bs Bosnian 44.7 27.3 18.6 jv Javanese 41.3 1.6 7.1 sk Slovak 62.4 25.8 38.4
ca Catalan 87.2 99.3 88.9 ka Georgian 16.2 23.8 9.3 sl Slovenian 69.1 24.8 56.0
ceb Cebuano 51.5 0.3 0.2 kk Kazakh 16.7 4.0 2.2 sq Albanian 73.0 28.1 47.2
cs Czech 73.5 68.4 66.4 kn Kannada 13.7 7.8 2.1 sr Serbian 23.3 92.6 17.5
cy Welsh 61.4 35.4 43.3 ko Korean 26.2 58.2 25.3 sv Swedish 91.7 73.8 90.9
da Danish 77.3 57.5 75.4 la Latin 59.9 9.4 23.1 sw Swahili 50.4 0.6 6.2
de German 98.5 90.7 98.5 lb Luxembourgish 55.3 25.2 33.5 ta Tamil 14.8 18.8 4.8
el Greek 19.5 46.5 16.5 lt Lithuanian 52.5 15.7 27.4 te Telugu 13.2 17.7 3.1
en English 100.0 100.0 100.0 lv Latvian 38.2 40.2 25.6 th Thai 16.2 20.5 7.3
es Spanish 98.7 94.0 98.6 mk Macedonian 16.5 95.1 9.3 tl Tagalog 16.4 7.2 5.3
et Estonian 60.8 25.9 40.9 ml Malayalam 15.9 14.6 4.7 tr Turkish 64.4 81.2 50.9
eu Basque 74.0 37.4 54.4 mn Mongolian 11.5 1.3 0.2 tt Tatar 19.0 35.7 12.4
fa Persian 32.5 51.1 33.7 mr Marathi 13.4 17.4 3.7 uk Ukrainian 45.2 97.7 44.4
fi Finnish 89.9 56.3 78.8 ms Malay 56.3 40.9 35.0 ur Urdu 16.7 28.1 7.8
fr French 98.5 97.3 99.1 my Burmese 11.7 5.3 0.9 uz Uzbek 17.1 3.7 4.6
fy Western Frisian 41.6 4.7 7.6 nds Low Saxon 54.1 23.1 29.3 vi Vietnamese 74.7 32.8 44.4
ga Irish 78.4 25.2 57.3 ne Nepali 11.3 7.7 1.1 war Waray-Waray 61.1 0.1 0.0
gl Galician 65.2 38.5 45.9 nl Dutch 98.3 100.0 98.2 zh Chinese 41.1 64.9 49.7

Table 9: The performance of various models for the MLKG completion task (Hit@1/MRR) across different languages. We also
report the number of entities in the test set to show the general difficulty of the completion task in that language.

Language # of test set TransE DisMult mBERT mBERT-MLKG XLM XLM-MLKG XLM-R XLM-R-MLKG

el 1082 13.1 / 24.3 8.9 / 9.8 9.2 / 11.6 8.5 / 11.2 4.8 / 6.9 6.9 / 9.7 5.0 / 7.5 9.3 / 12.8
en 5984 7.3 / 16.9 8.8 / 18.3 15.2 / 17.7 18.5 / 21.3 8.2 / 10.0 11.7 / 14.8 10.4 / 12.5 17.5 / 19.9
es 4101 13.5 / 24.4 7.4 / 13.2 14.3 / 17.2 17.7 / 20.5 7.0 / 9.4 11.7 / 14.9 9.7 / 12.2 18.0 / 20.7
fr 4436 17.5 / 27.6 6.1 / 14.5 12.7 / 15.4 17.4 / 19.9 6.3 / 8.5 12.1 / 14.5 9.2 / 11.6 16.2 / 18.5
ja 2569 21.1 / 25.3 9.3 / 15.8 4.6 / 6.9 3.6 / 5.8 3.1 / 4.4 3.0 / 5.0 2.4 / 4.6 4.7 / 7.4
ast 2823 - - 13.9 / 16.8 19.1 / 21.8 7.1 / 9.5 13.7 / 16.5 10.6 / 12.9 17.5 / 20.5
ca 2959 - - 14.8 / 17.6 19.1 / 21.5 7.9 / 10.4 13.8 / 16.5 11.1 / 13.4 17.4 / 20.2
da 2566 - - 16.1 / 19.2 19.9 / 23.0 8.7 / 11.6 13.3 / 16.9 11.5 / 14.1 17.6 / 21.4
de 4059 - - 14.1 / 16.8 17.4 / 20.4 8.3 / 11.2 11.4 / 14.6 9.8 / 12.6 15.6 / 18.7
fa 2329 - - 5.0 / 7.1 5.3 / 6.9 3.9 / 4.8 4.1 / 5.8 5.1 / 7.3 5.2 / 7.2
fi 2582 - - 11.2 / 14.6 16.1 / 19.1 6.2 / 8.6 9.9 / 13.0 8.2 / 11.1 13.7 / 17.0
hu 2558 - - 13.7 / 16.7 18.4 / 21.4 6.4 / 9.2 11.4 / 14.8 10.0 / 12.5 15.7 / 18.7
it 3614 - - 14.4 / 17.0 17.3 / 19.8 7.6 / 9.8 12.2 / 15.2 10.4 / 12.8 15.7 / 18.6
nb 2717 - - 16.4 / 19.4 19.5 / 23.3 8.9 / 11.6 13.5 / 17.0 11.3 / 13.9 18.0 / 21.4
nl 4316 - - 14.0 / 16.8 19.1 / 21.7 7.3 / 9.8 13.3 / 15.9 8.6 / 11.5 17.4 / 20.2
pl 2998 - - 13.4 / 17.2 18.6 / 21.8 6.1 / 8.5 9.7 / 13.3 8.7 / 11.5 14.6 / 18.0
pt 3184 - - 15.4 / 18.4 18.0 / 20.6 7.3 / 9.7 12.3 / 15.4 9.6 / 12.1 17.5 / 20.6
ru 2887 - - 9.4 / 11.8 10.3 / 12.1 3.5 / 5.5 4.6 / 6.6 4.8 / 7.4 6.3 / 8.6
sv 2993 - - 15.7 / 18.5 18.7 / 22.0 9.2 / 11.7 13.0 / 16.4 11.0 / 13.6 17.8 / 21.3
zh 2591 - - 5.1 / 7.4 4.1 / 6.4 2.2 / 4.2 2.7 / 5.1 3.4 / 5.3 4.3 / 6.8
eo 963 - - - - 8.2 / 11.8 16.6 / 19.6 16.8 / 20.8 23.9 / 27.4
vo 164 - - 48.1 / 49.1 51.8 / 52.4 - - - -
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Table 10: The performance of various models for the entity alignment task (Hit@1/MRR) across different languages. We also
report the number of entities in the test set to show the general difficulty of the completion task in that language.

