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Abstract

Language use changes over time, and this im-
pacts the effectiveness of NLP systems. This
phenomenon is even more prevalent in social
media data during crisis events where mean-
ing and frequency of word usage may change
over the course of days. Contextual language
models fail to adapt temporally, emphasizing
the need for temporal adaptation in models
which need to be deployed over an extended
period of time. While existing approaches con-
sider data spanning large periods of time (from
years to decades), shorter time spans are criti-
cal for crisis data. We quantify temporal degra-
dation for this scenario and propose methods
to cope with performance loss by leveraging
techniques from domain adaptation. To the
best of our knowledge, this is the first effort
to explore effects of rapid language change
driven by adversarial adaptations, particularly
during natural and human-induced disasters.
Through extensive experimentation on diverse
crisis datasets, we analyze under what condi-
tions our approaches outperform strong base-
lines while highlighting the current limitations
of temporal adaptation methods in scenarios
where access to unlabeled data is scarce. 1

1 Introduction

Patterns of language use change constantly over
time, often in predictable and analyzable ways
(Hamilton et al., 2016a; Kulkarni et al., 2015; Som-
merauer and Fokkens, 2019). As language changes,
the performance of NLP systems can be negatively
impacted (Lazaridou et al., 2021). In most scenar-
ios, training corpora are derived from a snapshot of
data at some moment of time in the past, which puts
the reliability of model performance on future data
into question. Yet, there lacks a concrete reason-
ing or evidence that temporal adaptation elevates

1We publish the code for our experi-
ments at https://github.com/UKPLab/
emnlp2022-temporal-adaptation.

model performance. Despite the popularity of large
language models and their usefulness in many NLP
domains (Devlin et al., 2019), the representation of
temporal knowledge in those models so far remains
an open challenge.

The increased interest in temporal adaptation (i.e.
scenarios in which the training and test datasets are
drawn from different periods of time) has led to
the curation of a number of datasets such as NYT
Annotated Corpus (Sandhaus, 2008) and Amazon
Reviews (Ni et al., 2019) that have been the focus
of most of the recent work in this area. However,
these benchmark datasets are curated in such a
way that they can only capture temporal change
of language over long periods of time (from years
to decades), giving access to a large amount of
data. In the contrary, on social media, language
changes can happen rapidly (Kulkarni et al., 2015;
Eisenstein, 2013). Word usage and topics can even
change over the span of a single day (Golder and
Macy, 2011), especially during very dynamic sce-
narios like crisis or disastrous events (Reynolds
and Seeger, 2005; Del Tredici et al., 2019). We
denote these phenomena induced by linguistic and
semantic changes over time as temporal drift.

Accounting for temporal drift is critical in cri-
sis situations in which information patterns can
vary greatly between the phases of emergency man-
agement for crisis. For this purpose, we study
short text classification in crisis situations. Given
the time-critical nature of crisis scenarios, gather-
ing annotations is too time-consuming and transfer
learning is challenging due to the innate differences
among the type of events (hurricane vs. earthquake)
and the respective information needs. Thus, we of-
fer a study investigating the impact of temporal
drift on crisis datasets spanning shorter time peri-
ods (days/weeks), as well as datasets with relatively
few samples (ranging from ∼1k to 22k).

Assessing rapid temporal drift is a challeng-
ing problem due to different linguistic phenomena
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new york state official:
hurricane #sandy could more powerful
than hurricane #irene

so far i've come up with
sandystorm, shifty sandy, super sandy

back hurts! been at practice since
11:30am smh #postsandy

my area was blasted by a
superstorm and i am voting
tomorrow. i don't care who you
vote for, use your voice
and be heard!

first workout
since pre-sandy!
yes i can!

Tweets about Hurricane Sandy in 2012

Figure 1: The blue line indicates the frequency of tweets during the hurricane Sandy (Stowe et al., 2018). The
displayed tweets demonstrate challenging linguistic phenomena for a text classification model, e.g. semantic shifts
(#irene as reference to a hurricane rather than a person) or neologisms (pre-sandy).

which often require extensive knowledge about the
temporal structure of the context. In Figure 1, we
provide examples from Stowe et al. (2018) dataset,
which were collected from the 2012 New York City
landfall of Hurricane Sandy.

Existing approaches like continual learning (Gu-
rurangan et al., 2020; Loureiro et al., 2022a)
or learning time-specific models (Agarwal and
Nenkova, 2022) cannot be applied to this scenario
as access to a large set of unlabeled data from the
temporal target distribution is missing. Unlike ex-
isting approaches, which react to incoming anno-
tated data to update their models, we use temporal
metadata as a training signal such that the existing
contextualized representations are adapted tempo-
rally. More specifically, we are the first to apply
projection methods (Wang et al., 2014) and do-
main adaptation approaches (Ganin et al., 2016;
Bamler and Mandt, 2017) to learn time-aware con-
textualized embeddings. Our results highlight the
challenges of integrating temporal information into
contextualized embeddings with improvements be-
ing dependent on factors like dataset size - and
thereby emphasizing that temporal adaptation re-
mains a challenge in scenarios where we do not
have access to large unlabeled data.

In summary, we make the following contribu-
tions:

1. We investigate temporal drift during crisis
events and its adversarial effect on task per-
formance. To the best of our knowledge, this

is the first study of temporal effects on text
classification performance in crisis scenarios,
when temporal drift is rapid and access to data
is scarce.

2. We investigate the role of the domain of data
in temporal drift and propose a simple metric
to quantify the impact of temporal degradation
on task performance.

3. We propose methods that adapt future data to
known models, improving performance with
no additional labeled data.

4. Through experiments on a multitude of di-
verse text classification datasets collected dur-
ing crisis events, we analyse the effectiveness
of our proposed methods over strong base-
lines.

