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Abstract

Simile recognition involves two subtasks: sim-
ile sentence classification that discriminates
whether a sentence contains simile, and sim-
ile component extraction that locates the cor-
responding objects (i.e., tenors and vehicles).
Recent work ignores features other than sur-
face strings. In this paper, we explore expres-
sive features for this task to achieve more ef-
fective data utilization. Particularly, we study
two types of features: 1) input-side features
that include POS tags, dependency trees and
word definitions, and 2) decoding features
that capture the interdependence among vari-
ous decoding decisions. We further construct
a model named HGSR, which merges the
input-side features as a heterogeneous graph
and leverages decoding features via distilla-
tion. Experiments show that HGSR signifi-
cantly outperforms the current state-of-the-art
systems and carefully designed baselines, ver-
ifying the effectiveness of introduced features.
Our code is available at https://github.
com/DeepLearnXMU/HGSR.

1 Introduction

Simile is a type of figurative that compares two
objects (named tenor and vehicle) of different cate-
gories using comparator words such as “like”, “as”
or “than”. Table 1 shows a simile sentence, where
the tenor “sheep” and the vehicle “clouds” are com-
pared using comparator “like”. Generally, sim-
ile recognition involves two subtasks (Liu et al.,
2018): simile sentence classification that discrim-
inates whether a sentence contains simile expres-
sions, and simile component extraction, which aims
to find simile components (i.e., tenor and vehicle).
Because simile usually involves implicit sentiment,
it can provide essential information for sentiment
analysis (Li et al., 2012; Qadir et al., 2015) (e.g.

*Equal contribution.
†Corresponding author.

羊群看上去像白云。
(The sheep look like white clouds.)

她看上去像我姐姐。
(She looks like my sister.)

Table 1: Two examples: the first is a simile sentence
that uses “like” to compare tenor “sheep” and vehicle
“clouds”; the second is a literal sentence.

hate speech detection) and dialogue understanding
(Vanzo et al., 2019). Besides, simile recognition
can help language learners to better understand the
implicit meanings expressed by the simile expres-
sions in novels and fairy tale stories. Therefore,
simile recognition has become an important task in
natural language processing.

Previous studies on simile recognition (Nicu-
lae, 2013; Niculae and Yaneva, 2013; Niculae and
Danescu-Niculescu-Mizil, 2014) demonstrate that
exploiting syntactic features is beneficial to simile
recognition. However, they resort to handcrafting
feature templates, which usually requires exten-
sive efforts from linguistic experts and is hard to
be adapted to new domains and languages. With
the recent release of annotated data in a descent
scale and the success of deep learning on a wide
range of NLP tasks, Liu et al. (2018) first propose
a neural model for simile recognition. Specifically,
they adopt multi-task learning and let the two sub-
tasks share an LSTM (Hochreiter and Schmidhuber,
1997) encoder that only consumes input sentences.
Along this line, Zeng et al. (2020) propose a cyclic
multitask learning model with a pretrained BERT
(Devlin et al., 2019) encoder, where both subtasks
and an extra language modeling subtask are stacked
into a loop. This cyclic model yields the current
state-of-the-art (SOTA) performance. In spite of
these successful attempts, they suffer from the data
hunger issue, and ignore other features except sur-
face strings.

In this paper, we explore more expressive fea-
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tures to achieve more effective data utilization for
neural simile recognition. The studied features
can be categorized into two major types: one type
(input-side features) covers the task input, and
the other type (decoding features) captures the in-
terdependence among various decoding decisions.
Particularly, our input-side features include POS
tags, dependency trees and word definitions, and
we propose a novel heterogeneous graph that used
to effectively merge the input-side features. In the
heterogeneous graph, some nodes represent input
words, and we use POS tags to distinguish noun
nodes (in blue) from non-noun nodes (in green) as
shown in 1(a). The noun words are highlighted be-
cause simile components are usually nouns (Hanks,
2012), and their dictionary definitions (if any) are
added to help learn their representations. We also
introduce two subsentence nodes divided by the
given comparator (e.g., “like”) to help contrast the
both sides of the comparator. Meanwhile, each
edge may correspond to a dependency arc (e.g.,
“nsubj”) or point from a noun node to a subsentence
node. We use multiple GAT (Veličković et al.,
2017) layers to represent each graph.