Language # of test set MTransE JEANS mBERT mBERT-MLKG XLM XLM-MLKG XLM-R XLM-R-MLKG

en->fr 39155 14.0 / 17.7 46.3 / 53.8 87.1 / 86.4 92.6 / 92.1 55.3 / 55.3 92.1 / 91.4 65.2 / 65.2 93.5 / 92.8
en->de 41018 3.4 / 7.2 33.7 / 41.2 80.1 / 79.9 85.2 / 84.7 54.3 / 54.3 85.1 / 84.6 64.8 / 64.9 86.8 / 86.2
en->ar 16818 - - 8.9 / 10.0 68.6 / 67.4 0.7 / 0.9 63.4 / 62.5 0.9 / 1.1 81.8 / 80.0
en->ast 19834 - - 41.8 / 41.9 85.2 / 83.9 13.0 / 13.2 93.6 / 92.6 33.5 / 33.8 97.3 / 96.3
en->ca 22567 - - 38.2 / 38.3 81.5 / 80.2 10.8 / 11.1 90.2 / 88.8 29.9 / 30.2 94.5 / 93.4
en->cs 16570 - - 40.0 / 40.3 82.5 / 81.1 11.9 / 12.2 89.8 / 88.6 30.4 / 30.5 93.9 / 92.8
en->da 20093 - - 39.2 / 39.4 82.4 / 81.3 12.7 / 12.9 91.7 / 90.5 33.0 / 33.2 95.5 / 94.4
en->es 28288 - - 40.6 / 40.3 81.8 / 80.2 11.5 / 11.7 90.1 / 88.6 33.2 / 32.3 94.3 / 92.7
en->fa 16120 - - 10.1 / 11.3 69.4 / 68.2 1.0 / 1.2 67.6 / 66.9 1.8 / 2.2 83.1 / 81.8
en->fi 20608 - - 39.4 / 39.4 81.3 / 79.9 12.4 / 12.6 90.0 / 88.8 32.2 / 32.4 94.2 / 93.1
en->hu 18896 - - 36.3 / 36.7 80.5 / 79.4 11.3 / 11.4 89.2 / 88.0 29.6 / 29.9 93.6 / 92.7
en->it 26393 - - 39.4 / 39.5 80.2 / 78.7 11.5 / 11.8 88.4 / 86.9 31.2 / 31.2 92.4 / 91.0
en->ja 22012 - - 8.9 / 10.1 64.3 / 63.4 0.7 / 0.8 60.9 / 60.0 1.4 / 1.5 77.8 / 76.4
en->nb 20748 - - 39.2 / 39.3 82.5 / 81.1 11.5 / 11.8 91.8 / 90.4 32.2 / 32.5 95.6 / 94.4
en->nl 29378 - - 41.3 / 41.3 82.4 / 80.5 12.2 / 12.4 90.8 / 89.0 34.1 / 34.1 94.6 / 92.8
en->pl 21535 - - 38.7 / 38.9 80.0 / 78.7 11.2 / 11.4 87.6 / 86.3 30.2 / 30.3 92.6 / 91.2
en->pt 23001 - - 41.5 / 41.5 82.5 / 81.0 12.3 / 12.6 90.6 / 89.2 33.1 / 33.2 94.4 / 93.1
en->ru 22665 - - 19.2 / 20.2 74.2 / 72.6 3.6 / 3.7 78.0 / 76.2 10.0 / 10.3 87.9 / 85.9
en->sv 22986 - - 39.7 / 39.7 81.6 / 80.1 11.8 / 12.1 90.6 / 89.2 32.2 / 32.4 94.4 / 93.1
en->zh 20891 - - 10.2 / 11.1 55.1 / 54.8 9.0 / 10.6 49.8 / 49.5 1.9 / 1.9 67.3 / 66.2
en->eo 8913 - - - - 10.9 / 11.1 85.4 / 84.3 28.9 / 28.9 89.8 / 88.5
en->vo 2954 - - 50.5 / 50.8 91.7 / 89.3 - - - -