2 Related Work

Analyzing semantic change of text over time has
been of great interest since the pioneering work
by Hamilton et al. (2016b) and others (Kutuzov
et al., 2018; Rudolph and Blei, 2018; Martinc et al.,
2020; Gonen et al., 2020). However, its influ-
ence on downstream task performance has only
recently gained attention. Most importantly, the ad-
vent of contextualized word embeddings and large
pretrained language models has led researchers to
re-evaluate the role of temporality in language mod-
eling (Jawahar and Seddah, 2019; Lazaridou et al.,
2021; Hofmann et al., 2021; Kulkarni et al., 2021)
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and text classification (Bjerva et al., 2020; Florio
et al., 2020; Röttger and Pierrehumbert, 2021; Agar-
wal and Nenkova, 2022).

The performance degradation due to temporal
factors has been confirmed in several studies and
across multiple domains. Jaidka et al. (2018) ana-
lyzed the temporal performance degradation of age
and gender classification models based on user’s
social media posts. Based on features derived from
Latent Dirichlet Allocation and word embeddings,
they find that models perform best if test and train-
ing data come from the same time span. Florio
et al. (2020) investigated temporal effects on Hate
Speech detection in Italian social media over the
period of five months. Their results suggest that
models trained on data temporally closer to the test
data perform better with transformer based models.
Loureiro et al. (2022b) studied semantic shifts in
social media and proposed a dataset annotated with
words that have undergone a semantic shift over
the past two years. Loureiro et al. (2022a) focus
on Twitter as text domain and contribute pretrained
language models which have been further trained
on time-specific data from Twitter.

Bjerva et al. (2020) propose to use sequential
subspace alignment (SSA) to adapt contextualized
word embeddings for language change over time.
Their results suggest that SSA applied on past data
is able to outperform baselines which have access
to data from all time-steps. Röttger and Pierre-
humbert (2021) compared time-agnostic domain
adaptation with temporal domain adaptation which
considers the temporal order of the data. They
found that, while temporal adaptation clearly out-
performs domain adaptation in language model-
ing, this does not necessarily translate onto down-
stream classification performance due to updated
tokens not being relevant for the task. Agarwal
and Nenkova (2022) found the temporal model per-
formance deterioration to be less significant when
using language representations which have been
pretrained on temporally closer data.

Finally, Luu et al. (2022) have made the effort
of conducting a large-scale study of temporal mis-
alignment, the generalized scenario where training
and evaluation data are drawn from different pe-
riods of time. Across multiple NLP classification
tasks and domains they identify performance degra-
dation with varying degrees but with social media
and news being the most affected domains.

We contribute to the existing line of work by

quantifying the temporal effects on downstream
task performance over short time periods (days and
weeks) during crisis events. In such a scenario and
in contrast to previous work, we do not assume
access to large corpora of unlabeled data for tem-
poral adaptation via continuous pretraining. Our
proposed approaches temporally adapt pretrained
contextualized embeddings to learn time-aware em-
beddings and we evaluate their effects on down-
stream classification tasks.

3 Methods Overview

Luu et al. (2022) describe three distinct stages of a
typical NLP system which consist of a pretraining
stage, a domain (or temporal) adaptation stage and
a fine-tuning stage. Separating the adaptation and
fine-tuning stages makes the implicit assumption
that there is access to unlabeled data from the (tem-
poral) target distribution which has been proven to
be beneficial for temporal adaptation (Luu et al.,
2022). In contrast, we are looking at the dynamic
setting during crisis events. Temporal alignment
through continuous pre-training is not feasible due
to the lack of unlabeled data and time constraints
imposed by the application scenario (e.g. crisis
monitoring). The latter also limits the feasibility
of an online learning setup which requires new an-
notations in a continuous stream. Finally, transfer
learning is difficult due to inherent differences in
information needs (i.e. the type of labels) and do-
mains (e.g. hurricane vs. earthquake).

Therefore, in this section we adapt and evaluate
methods which are specifically designed for com-
bining temporal adaptation and fine-tuning. Their
training procedures are adapted to incorporate tem-
poral information about the data along with the
textual input. We describe each approach in the
following:

Adapted Language Modelling (ALM)
Similar to previous work (see Section 2), we ex-
plore temporal adaptation via pretraining but use
only the available training data. We therefore con-
tinue with the language modeling objective of our
respective pretrained language model on the train-
ing data and use the resulting fine-tuned model
(FT) for downstream task training. Following Dhin-
gra et al. (2022), we investigate a variation for tem-
poral modelling (TM) by concatenating time as
textual information to the input to encourage the
language model to learn temporally relevant fea-
tures during pretraining.
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DCWE: Dynamic Contextualized Word
Embeddings
Hofmann et al. (2021) introduced a principled way
to impart extra-linguistic knowledge into contextu-
alized word embeddings by involving a prior distri-
bution. This enables us to integrate temporal infor-
mation into the embeddings during training.2 More
specifically, for each temporal snapshot (e.g. days,
months, years, etc.) present in the training data, an
additional set of parameters is learned which acts
as a temporal offset added to the original word em-
beddings. This way the model is able to maintain
the semantic meaning of a word embedded in its
temporal context. We adapt this idea to our setting
by introducing additional parameters for shifting
the pre-trained contextualized embeddings. Given
a sequence of words/tokens W = [w1, w2, ..., wn]
and their corresponding pre-trained embeddings
H = [h1, h2, ..., hn]. To account for the tempo-
ral effect on the word meanings, we model word
embeddings as a function of temporal context t
associated to W .

h∗i = f(hi, t) (1)

Since meanings of most of the words in the vo-
cabulary are temporally stable, we can place a Nor-
mal prior on h∗i .

h∗i ∼ N (hi, λ
−1I) (2)

Hence, we write as h∗i = hi + di, where the off-
set di is normally distributed as di ∼ N (0, λ−1I).
However, pre-trained LMs make this temporal
adaptation easily applicable to any task by adding
only a regularization term Ltemporal on top of the
task specific loss Ltask.