We introduce the decoding features for simile
component extraction. As the tenor and the vehicle
are different entities with the same properties (Nic-
ulae, 2013), intuitively, the tenor information can
help to locate vehicle, and vice versa. To model
such intuition, we sequentially extract tenor and
vehicle, where the encoder states of the first ex-
tracted component (e.g., the tenor) are consumed
as extra decoding features for recognizing the sec-
ond component (e.g., the vehicle). To leverage all
possible decoding features, we take the ensemble
of the models for all three decoding orders (tenor
→ vehicle; vehicle → tenor; in parallel) as the
teacher model. The teacher model then simultane-
ously guide each individual model via distillation
during training. During inference time, we only use
one model to avoid the computational consumption
caused by their ensemble.

Extensive experiments on a simile recognition
benchmark (Liu et al., 2018) show that our pro-
posed model largely outperforms previous SOTA
system and several competitive baselines by 1.7
and 9.3 points for simile sentence classification
and simile component extraction, respectively. Be-
sides, our model trained with 40% data reaches
comparable performances than the baseline using
full training data, indicating that our model is less

data hungry.

2 Problem Formulation

Formally, given an input sentence S = w1, . . . , wi,
. . . , wN containing a comparator wc, the goal is to
detect whether the comparator wc is a simile and
what spans in S correspond to the simile compo-
nents (tensors and vehicles). Note that a compara-
tor may correspond to a literal comparison (rather
than a simile), such as “the sheep looks like an
Australian sheep breed.” Following previous work
(Niculae and Danescu-Niculescu-Mizil, 2014; Liu
et al., 2018; Zhang et al., 2019b; Zeng et al., 2020),
we formulate the two subtasks as binary classifica-
tion and sequence labeling, respectively.

3 Baseline: BERT for Simile Recognition

In this section, we introduce a baseline for simile
recognition based on BERT (Devlin et al., 2019),
temred as BSR.

3.1 Encoding
Given an input sentence S = w1, . . . , wi, . . . , wN ,
we first place special tokens [CLS] and [SEP]
at its beginning and the ending, before feeding
the sequence into a BERT encoder with extra self-
attention (Vaswani et al., 2017) layers. Let H =
{hi}N+1

i=0 be the hidden states of tokens at the top
layer, the hidden state (h0) of [CLS] is used as the
sentence representation.

3.2 Simile Sentence Classification
For simile classification, we feed the sentence rep-
resentation h0 into a linear layer:

p(c|S) = softmax(Wch0), (1)

where c ∈ {true, false} is the label indicating
whether the input sentence S contains simile and
Wc is a model parameter. The corresponding loss
is defined as:

Jsc(c|S; θ) = − log p(c|S) (2)

3.3 Simile Component Extraction
Afterwards, we feed the final node states H into
a fully-connected layer with softmax to conduct
component extraction:

p(T |S) =
N∏

i=1

p(ti|S)

=
N∏

i=1

softmax(We · hi + be),

(3)
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(a) (b)

Figure 1: (a) The architecture of our model taking a heterogeneous graph constructed from input-side features,
and (b) The process of distillation using decoding features. The decoding orders of the three models are “tenor→
vehicle”, “vehicle→ tenor” and “in parallel”, respectively.

where T = t1, . . . , tN is the gold label sequence of
simile component extraction. The possible values
for each ti are {T, V, O}, indicating wi being part
of a tenor, part of a vehicle and none, respectively.
The loss is defined as:

Jce(T |S; θ) = −
N∑

i=1

log p(ti|S), (4)

3.4 Training
Given training data D, we train the model by a
linear interpolation between the two subtasks:

J (D; θ) =
∑

(S,c,T )∈D

(
α · Jsc(c|S; θ)+

(1− α) · Jce(T |S; θ)
)
,

(5)

where θ denotes all model parameters, and α is the
interpolation coefficient between the two subtasks.