Table 11: Detailed results of the cross-lingual relation classification task (RELX) evaluated by F1 score.

Language mBERT mBERT-MLKG XLM XLM-MLKG XLM-R XLM-R-MLKG

en 61.8 64.0 61.4 61.3 63.1 64.2
de 57.5 60.0 57.5 56.1 58.0 60.2
es 57.9 63.1 56.9 59.7 59.8 60.7
fr 58.3 61.1 55.7 58.0 59.5 61.5
tr 55.8 59.3 54.1 58.0 59.1 59.0

average 58.3 61.5 57.1 58.6 59.9 61.1

Table 12: Detailed results of the NER task (Wikiann) evaluated by F1 socre.

Language mBERT mBERT-MLKG XLM-R XLM-R-MLKG Language mBERT mBERT-MLKG XLM-R XLM-R-MLKG

en 85.2 84.0 84.7 85.0 ka 64.6 66.9 71.6 69.3
af 77.4 77.2 78.9 79.2 kk 45.8 49.1 56.2 53.3
ar 41.1 40.5 53.0 51.8 ko 59.6 60.2 60.0 61.0
bg 77.0 76.2 81.4 80.6 ml 52.3 53.1 67.8 61.0
bn 70.0 72.8 78.8 78.1 mr 58.2 55.0 68.1 67.2
de 78.0 78.6 78.8 78.5 ms 72.7 68.1 57.1 74.6
el 72.5 70.8 79.5 79.6 my 45.2 55.5 54.3 56.8
es 77.4 74.8 79.6 75.8 nl 81.8 82.3 84.0 83.5
et 75.4 78.6 79.1 78.1 pt 80.8 78.7 81.9 82.5
eu 66.3 68.3 60.9 59.0 ru 64.0 66.8 69.1 70.5
fa 46.2 38.6 61.9 48.9 sw 67.5 70.1 70.5 70.0
fi 77.2 78.3 79.2 79.0 ta 50.7 53.8 59.5 60.8
fr 79.6 78.9 80.5 80.2 te 48.5 48.2 55.8 50.9
he 56.6 54.4 56.8 57.9 th 3.6 0.1 1.3 2.9
hi 65.0 66.3 73.0 73.0 tl 71.7 74.6 73.2 78.0
hu 76.4 78.0 79.8 80.6 tr 71.8 74.4 76.1 80.6
id 53.5 54.6 53.0 55.9 ur 36.9 43.9 56.4 63.2
it 81.5 81.6 81.3 81.2 vi 71.8 70.7 79.4 78.9
ja 29.0 29.2 23.2 23.1 yo 44.9 50.9 33.6 45.4
jv 66.4 65.3 62.5 66.9 zh 42.7 45.0 33.1 28.9
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Table 13: Detailed results of the QA task (XQuAD) evaluated by F1/EM score.

Language mBERT mBERT-MLKG XLM-R XLM-R-MLKG

en 83.5 / 72.2 83.5 / 72.0 86.5 / 75.7 88.0 / 77.6
ar 61.5 / 45.1 61.3 / 44.5 68.6 / 49.0 76.2 / 58.9
de 70.6 / 54.0 70.6 / 54.8 80.4 / 63.4 79.6 / 62.8
el 62.6 / 44.9 63.5 / 47.5 79.8 / 61.7 79.1 / 61.3
es 75.5 / 56.9 74.4 / 57.2 82.0 / 63.9 82.4 / 64.4
hi 59.2 / 46.0 57.2 / 42.9 76.7 / 59.7 75.6 / 59.3
ru 71.3 / 53.3 70.5 / 54.4 80.1 / 64.3 79.7 / 63.6
th 42.7 / 33.5 43.6 / 36.8 74.2 / 62.8 73.3 / 61.2
tr 55.4 / 40.1 53.7 / 38.0 75.9 / 59.3 74.9 / 58.9
vi 69.5 / 49.6 67.7 / 47.9 79.1 / 59.0 80.0 / 60.6
zh 58.0 / 48.3 58.0 / 48.3 59.3 / 50.0 56.0 / 46.7

average 64.5 / 49.4 62.2 / 49.5 76.6 / 60.8 76.8 / 61.3
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