Ltemporal =
λ

n

n∑

i=1

(||di||22+K||di−di−1||22) (3)

For training the model, the overall loss L =
Ltask + Ltemporal is minimized. Similarly to Hof-
mann et al. (2021), we use K = 103 from Bamler
and Mandt (2017), to enforce that h∗i s change
smoothly over time.

LMSOC: Socio-temporally Sensitive Language
Modeling
Similar to DCWE, Kulkarni et al. (2021) propose
a method to learn extra-linguistic context using

2Other extra-linguistic information like social context can
also be integrated.

graph representation learning algorithms and then
primes with language models to generate language
representations grounded in a socio-temporal con-
text. We model the temporal order information
as a linear chain graph and adapt this method to
our setting by appending temporal graph embed-
dings to the initial layers of the pre-trained lan-
guage model. During fine-tuning of the language
model, the graph embeddings are kept frozen to
inductively yield temporally-aware embeddings.

TAPH: Time Aware Projection on Hyperplanes

Time adds an additional context or dimension to
the knowledge making temporal scoping an im-
perative part while deriving context embeddings.
Therefore, we model temporal information as a hy-
perplane and define a projection operation (Wang
et al., 2014) on it. To build a time-invariant classifi-
cation model, we project the sentence-embedding
(Reimers and Gurevych, 2019) of each text on a
hyperplane to obtain a time-aware sentence embed-
ding. We describe the method in more detail.

Let X = [x1, x2, ..., xn] be a given sequence of
words and H be its sentence embedding. Since
the temporal span of our data is short, we assume
that the temporal hyperplane wt represents the time
frame of the training data.3 We derive time-aware
sentence embeddings Ht using our defined projec-
tion operation as follows:

Ht = H − w⊺
tHwt (4)

While training the model, we learn the hyper-
plane representation wt in addition to fine-tuning
the pre-trained embeddings in an end-to-end fash-
ion. However during inference, we assume that we
could ‘teleport’ the data to the past by projecting
their sentence embeddings on the hyperplane wt in
order to revert their temporal changes. We then use
these embeddings in the downstream tasks.

TDA: Temporal Domain Adaptation
Temporal Adaptation can also be interpreted as a
variant of domain adaptation with the difference
that the language change happens within the same
domain, e.g. induced by external events or the
general dynamic characteristics of the source in-
frastructure (e.g. social media platforms or news
outlets). We adapt a widely used domain adap-
tation method (Ramponi and Plank, 2020) to our

3For longer time spans it is possible to divide the training
data into multiple static bins.
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setting. We learn time-aware word representations
by adding an additional classification layer during
training to predict the time of each text and apply
the Gradient Reversal method (Ganin et al., 2016).
In this way, the input does not change during the
forward pass but this additional layer affects the
model parameters during back-propagation of error
by an additional penalizing factor.4 This acts as an
adversarial training objective forcing the model to
adapt to the temporal structure of the data.

4 Experimental Setup

4.1 Data
We identify a collection of social media data dur-
ing crisis with observable temporal phases (pre-,
acute- and post-crisis), rapid change in language
and a natural change in distribution over time - en-
abling us to evaluate how well temporally adapted
models generalize over time. We use three datasets
sampled from Twitter: Sandy, T26, and Humaid.
We provide an overview here and refer to the Ap-
pendix A for dataset details.

Sandy The dataset by Stowe et al. (2018) col-
lected during hurricane Sandy in 2012 contains
approximately 22,000 tweets spanning 17 days cen-
tered on landfall in New York City, annotated for
binary relevance to the storm and its effects.5 The
tweets were collected by first identifying users im-
pacted by the event, then retroactively pulling their
data from before, during, and after the event. As
opposed to keyword collection, this provides a rel-
atively broad collection of both relevant and non-
relevant tweets and a more complete dataset for
evaluating temporal drift, as each tweet doesn’t
necessarily contain the same keyword(s).

T26 The CrisisLex T26 (T26) dataset (Olteanu
et al., 2015) includes labeled tweets for 26 differ-
ent crisis events, labeled by informativeness into
four different categories6: (1) related to the crisis
and informative, (2) related to the crisis but not
informative, (3) not related to the crisis, and (4)
not applicable category. This collection reflects a
wide variety of events covering natural and human-
created emergencies, with the added difficulty that
the individual datasets are relatively small, with

4During the back propagation its corresponding gradients
are multiplied with a negative scalar (hyperparameter λ)

5https://github.com/Project-EPIC/
chime-annotation

6http://www.crisislex.org/
data-collections.html#CrisisLex
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Figure 2: Overview of the data splits used in our ex-
periments. Bins in blue are used during training, bins
in yellow for testing, grey bins are not used. The PRO-
GRESSIVE setting comprises multiple experiments with
increasing training data size and a single test data bin
moving forward temporally.

each event containing only approximately 1,000
tweets.

Humaid The Humaid dataset (Alam et al., 2021)
is similar to T26, containing data about 19 differ-
ent events with dataset sizes ranging from 575 to
9467 tweets. They are annotated with 11 different
classes designed to capture fine-grained informa-
tion related to disaster events.

4.2 Data Splits

We follow previous work (Lazaridou et al., 2021;
Agarwal and Nenkova, 2022) and create time-based
data splits to assess the temporal performance
degradation. Specifically, we use three variants
of dataset splits: CONTROL, TEMPORAL and PRO-
GRESSIVE. We illustrate this in Figure 2.