4 Model

In this section, we give more details of our model
that takes input-side features (§4.1) and decoding
feature (§4.2) for simile recognition. For fair com-
parison, our model is mostly consistent with the
baseline (§3) with slight changes (shown below)
for incorporating our introduced features.

4.1 Including Input-side Features
We explore the following three types of input-side
features to enhance each input sentence:

• POS Tags: We mainly use the part-of-speech
(POS) information to distinguish nouns and other
words in each given sentence. This is because
simile components are usually nouns.

• Dependency Tree: Dependency trees have been
shown to capture long-range word-to-word de-
pendencies and some shallow semantic informa-
tion. We adopt such knowledge to help our model
learn better sentence representations.

• Word Definitions: We adopt a word sense an-
alyzer (Yao et al., 2021) to find definitions for
the nouns. The definitions are then appended as
input features to our model. Intuitively, using
definitions can improve model robustness and
achieve more effective data utilization. It also
shares a similar spirit with recent prompt-based
research (Schick and Schütze, 2021).

Combination with Heterogeneous Graph We
merge the input-side features for each instance by
constructing a heterogeneous graph G = (V,E),
which includes the set of nodes V and edges E:

Node. In the node set V , each node may rep-
resent a noun, a non-noun word or a subsentence.
This is based on the POS tagging results by a pre-
trained LTP parser*. As simile usually involves
the comparison between a tenor and a vehicle lo-
cated on both sides of a comparator, we introduce
two subsentence nodes that correspond to the left

*https://github.com/HIT-SCIR/ltp
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and right parts split by the comparator, respectively.
Taking Figure 1(a) as the example, the graph con-
tains two noun nodes (v2 and v6), four non-noun
nodes (v1, v3 v4, and v5) and two subsentence
nodes (v0 and v7).

The reason for the above design is to better de-
termine whether the subsentences divided by the
comparator contain different types of objects with
similar attributes, which is crucial for simile sen-
tence classification. We expect that the subsentence
nodes can help highlight the difference between the
two sides of a comparator during information aggre-
gation within the graph neural network. Moreover,
since the considered objects are usually nouns, we
believe that nouns are more important than other
words in this task. Thus, we deliberately differen-
tiate noun and non-noun nodes to emphasize the
positive impact of nouns.

Edges. We consider two main types of edges
in the edge set E. The edges of the first type
(named sd-edge) are essentially dependency arcs.
To avoid excessive trainable parameters, we restrict
the edges to only cover the top 8 most frequent
dependency relations in the training data. Mean-
while, we convert all rest dependency relations as
“other”. By doing so, we expect that the sd-edges
are able to capture the long-distance dependency
between each tenor and its vehicle. An edge of
the second type (named ns-edge that is short for
noun-subsentence edge) connects a noun node with
a subsentence node. In this way, the impacts of
nouns are highlighted when aggregating informa-
tion for subsentence nodes. In order to distinguish
the two subsentence nodes, we assign each ns-edge
with a label that can either be “con” or “not-con”,
indicating whether the subsentence contains the
noun. Using Figure 1(a) as the example, the la-
bels of many sd-edges are set to “other” except
for “nsubj”, “prep” and “pobj”. For the ns-edges,
as “v2” belongs to the left subsentence, the edge
labels for “v2 → v0” and “v2 → v7” are “con” and

“not-con”, respectively.