TEMPORAL Setup First, we split the entire data
into two halves which cover equally-sized time pe-
riods. We call these first temporal half and the
second temporal half, respectively. In the TEM-
PORAL setting, we use all the data from the first
temporal half as the training data and a test set
which is comprised of a randomly sampled 50%
of data from the second temporal half of a dataset.
This evaluates the model’s temporal generalization
capabilities on test data from a temporally distant
distribution than the training data.

CONTROL Setup To assess whether TEMPORAL

setup constrains model’s generalization capabili-
ties, we compare its performance with a CONTROL
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setup. Here, we evenly spread the training data
over time frames, exposing the model to the full
knowledge of all time. In this setting, the training
data comprises of 50% of instances from the first
temporal half, along with 50% instances from the
second temporal half, matching the total training
data from the TEMPORAL setup. We use the same
test set as in TEMPORAL setup while ensuring that
there is no overlap between the train and test split
from the second temporal half.

Under the assumption that a temporal gap be-
tween training and target distribution leads to per-
formance decay, we expect that the CONTROL setup
will yield better scores, as the model has access to
training instances from the same temporal distribu-
tion as the test data.

PROGRESSIVE Setup As described previously,
semantic changes are likely to occur in short time
spans within crisis-related data streams. Therefore,
to investigate a more fine-grained analysis of tem-
poral performance decay, we simulate a scenario
in which an event is progressing, we have access
to all the previous data, and need to take decisions
about the incoming data. In this setup, we split the
entire dataset into ten temporally ordered bins with
even samples. Then, for each test bin Bt, we use
all preceding bins B0 to Bt−2 for training. To iden-
tify the best performing model across all training
epochs, we use bin Bt−1 for development.

4.3 Baseline

For a consistent performance comparison, all
proposed models use bert-base-cased as
their underlying backbone model for deriving pre-
trained embeddings.

For the FT setup (see Section 3), we use the
available training data for each dataset to run
masked language modelling for three epochs to
adapt the model to the data. We then fine-tune
for the downstream task on the relevant training
data using the updated pre-trained model. This
will indicate whether the domain is the issue, or
whether there is additional temporal effects. In the
temporal modeling setup (TM) setup, we follow
Dhingra et al. (2022) and prepend the textual rep-
resentation of the timestamp for each tweet to the
tweet text, then train an additional three epochs of
masked language modelling. We then fine-tune for
the downstream task on the relevant training data.

Finally, we apply another baseline where we use
the timestamp text as second input to the model

during supervised training, separated via a special
token (i.e. [SEP] for BERT). We refer to this
baseline as SEP.

4.4 Hyperparameters and Infrastructure
For a fair comparison, we run all experiments using
the same hyperparameters and data splits. We use
a learning rate of 1e− 4, batch size of 64, weight
decay of 1e− 3 and no warmup due to the limited
amount of training data. We use Adam (Loshchilov
and Hutter, 2019) as optimization algorithm and
train for three epochs. Based on the performance on
the development split, we load the best performing
model at the end of the training procedure.

We repeat each experiment using five different
seeds and take the most frequent prediction across
all runs as the final prediction by a model. All
models are implemented in Python 3.6 using Py-
Torch 1.10.2 (Paszke et al., 2019) and the Hugging-
Face (Wolf et al., 2020) framework (4.18) as model
backend. We used a computation cluster containing
a mixture of NVIDIA Tesla P100 (16GB), NVIDIA
A100 (40GB) and NVIDIA V100 (32GB) GPUs.

4.5 Evaluation
We report binary-F1 Score for Sandy and macro-F1
score for multi-class classification task on T26 and
Humaid datasets. The comparison of the CONTROL

and TEMPORAL setting serves two purposes; first,
to quantify the degradation of model performance
due to temporal drift and second, to estimate the
temporal adaptation ability for our approaches. We
expect that models considering temporal informa-
tion should experience less performance degrada-
tion between these two settings compared to the
baseline model.

Additionally, we evaluate the mean model per-
formance in the PROGRESSIVE setting for a more
fine-grained analysis of temporal degradation.

Temporal Rigidity: While analyzing the effects
of temporal drift on model performance, it is nec-
essary to quantify the degradation of model per-
formance due to this phenomenon. We quantify
the temporal adaptability of a model using a metric
called Temporal Rigidity (TR) score, that summa-
rizes the performance deterioration of a model from
aligned to misaligned test data. Higher values of
TR imply that the model is not able to adapt itself
temporally.

We denote fM (Bi, Bj) as the F1 performance
score of a model M when trained using data sam-
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pled from bin Bi and evaluated using data sampled
from bin Bj . We define TR as:

TR =
1

N

∑

i ̸=j

|fM (Bi, Bj)− fM (Bi, Bi)|
|i− j| (5)

In Eqn.5 the normalization factor is given as
N = |{(i, j) : i ̸= j}|. Unlike Luu et al. (2022),
who do not take temporal proximity of bins into ac-
count. We use 1

|i−j| as the penalizing factor for the
model when training and test bins are temporally
close but the performance degradation is signifi-
cant.
Crisis Phases: Additionally, we utilize the
well-known temporal structures of the crisis
events (Reynolds and Seeger, 2005; Yang et al.,
2013) to analyze model performance. The tempo-
ral structure of the Sandy dataset is annotated using
pre-, acute- and post-crisis labels. For each model
we cluster the time-aware embeddings using K-
Means algorithm (k=3) and report the Normalized
Mutual Information score (NMI). NMI gives the
correlation between the time-aware embeddings
and the temporal structure of the underlying data.

5 Results and Analysis

In this section, we attempt to answer the following
questions:

Q1. To what degree is temporal performance
degradation present in short-term Twitter data
during crisis events? (Section 5.1)

Q2. Does temporal adaptation improve model per-
formance? (Section 5.2)

Q3. Does the domain of the data play a role in
temporal drift? (Section 5.3)

Q4. How do the proposed models perform when
trained continually? (Section 5.4)

5.1 Temporal Performance Degradation
In order to estimate the degree of temporal perfor-
mance degradation in the crisis scenario, we com-
pare the classification performance of the baseline
model in the CONTROL and TEMPORAL setting.
Table 1 provides the averaged performance differ-
ence for all datasets. Given that we only change
the temporal distribution of the training data, the
effect is substantial with a difference in F1 up to
6.52 points for the Sandy dataset and slightly less

Data Sandy T26 Humaid

CONTROL - TEMPORAL 6.52 4.37 4.10

Table 1: Temporal Performance Degradation: Av-
eraged F1 performance difference of the CONTROL to
TEMPORAL setting for the BERT baseline model. Over-
all results show that contextualized language models
fail to adapt temporally. Refer Section 5.1 for details.

pronounced on the T26 (4.37) and Humaid (4.10)
dataset collections. Therefore, we conclude that,
even in short-term scenarios like crisis events on
Twitter, temporal distribution of the training data
influences the classification performance.

5.2 Performance Comparison

Method
Sandy

CONT TEMP DIFF

BERT 87.70 81.18 6.52
BERT+TM 82.55 70.48 12.07
BERT+SEP 87.79 79.65 8.14

BERT+LMSOC 73.78 67.24 6.54
BERT+DCWE 86.92 79.95 6.97
BERT+TAPH 87.40 82.02 5.38
BERT+TDA 87.10 82.53 4.57

BERTFT 86.96 81.84 5.12

BERTFT+LMSOC 74.89 67.90 6.99
BERTFT+DCWE 86.85 79.53 7.32
BERTFT+TAPH 87.12 82.60 4.52
BERTFT+TDA 86.71 83.43 3.28

Table 2: Temporal Adaptation Evaluation on Sandy:
Text classification performance measured in binary F1.
Overall, TDA outperforms other approaches in TEMPO-
RAL setting, with and without temporal adaptation (FT).
Refer Section 5.2 and 5.3 for details.

We summarize the results on Sandy in Table 2.
Overall we find that TDA outperforms all other
methods in TEMPORAL setting. We obtain around
1.6% absolute increase over the baseline. We also
observe that the difference between model perfor-
mance in CONTROL and TEMPORAL setting (DIFF)
is lowest for TDA (30.8% lower than the base-
line) indicating the higher robustness of the model.
TAPH achieves 1% absolute improvement in per-
formance over the baseline in TEMPORAL setting
(DIFF is lower by 16.9%).
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Method T26 Humaid

BERT+TM 4 / 26 3 / 19
BERT+SEP 5 / 26 3 / 19

BERT+DCWE 0 / 26 1 / 19
BERT+TAPH 6 / 26 0 / 19
BERT+TDA 10 / 26 4 / 19

BERTFT+DCWE 0 / 26 0 / 19
BERTFT+TAPH 5 / 26 0 / 19
BERTFT+TDA 8 / 26 0 / 19

Table 3: Performance Comparison on T26 and Hu-
maid: The number of datasets for which the specific
temporal adaptation method outperforms its baseline
counterpart in the TEMPORAL setting. Refer Section 5.2
and 5.3 for details.

The T26 and Humaid datasets contain data for
a multitude of events. Therefore, we aggregate
model performances in Table 3 and provide
detailed results per event in the Appendix A.2. We
see that model performance varies greatly between
the Sandy dataset and the others. This is due to
two main reasons: (i) Data Size: Most of the event
datasets in T26 and Humaid are very small, the
temporal adaptation methods do not get enough
training data to learn the parameters involved in
temporal reasoning. To support our argument, we
observe, in “Boston Bombings (2013)” dataset
of T26, which contains 81,172 annotated tweets,
TDA outperforms the baseline by an absolute
increases of 6.17% and TAPH comes second
with an absolute performance improvement of
2.9% under TEMPORAL setting, a performance
pattern which is similar to Sandy dataset. (ii) Data
Quality: Unlike Sandy, T26 and Humaid have
been collected using keyword-based search. This
data collection technique has two main drawbacks:
firstly, it restricts the data size and secondly, harms
the completeness of the dataset collecting tweets
that contain same keywords. All the improvements
we report are statistically significant (p < 0.05,
using McNemar’s Test).

Learning from Temporal Information: To under-
stand the cause of the performance improvement of
the models, we utilize the annotated temporal struc-
ture of the Sandy dataset. In Table 4 we report two
additional metrics: TR Score and NMI, in TEM-
PORAL setting. Compared to the baseline, TDA is
lowest (15.74% decrease) which suggests that TDA

performs most robustly over time across all models.
TAPH comes in second with a 9.26% decrease in
TR Score from the baseline. NMI scores show sim-
ilar patterns, with TDA achieving the highest score.
We conclude that TDA learns the most meaningful
time-aware embeddings.

Method
Sandy

TR NMI

BERT 0.108 0.051
BERT+TM 0.130 0.050

BERT+DCWE 0.111 0.105
BERT+TAPH 0.098 0.185
BERT+TDA 0.091 0.194

Table 4: Temporal Information Learning: Compari-
son of methods on TR (lower is better) and NMI scores
(higher is better). Refer section 5.2 for details.

5.3 Effect of Domain of Data

To understand whether the data domain is the main
issue behind performance degradation or tempo-
ral effects indeed play a significant role, we per-
form additional experiments. We fine-tune the ini-
tial bert-base-cased embeddings for an addi-
tional three epochs with Masked Language Model-
ing Task (MLM) on the training data, before apply-
ing the Temporal Adaptation methods. We report
the results for Sandy dataset in Table 2. For all
models, there remains a substantial performance
difference between the CONTROL and TEMPORAL

settings which demonstrates the influence of tem-
poral drift on performance. Similar to previous
work (Agarwal and Nenkova, 2022), we observe
that additional pre-training improves performance
for most of the models. Still, TDA outperforms the
baseline and TAPH comes in second.