Heterogeneous Graph Encoding As shown in
Figure 1(a), we modify the baseline encoding phase
(§3.1) by replacing the extra self-attention layers
with GAT (Veličković et al., 2017) layers in order to
consume the proposed heterogeneous graphs. The
initial state (e.g., g(0)i ) for a word node (in blue and
green) is initialized from the corresponding BERT
output (hi). For a subsentence node (in orange),

we initial its state using average pooling over the
hidden states of the words within the subsentence.
The embeddings (e.g, eij) for the edge labels are
randomly initialized.

At each GAT layer, we sequentially conduct
graph attention and gating mechanisms to update
all node states. Taking the l-th layer for example,
we first update each g(l)i with the hidden states (e.g.,
g
(l)
j ) of its directly connected neighbors as follows:

zij = LeakyReLU(Wa[Wqg
(l)
i ;Wkg

(l)
j ; eij ]),

αij = softmax(zij) =
exp(zij)∑

k∈Ni
exp(zik)

,

g
(l+1)
i = σ


∑

j∈Ni

αijWvg
(l)
j


 ,

(6)

where αij is the attention score indicating the im-
portance of node j to node i, Ni is the set of neigh-
borhood nodes to the node i in the graph, W∗ are
model parameters†, and σ(∗) is a sigmoid function.

Note that different from the BERT-based simile
recognition model, which has only one sentence
representation (§3.2), there are two subsentence
representations (g(L)0 and g(L)N+1). Hence, we adjust
Eq. 1 for simile sentence classification as follows:

p(c|S) = softmax(Wc[g
(L)
0 ; g

(L)
N+1;

|g(L)0 − g(L)N+1|]E>c ), (7)

4.2 Leveraging Decoding Features
As shown in Figure 1(b), we adopt two extra mod-
els to extract simile components (tenor and vehi-
cle) sequentially: one extracts the tenor before the
vehicle (modelt) while the other functions in the
opposite direction (modelv). Different from the
baseline, which extracts simile components in par-
allel (modelp), both models use the encoder state of
the first component as extra features to the second
component extractor. In particular, the extractor for
the second component is defined as

p(Tc2 |S) =
N∏

i=1

p(tc2,i|S)

=

N∏

i=1

softmax(W c2
e · [g(L)i ; g(L)c1 ] + bc2e ),

(8)
†For the remaining of this paper, we use W∗ and b∗ to

denote model parameters.
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where Tc2 is the gold label sequence for extracting
the second simile component, and g(L)c1 denotes the
hidden state for the first simile component. Both
W c2

e and bc2e represent the parameters for the extra
simile component extractor.

To leverage all possible features, inspired by
(Zhang et al., 2019a; Wu et al., 2022), we apply
distillation to encourage each model to mimic the
behaviors of their ensemble:

J ∗kl(D; θ∗) =KL(p∗(T |S)||pensemble(T |S))
(9)

where p∗(T |S) and θ∗ are the output probabil-
ities and parameters for one individual model,
KL(∗) denotes the Kullback-Leibler divergence,
and J ∗kl(D; θ∗) is the distillation objective. We
sum up the logits of all models as their ensemble,
and pensemble(T |S) denotes the probability for the
ensemble. The final objective of each model can
be denoted as:

J ∗final(D; θ∗) = λJ ∗(D; θ∗) + (1− λ)J ∗kl(D; θ∗)
= λ

∑

(S,c,T )∈D

(
α · Jsc(c|S; θ)+

(1− α) · Jce(T |S; θ)
)
+ (1− λ)

KL(p∗(T |S)||pensemble(T |S))
(10)

where J ∗(D; θ∗) is the training objective defined
in Eq.5, and λ is the hyper-parameter to control
the impacts of two objectives. Here we linearly
increase λ from 0 to 1 throughout training. It is
worth noting that for less consumption, only one
model is used during inference time.

5 Experiments

We conduct detailed experiments and analysis to
investigate the effectiveness of our model.

5.1 Setup
Datasets. We choose the Chinese Simile

Recognition benchmark (Liu et al., 2018), which
consists of 11,377 sentences (roughly half of them
contain simile). Since no data split on training,
developing and testing is provided, we follow pre-
vious work to conduct 5-fold cross validation‡. We
also follow previous work to evaluate our models
using the official scorer that measures Precision,
Recall and F1 score.