5.4 Effect of Continual Learning:

Continual Learning requires continuous annotation
of incoming data, which is not feasible during crisis
events. However, for the analytical completeness
of this paper, we simulate continual learning in the
PROGRESSIVE setting to show the effectiveness of
our proposed methods. In this setting, initially the
models get access to very small amount of data
to learn from, which affects model performance.
Performance improves as the size of training data
increases gradually. In Table 5 we report the model

2665



Method Sandy

BERT 68.67
BERT+TM 60.13

BERT+DCWE 67.39
BERT+TAPH 69.13
BERT+TDA 69.50

Table 5: Continual Learning Effects: Average model
performance across all bins in PROGRESSIVE setting, in
terms of F1 Score. Refer section 5.4 for details.

Figure 3: Representative example shows that in compar-
ison with other models TDA correctly puts maximum
attention weight on the word katrina (another storm) in
the temporal context of the hurricane while computing
the contextual embeddings. Refer Section 6 for details.

performance averaged over all the bins. The re-
sults show that TDA outperforms and improves the
BERT baseline by 1.2%.

6 Discussion

Adapting temporally by training on timestamp pat-
terns as text prepended to the input (BERT+TM)
underperforms in all experiments. We argue that
the added information affects all tokens equally via
the self-attention mechanism although only some
tokens will experience a semantic shift relevant for
text classification in the crisis scenario.

Similarly, the LMSOC and DCWE adaptation
approaches cannot outperform the baseline without
any temporal adaptation. The additional parame-
ters for computing the temporal offset are not well-

tuned for predicting temporal distributions which
have not been observed during training.

Figure 3 shows that TDA correctly learns to put
maximum attention weight on the word Katrina (i.e.
reference to a previous hurricane) in the temporal
context of hurricane. We provide representative
examples of tweets in Appendix A that all other
models but TDA fail to classify correctly. Forc-
ing the model to learn time-invariant embeddings
during training using an adversarial signal leads to
TDA performing better over all other approaches.
Although, TAPH does not fall far behind, it approx-
imates temporal information to create time-static
bins. The discrete approximation of temporal infor-
mation is the main reason behind its performance
drop.

7 Conclusion

The usage of natural language inevitably changes
over time which influences performance of text
classification models applied on data from differ-
ent temporal distributions. We show that this effect
is also prevalent for rapid temporal drift using so-
cial media during crisis events as an example. With
the rise of pretrained contextualized embeddings, a
dominant approach is to continue language model-
ing on data temporally closer to the target distribu-
tion. However, during crisis events such data is not
available and annotated data is often scarce.

We investigate approaches which work without
any additional data besides the input text and its
temporal metadata. Our results show that under
ideal conditions, i.e. high data quality and suffi-
cient annotated instances, they outperform strong
baselines. However, most crucially, our work high-
lights a critical gap of temporal adaptation for rapid
temporal drift, namely if unlabeled data for align-
ment is missing and annotated data is scarce. Our
work opens the door for future research on methods
which do not rely on pretraining in unlabeled target
domain data. In this sense, crisis data provides an
interesting use case for evaluation. We release all
our code and models, fostering future work in this
area.

Limitations

While existing approaches account for temporal
change of language over long periods of time, in so-
cial media this change can happen over the span of
a single day during dynamic scenarios like crisis or
disastrous events. In this work we study rapid tem-
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poral drift prevalently observed in social media dur-
ing a crisis. We observe that often data from social
media are collected using keyword based search
and data sampling techniques, where data contain-
ing same set of keywords are collected. Since data
collected using such techniques are both limited by
size and vocabulary, as well by the issues inherent
in keyword collection, the datasets naturally affect
the performance of the methods described in the
paper. Moreover, there exists differences among
the types of crisis events (hurricane vs. earthquake)
and their respective information needs. Hence, it is
difficult to find a solution that works in all scenarios.
Additionally, we highlight that evaluation of all the
models was done on datasets annotated in presence
of a crisis and that may not exactly reflect their per-
formance in a real-world setting without annotated
data, especially when differences among the types
of crises are relevant. In a nutshell, we observe
that during real-world crises, pre-trained language
models turn out to be a good solution when access
to unlabeled data is scarce and sufficient annotated
data is unavailable.
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A Appendix: Data

A.1 Data Statistics
The Sandy dataset spans 18 days with 23k tweets.
The Humaid datasets range from 560 to 9399
tweets, from 1 to 81 days. The T26 datasets range
from 1000 to 1442 tweets, over 7 to 56 days. In
Table 6 and 7 we show the dataset statistics for
the T26 datasets and Humaid datasets, respectively.
Note that the Typhoon Pablo event from the origi-
nal T26 dataset had only seven unlabelled tweets
that could be successfully recovered: we therefore
remove it from all experiments.