‡In our experiments, the standard deviations of the 5-fold
cross validation for simile sentence classification and simile
component extraction are 0.29 and 0.32, respectively.

Comparisons. To comprehensively evaluate
the BSR baseline and our HGSR model, we com-
pare them with the following systems:

• MTL (Liu et al., 2018). A multi-task learn-
ing model, where simile sentence classification,
simile component extraction and sentence recon-
struction are jointly modeled.

• Self_Attn+POS (Zhang et al., 2019b). It extends
(Liu et al., 2018) with POS information and uses
several self-attention layers to enhance the origi-
nal LSTM encoder.

• Cyc-MTL (Zeng et al., 2020). It extends (Liu
et al., 2018) by stacking the three subtasks into a
cycle to let them better benefit from each other.

To verify that our heterogeneous graph can ef-
fectively incorporate POS features, we also build a
variant of our model (HGSR-ConcatPOS), which
removes noun nodes from the graph and concate-
nates each word embedding with its POS embed-
ding.

Implementation Details. We determine hy-
perparameters α as 0.1 according to the model per-
formance on the validation set. Following Zeng
et al. (2020), we employ a pre-trained Chinese
BERT§ model to learn contextual word embeddings
and then finetune this model using our training data.
Besides, we randomly initialize the representation
vectors for edges and label embeddings with 50
and 100 dimension vectors, respectively. The max
length and word number of sentence are set to be
128 and 100 by padding shorter sentences and cut-
ting longer ones. The hidden state size of the GAT
layer is set to 300. Parameter optimization is per-
formed using Adam with learning rate 2e-5 and
batch size 8. And we stack two layers of GAT
to gather global information after conducting sim-
ile sentence classification. For fair comparison, we
also stack two self-attention layers on the BSR base-
line. After training, we evaluate modelt, modelv
and modelp on the development set and pick up the
best one for inference.

5.2 Effect of GAT Layer Number L
We first investigate the effect of the GAT layer
number L on the development set. When L varies
from 1 to 3, the F1 scores of our model on simile
classification are 91.32, 92.44, and 92.32, those on
component extraction are 86.74, 87.53, and 87.49,

§https://github.com/ymcui/Chinese-BERT-wwm
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Model
Sentence Classification Component Extraction

Precision Recall F1 Precision Recall F1
MTL (Liu et al., 2018) 80.84 92.20 86.15 61.60 73.61 67.07
Self_Attn+POS (Zhang et al., 2019b) 80.44 91.69 85.70 58.91 74.65 65.85
Cyc-MTL (Zeng et al., 2020) 85.81 94.43 89.92 73.97 77.61 75.74
HGSR-ConcatPOS 88.73 94.30 91.43 81.23 87.76 84.37
HGSR 89.04 94.39 91.64 81.86 88.37 84.99

Table 2: Main test results. Please note that we outperform all baselines, including the SOTA Cyc-MTL.
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Cyc-MTL, HGSR for Simile Component Extraction
Cyc-MTL, HGSR for Simile Sentence Classification

Figure 2: F1 scores on different groups of test instances
according to sentence lengths. Dashed lines and solid
lines represent simile sentence classification and simile
component extraction, respectively.

respectively. Therefore, we setL as 2 in subsequent
experiments.

5.3 Main Results

The main test results are shown in Table 2. We
can observe HGSR outperforms all the baselines
and achieves SOTA F1 scores on both subtasks,
which demonstrates the effectiveness of our meth-
ods. In order to further understand advantages of
HGSR, we follow Zeng et al. (2020) to conduct
more evaluations.