A.2 Detailed Results for T26 and Humaid
In Tables 8 and 9 we provide the detailed evalua-
tion results of the proposed approaches on T26 and
Humaid.
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Progressive Events
Event Dates (MM.DD.YY) Total Days Tweets
Colorado Floods (2013) 09.08.13 - 10.01.13 19 1,231
Sardinia Floods (2013) 11.16.13 - 11.28.13 13 824
Philipinnes Floods (2012) 08.07.12 - 08.15.12 13 1,341
Alberta Floods (2013) 06.20.13 - 07.16.13 24 4,040
Manila Flood (2013) 08.17.13 - 08.27.13 11 1,068
Queensland loods (2013) 01.17.13 - 02.05.13 19 727
Typhoon Yolanda (2013) 05.11.13 - 12.30.13 53 253
Australia bushfire (2013) 10.12.13 - 11.03.13 22 1,244
Colorado wildfires (2012) 06.08.12 - 07.08.12 31 2,901
Singapore haze (2013) 06.14.13 - 07.04.13 18 1,572

Instantaneous Events
Italy earthquakes (2012) 05.18.12 - 06.14.12 28 5,219
Costa Rica earthquake (2012) 09.05.12 - 09.21.12 18 1,641
Bohol earthquake (2013) 10.14.13 - 10.25.13 12 1,131
Guatemala earthquake (2012) 11.06.12 - 11.25.12 20 2,233
LA airport shootings (2013) 11.01.13 - 11.12.13 12 1,737
Boston bombings (2013) 04.15.13 - 06.11.13 46 81,172
West Texas explosion (2013) 04.18.13 - 05.15.13 27 8,152
Venezuela refinery explosion (2012) 12.08.24 - 12.09.05 13 2,007
Brazil nightclub fire (2013) 01.27.13 - 02.11.13 16 2,644
Savar building collapse (2013) 04.23.13 - 06.01.13 39 2,646
Spain train crash (2013) 07.24.13 - 08.07.13 14 2,288
Lac Megantic train crash (2013) 07.06.12 - 07.26.12 21 1,755
NY train crash (2013) 12.01.13 - 12.08.13 9 667
Glasgow helicopter crash (2013) 11.29.13 - 12.29.13 30 1,541
Russia meteor (2013) 02.14.13 - 03.05.13 19 4,289

Table 6: Summary of the T26datasets. The progressive and instantaneous splits were done manually based on the
type of crisis event.

Progressive Events
Event (Year) Dates (MM.DD.YY) Total Days Nr. Tweets
Canada Wildfires (2016) 17.04.16 - 25.12.16 253 2,258
Hurricane Matthew (2016) 04.10.16 - 05.12.16 74 1,659
Sri Lanka Floods (2017) 31.05.17 - 03.07.17 34 575
Hurricane Harvey (2017) 17.08.17 - 19.09.17 34 9,164
Hurricane Irma (2017) 06.09.17 - 21.09.17 16 9,467
Hurricane Maria (2017) 16.09.17 - 02.10.17 17 7,328
Maryland Floods (2018) 28.05.18 - 07.06.18 11 747
Greece Wildfires (2018) 24.07.18 - 18.08.18 26 1,526
Kerala Floods (2018) 17.08.18 - 12.09.18 27 8,056
Hurricane Florence (2018) 11.09.18 - 17.11.18 68 6,359
California Wildfires (2018) 10.11.18 - 07.12.18 28 7,444
Cyclone Idai (2019) 15.03.19 - 16.04.19 33 3,944
Midwestern U.S. Floods (2019) 25.03.19 - 03.04.19 26 1,930
Hurricane Dorian (2019) 30.08.19 - 02.09.19 4 7,660

Instantaneous Events
Ecuador Earthquake (2016) 17.04.16 - 25.12.16 253 1,594
Italy Earthquake (2016) 24.08.16 - 29.08.16 6 1,240
Kaikoura Earthquake (2016) 01.09.16 - 22.11.16 83 2,217
Mexico Earthquake (2017) 20.09.17 - 06.10.17 17 2,036
Pakistan Earthquake (2019) 24.09.19 - 26.09.19 3 1,991

Table 7: Summary of the Humaid datasets. The progressive and instantaneous splits were done manually based on
the type of crisis event.
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Event Humaid

BERT BERT+TM BERT+SEP BERT+DCWE BERT+TAPH BERT+TDA

CONT TEMP CONT TEMP CONT TEMP CONT TEMP CONT TEMP CONT TEMP
Progressive Events

Colorado Floods (2013) 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309 0.309
Sardinia Floods (2013) 0.255 0.315 0.310 0.287 0.239 0.285 0.179 0.298 0.179 0.211 0.299 0.288
Philipinnes Floods (2012 0.276 0.270 0.307 0.269 0.213 0.278 0.213 0.213 0.213 0.213 0.213 0.269
Alberta Floods (2013) 0.314 0.202 0.307 0.200 0.300 0.202 0.202 0.202 0.202 0.202 0.296 0.202
Manila Floods (2013) 0.369 0.369 0.367 0.366 0.337 0.372 0.190 0.350 0.308 0.355 0.380 0.374
Queensland Floods (2013) 0.423 0.353 0.486 0.342 0.361 0.331 0.374 0.351 0.318 0.314 0.472 0.355
Typhoon Yolanda (2013) 0.211 0.211 0.235 0.260 0.317 0.399 0.211 0.211 0.211 0.211 0.211 0.211
Australia Bushfire (2013) 0.447 0.450 0.583 0.585 0.449 0.522 0.426 0.421 0.422 0.461 0.577 0.547
Colorado Wildfires (2012) 0.569 0.370 0.584 0.370 0.541 0.335 0.533 0.370 0.446 0.330 0.567 0.222
Singapore Haze (2013) 0.363 0.348 0.360 0.340 0.352 0.344 0.357 0.332 0.361 0.349 0.360 0.351