F1 Score against Sentence Length. As
shown in Figure 2, we compare our model with
Cyc-MTL (Zeng et al., 2020) regarding different
ranges of sentence length, where we use their pro-
vided results that correspond to the reported perfor-
mance. Results show that our model is consistency
better than Cyc-MTL in all groups, and our model
always performs better with the increase of sen-
tence length. This verifies the effectiveness of our
dependency-based features for helping handle the
long-range dependency problem.

F1 Score against the Distance between a
Tenor and a Vehicle. As shown in Figure 4, we
also analyze the results regarding different groups

20% 40% 60% 80% 100%

Data Proportion

55
60
65
70
75
80
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F1
-s

co
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BSR, HGSR for Simile Component Extraction
BSR, HGSR for Simile Sentence Classification

Figure 3: F1 scores on low-resource settings where
only a certain percent of data is available for training.
Different line colors and styles represent different tasks
and systems.
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Cyc-MTL, HGSR for Simile Component Extraction
Cyc-MTL, HGSR for Simile Sentence Classification

Figure 4: F1 scores on different groups of test instances
according to the distance between a tenor and a vehicle.

of distances between a tensor and a vehicle. We
can observe that both models yield descent perfor-
mances on simile sentence classification, while the
challenge is still large for simile component extrac-
tion. For Cyc-MTL, the performance in terms of
F1 score drops to around 40% when there are more
than 15 words in between, and the number further
drops to 30% if there are more than 20 words. On
the other hand, our model can yield F1 scores of
more than 80% and more than 60% for these situa-
tions, respectively. This indicates the robustness of
our model on the most challenging cases.

Besides, we analysis models F1 Score on Low
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Resource Settings to measure their capabilities
when data is insufficient. As shown in Figure 3,
we train several HGSR and BSR models under the
supervision of 20%, 40%, 60%, 80% and 100%
training data and then evaluate them on the test
set. We can observe that the HGSR consistently
surpass BSR in all data settings. Besides, it is en-
couraging to see that HGSR only drops 12.9% on
simile component extraction when data is insuffi-
cient (20%), compared with 31.6% of BSR. And
only 40% training data is enough to train a satisfac-
tory HGSR, which even surpasses the BSR trained
by 100% training data. This indicates that the pro-
posed HGSR is less data hungry with the help of
input-side and decoding features.

Finally, we replace the pretrained model from
Chinese BERT with a Chinese RoBERTa-wwm
(Cui et al., 2020b), so as to further investigate the
generality of our model. We also apply the Chinese
RoBERTa-wwm to Cyc-MTL, which is our most
competitive baseline. Results are shown in Table
3. We can observe that HGSR still surpasses both
Cyc-MTL and BSR on for both sentence classifica-
tion and component extraction tasks. This verifies
that our model is effective with various pretrained
models.

5.4 Ablation study

To investigate the influence of different features on
the model effects, we conducted an ablation study
regarding the two major features.

Input-side features. We explore the follow-
ing variants to investigate the impacts of input-side
features: 1) w/o dependency. In this variant, we
let each word node to connect all other word nodes
rather than following the dependency arcs. This
is for pinpointing the effect of using dependency
information. 2) w/o POS. This baseline does not
utilize the POS information, where each subsen-
tence node connects all word nodes rather than only
noun nodes. 3) w/o definitions. In this variant, only
the input sentence will be fed into the model. 4)
w/o subsentence nodes. In this variant, we merge
the two subsentence nodes into one global node
and the initial state of the global node is the repre-
sentation of “[CLS]”.

As shown in group ¬ of Table 4, consistent per-
formance decrease on both subtasks is witnessed af-
ter removing each input-side features. These results
verify the effectiveness of using dependency tree,
POS information, word definitions as well as the

subsentence nodes. Among these factors, we ob-
serve that the subsentence nodes cause the greatest
impact on sentence classification, which indicates
the effectiveness of highlighting the difference be-
tween the two sides of the comparator. Besides, the
word definitions give the greatest impact on compo-
nent extraction. This quite fits our expectation and
is consistent with previous observations (Niculae
and Danescu-Niculescu-Mizil, 2014).

Decoding features. We further study the ef-
fectiveness of the decoding features by removing
modelt/modelv/modelp, respectively.

As shown in group ­ of Table 4, we find con-
sistently decline of the model performance when
one or more sub models are removed, suggesting
that each model learns advantages from other mod-
els. Most importantly, we observe a large decrease
(4.5/5.1 F1 points) on Vehicle F1/Tenor F1 when
modelt/modelv is removed. These results strongly
suggest the importance of utilizing the proposed
decoding features. Besides, we also observe a per-
formance decrease by removing modelp, suggest-
ing that it also helps improve the whole system. By
combining both comparison results, we can reach
the conclusion: knowledge distillation with the en-
semble of all three sub models (modelt, modelv and
modelp) is important for the overall performance
of our model.
5.5 Case Study
Based on the ground-truth results, we analyze the
prediction results of Cyc-MTL and HGSR on the
test set, then we group the errors into four ma-
jor types and count their respective occurrences.
The four types of errors are: component dropping,
where an output misses important simile compo-
nents; locating error, where a wrong span is ex-
tracted as a simile component; simile classification
error, where a simile/literal sentence is erroneously
considered as the other type; redundant component
extraction, where extra spans (in addition to the
gold spans) are extracted as simile components.
For better illustration, we list several representative
cases, as shown in Table 5.

In general, HGSR is much better than Cyc-MTL
regarding the first 3 types of errors. It can par-
ticularly reduce the locating error issue, where
the error reduction is more than 50%. Besides, it
also largely alleviates the component dropping is-
sue. Both situations are highly correlated with the
dependency information, which can be well repre-
sented by HGSR. One typical example is the second
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Model
Sentence Classification Component Extraction

Precision Recall F1 Precision Recall F1
BSR 87.06 93.48 90.16 74.51 78.56 76.48
Cyc-MTL (Zeng et al., 2020) 86.46 95.03 90.54 75.07 79.91 77.41
HGSR 89.04 94.39 91.93 81.86 88.37 85.42

Table 3: The model performance with RoBERTa.

Model Sentence Classification (F1)
Component Extraction

Tenor (F1) Vehicle (F1) Overall (F1)
HGSR 91.64 90.54 91.11 84.99

¬

w/o dependency 91.36 85.04 90.77 83.43
w/o POS 91.20 87.41 89.13 83.69
w/o definitions 90.83 85.75 89.54 82.07
w/o subsentence nodes 90.64 87.62 90.91 83.83

­

w/o modelt 91.23 89.95 86.61 83.26
w/o modelv 91.42 85.40 90.95 83.52
w/o modelp 91.44 88.84 90.30 83.12

BSR 89.84 84.13 87.18 75.12

Table 4: Ablation study on the main test set, where “¬” and “­” represent the input features and decoding features,
respectively.

case in Table 5. Cyc-MTL extracts “tortoise”, prob-
ably because it is the main entity in the sentence.
On the other hand, HGSR correctly extracts “shell”,
which directly connects with the comparator “like”
in the dependency tree. For the last case, HGSR
predicts both “sky” and “it”, where they form a
coreference relation. We consider the prediction of
HGSR as reasonable, though the reference does not
contain “it”.

6 Related work

Our related work mainly includes the studies of
simile recognition and heterogeneous neural net-
work for NLP.

Simile Recognition. Early studies mainly fo-
cus on classifiers based on manually created pat-
terns and syntactic features. For example, Bin et al.
(2008) adopts a maximum entropy model to recog-
nize simile sentences. In addition, Niculae (2013)
uses syntactic patterns to extract potential sim-
ile components. Niculae and Danescu-Niculescu-
Mizil (2014) aims to distinguish between figurative
and literal by using a series of linguistics cues as
features. However, such pattern-based methods can
not deal with the sentences with complex syntactic
structures. Inspired by promising results of deep
neural networks, Liu et al. (2018) and Zhang et al.