Instantaneous Events
Italy Earthquakes (2012) 0.332 0.321 0.316 0.285 0.331 0.304 0.287 0.267 0.274 0.316 0.326 0.318
Costa Rica Earthquake (2012) 0.582 0.240 0.564 0.132 0.603 0.102 0.554 0.102 0.537 0.102 0.543 0.102
Bohol Earthquake (2013) 0.585 0.579 0.566 0.566 0.574 0.568 0.569 0.574 0.574 0.571 0.582 0.577
Guatemala Earthquake (2012) 0.568 0.484 0.401 0.437 0.274 0.274 0.425 0.274 0.274 0.274 0.474 0.434
LA Airport Shootings (2013) 0.534 0.475 0.518 0.465 0.210 0.378 0.376 0.312 0.309 0.192 0.356 0.382
Boston Bombings (2013) 0.358 0.340 0.362 0.349 0.360 0.356 0.378 0.300 0.363 0.352 0.354 0.361
West Texas Explosion (2013) 0.411 0.398 0.405 0.396 0.412 0.396 0.396 0.392 0.407 0.405 0.407 0.409
Venezuela Refinery Explosion (2012) 0.368 0.347 0.359 0.336 0.360 0.344 0.339 0.339 0.361 0.335 0.362 0.343
Brazil Nightclub Fire (2013) 0.426 0.431 0.425 0.413 0.416 0.416 0.422 0.302 0.424 0.412 0.431 0.315
Savar Building Collapse (2013) 0.426 0.352 0.424 0.347 0.404 0.348 0.413 0.227 0.411 0.180 0.413 0.200
Spain Train Crash (2013) 0.463 0.446 0.490 0.539 0.481 0.447 0.355 0.402 0.324 0.460 0.456 0.449
Lac Megantic Train Crash (2013) 0.319 0.318 0.326 0.318 0.310 0.174 0.289 0.270 0.301 0.210 0.325 0.319
NY Train Crash (2013) 0.490 0.573 0.520 0.566 0.490 0.565 0.490 0.490 0.490 0.490 0.490 0.742
Glasgow Helicopter Crash (2013) 0.554 0.292 0.527 0.290 0.543 0.292 0.502 0.309 0.390 0.298 0.491 0.321
Russia Meteor (2013) 0.392 0.412 0.372 0.339 0.412 0.412 0.296 0.324 0.324 0.305 0.321 0.316

Table 8: Results for the T26 datasets. The progressive and instantaneous splits were done manually based on the
type of crisis event.

Event Humaid

BERT BERT+TM BERT+SEP BERT+DCWE BERT+TAPH BERT+TDA

CONT TEMP CONT TEMP CONT TEMP CONT TEMP CONT TEMP CONT TEMP
Progressive Events

Canada Wildfires (2016) 0.419 0.414 0.420 0.410 0.353 0.319 0.235 0.244 0.248 0.249 0.376 0.367
Hurricane Matthew (2016) 0.355 0.261 0.396 0.257 0.317 0.131 0.317 0.131 0.335 0.118 0.369 0.273
Sri Lanka Floods (2017) 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092
Hurricane Harvey (2017) 0.635 0.663 0.639 0.669 0.637 0.645 0.589 0.586 0.578 0.587 0.583 0.581
Hurricane Irma (2017) 0.624 0.618 0.639 0.614 0.610 0.579 0.566 0.549 0.568 0.553 0.579 0.545
Hurricane Maria (2017) 0.620 0.628 0.640 0.621 0.603 0.602 0.507 0.575 0.501 0.581 0.600 0.529
Maryland Floods (2018) 0.183 0.147 0.197 0.141 0.173 0.077 0.208 0.166 0.188 0.101 0.198 0.155
Greece Wildfires (2018) 0.216 0.199 0.219 0.198 0.212 0.106 0.214 0.104 0.214 0.106 0.232 0.176
Kerala Floods (2018) 0.470 0.422 0.421 0.420 0.480 0.382 0.354 0.348 0.341 0.347 0.379 0.346
Hurricane Florence (2018) 0.663 0.510 0.664 0.500 0.658 0.481 0.590 0.435 0.586 0.417 0.649 0.421
California Wildfires (2018) 0.601 0.484 0.624 0.567 0.571 0.485 0.544 0.455 0.558 0.470 0.575 0.485
Cyclone Idai (2019) 0.372 0.350 0.370 0.350 0.352 0.331 0.287 0.298 0.319 0.294 0.347 0.300
Midwestern U.S. Floods (2019) 0.300 0.405 0.300 0.362 0.277 0.301 0.137 0.229 0.192 0.217 0.251 0.261
Hurricane Dorian (2019) 0.560 0.554 0.550 0.559 0.568 0.557 0.553 0.527 0.552 0.470 0.554 0.533

Instantaneous Events
Ecuador Earthquake (2016) 0.298 0.186 0.310 0.158 0.260 0.148 0.309 0.163 0.236 0.146 0.311 0.182
Italy Earthquake (2016) 0.395 0.266 0.403 0.260 0.350 0.090 0.118 0.090 0.175 0.090 0.401 0.274
Kaikoura Earthquake (2016) 0.434 0.353 0.426 0.350 0.283 0.251 0.205 0.164 0.229 0.196 0.484 0.266
Mexico Earthquake (2017) 0.340 0.318 0.341 0.300 0.283 0.262 0.269 0.258 0.245 0.264 0.289 0.281
Pakistan Earthquake (2019) 0.273 0.205 0.260 0.200 0.243 0.168 0.203 0.168 0.190 0.162 0.350 0.215

Table 9: Results for the Humaid datasets. The progressive and instantaneous splits were done manually based on
the type of crisis event.
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Tweet Analysis

Rep. Michael Grimm says situation in Staten is-
land is "another Katrina situation"

TDA correctly identifies Katrina as the name of the
storm in the temporal context of hurricane Sandy,
while other models fails.

#queenscomingtogether Eric Ulrich brought the
keg donated by Russos on the bay.

Adversarial signal forces TDA to lean time-
invariant embedding for the word #queenscom-
ingtogether.

Table 11: Representative examples showing tweets that TDA model correctly classifies while other models fail.
Refer Section 6 for details.
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