(2019b) introduce multitask learning into simile
recognition. Furthermore, Zeng et al. (2020) pro-
poses Cyc-MTL that considers the inter-correlation
between different subtasks of simile recognition.

HGNN for NLP. Recently, heterogeneous
graph neural network (HGNN) has been shown
effective in several NLP tasks, such as relation ex-
traction(Zhang et al., 2018), sentence ordering(Yin
et al., 2019; Lai et al., 2021; Yin et al., 2021), graph
node classification (Wang et al., 2019), question
answering (Tu et al., 2019), intent recommendation
(Fan et al., 2019), text classification (Wang et al.,
2021), event detection (Wang et al., 2018; Cui et al.,
2020a), machine translation (Yin et al., 2020) and
document summarization (Wang et al., 2020). To
our knowledge, this is the first attempt to explore
HGNN for simile recognition. Besides, different
from previous work that mainly focuses on encod-
ing one type of features (e.g. dependency tree),
ours explores more relevant features to enhance
graph representations.

7 Conclusion

In this paper, we propose HGSR, which gets the
most out of task features to alleviate the data hunger
issue for simile recognition. Concretely, we ex-
plore the input-side features and the decoding fea-
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Type & Cnt Example Cyc-MTL HGSR

Component
dropping
(137/77)

一篇篇作文、日记像泉水一样从笔下涌出。
Pieces of essays and diaries gush out from the
writing like spring.

Type: simile
Tenor: 日记(diaries)
Vehicle: 泉水(spring)

Type: simile
Tenor: 日记(diaries)
Tenor: 作文(essays)
Vehicle: 泉水(spring)

Locating error
(86/57)

乌龟的壳像小山。
The shell of the tortoise is like a hill.

Type: simile
Tenor: 乌龟(tortoise)
Vehicle: 小山(hill)

Type: simile
Tenor: 壳(shell)
Vehicle: 小山(hill)

Simile
classification

error
(197/156)

如果不保护动物，大熊猫迟早会像恐龙一样
灭绝。
If animals are not protected, pandas will become
extinct like dinosaurs sooner or later.

Type: simile
Tenor: 熊猫(pandas)
Vehicle: 恐龙(dinosaurs)

Type: literal

Redundant
component
extraction

(15/18)

天空中没有星星，它像一个巨大的黑洞。
There are no stars in the sky, it likes a huge black
hole.

Type: simile
Tenor: 它(it)
Vehicle: 星星(stars)

Type: simile
Tenor: 天空(sky)
Tenor: 它(it)
Vehicle:黑洞(black hole)

Table 5: Case Study on four major types of errors. The gold answers are highlighted with blue and green colors in
the “Example” column. The counts separated by “/” in the first column represent the number of mistakes made by
Cyc-MTL and HGSR for each error type, respectively.

tures. The input-side features, which includes POS
tags, dependency tree and word definitions are en-
coded via heterogeneous graph encoding. For the
decoding features, we build two models sequen-
tially extracted simile components in the opposite
orders, then force these two models and the ba-
sic model which extracts components in parallel
to mimic the behavior of their ensemble. During
inference time, only one of these models will be
used. Experimental results and in-depth analyses
demonstrate the superiority of our model under
both sufficient and insufficient data settings.

Limitations

The limitations of this work are the following as-
pects: 1) In this work, experiments are conducted
only on Chinese due to the availability of descent-
scaled annotated data. We will evaluate the pro-
posed model on other languages once the corre-
sponding large-scale datasets are available. 2)
Same as previous work (Liu et al., 2018; Zeng
et al., 2020), we only focus on the result of simile
recognition itself, ignoring further discussions on
its contribution for other tasks. 3) The proposed
HGSR uses model ensemble as the teacher model
for knowledge distillation during training, mak-
ing the training phase not eco-friendly. We plan
to explore the lightweight models and investigate
alternative eco-friendly plans in the future.
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