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Abstract

Grammatical Error Correction (GEC) has been
broadly applied in automatic correction and
proofreading system recently. However, it is
still immature in Chinese GEC due to lim-
ited high-quality data from native speakers in
terms of category and scale. In this paper, we
present FCGEC, a fine-grained corpus to de-
tect, identify and correct the grammatical errors.
FCGEC is a human-annotated corpus with mul-
tiple references, consisting of 41,340 sentences
collected mainly from multi-choice questions
in public school Chinese examinations. Further-
more, we propose a Switch-Tagger-Generator
(STG) baseline model to correct the grammati-
cal errors in low-resource settings. Compared
to other GEC benchmark models, experimental
results illustrate that STG outperforms them on
our FCGEC. However, there exists a significant
gap between benchmark models and humans
that encourages future models to bridge it. Our
annotation corpus and codes are available at
https://github.com/xlxwalex/FCGEC†.

1 Introduction

Grammatical error correction (GEC) is a complex
task, aiming at detecting, identifying and correct-
ing various grammatical errors in a given sentence.
GEC has recently attracted more attention due to
its ability to correct and proofread the text, which
can serve a variety of industries such as education,
media and publishing (Wang et al., 2021b).

However, Chinese GEC (CGEC) is still con-
fronted with the following three obstacles: (1)
Lack of data. The major obstacle in CGEC is
that the high-quality manually annotated data is
limited compared to other languages (Dahlmeier
et al., 2013; Napoles et al., 2017; Rozovskaya and
Roth, 2019; Bryant et al., 2019; Flachs et al., 2020;
Trinh and Rozovskaya, 2021). There are only five

∗ Corresponding author.
† Online evaluation site: https://codalab.lisn.upsaclay.fr/

competitions/8020.

publicly accessible datasets in CGEC: NLPCC18
(Zhao et al., 2018) , CGED (Rao et al., 2020), CTC-
Qua, YACLC (Wang et al., 2021a) and MuCGEC
(Zhang et al., 2022). (2) Data sources are non-
native speakers. The sentences in NLPCC18,
CGED, YACLC and MuCGEC are all collected
from Chinese as a Foreign Language (CFL) learner
sources. However, massive errors from native
speakers rarely arise in these sources. Therefore,
the native speaker errors are more challenging with
the inclusion of pragmatic data. Though CTC-Qua
covers grammatical errors in native speakers, it has
insufficient scale with 972 sentences. (3) Limited
multiple references. For an erroneous sentence,
there tends to be different correction methods. The
sentences revised by the model may be correct, but
different from the ground truth. This may cause
unexpected performance degradation (Bryant and
Ng, 2015). Besides, more references can offer vari-
ous correction schemas enabling the model to ac-
commodate more scenarios. Among CGEC, only
MuCGEC and YACLC provide rich references.

To tackle aforementioned obstacles, we present
FCGEC, a large-scale fine-grained GEC corpus
with multiple references. The sentences in FCGEC
are mainly collected from multi-choice questions
in public school Chinese examinations. Therefore,
our FCGEC is more challenging since it involves
more pragmatic data in the examinations of native
speakers. As for multiple references, we assign 2 to
4 annotators on each sentence, thus more references
can be attained in this way. Moreover, we generate
more references in the annotation process through
techniques with synonym substitution.

In order to correct the grammatical errors, recent
works are mostly based on two categories of bench-
mark models. Sequence-to-sequence (Seq2Seq)
approaches regard GEC as a generation task that
straightforward converts an erroneous sentence to
the correct one (Yuan and Briscoe, 2016; Zhao and
Wang, 2020; Fu et al., 2018). However, training
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such a generation model requires more computa-
tional resources due to the autoregressive decoder.
Moreover, the generated style of Seq2Seq mod-
els is more arbitrary, which is not well applicable
for GEC task. More recently, sequence-to-edit
(Seq2Edit) approaches gain interests which take
GEC as a token-level labeling task (Awasthi et al.,
2019; Omelianchuk et al., 2020) via different edits,
such as insert, delete, etc. Nevertheless, previous
work falls short on altering the word order and
correcting errors simultaneously with iterating.

To fill these gaps, we propose Switch-Tagger-
Generator (STG) model as an effective baseline to
correct grammatical errors in low-resource settings
inspired by Mallinson et al. (2020). Our STG can
be decomposed into three modules: Switch mod-
ule determines the permutation of characters while
Tagger module identifies the operation tags of each
character in the sequence. Notably, benefiting from
carefully designed compound tags, we eliminate
the necessity for iteration. As for Generator mod-
ule, we adopt non-autoregressive approach to fill
in the characters that do not appear in the source.

In summary, our contributions are as follows:

1. We present FCGEC, a large-scale fine-grained
corpus with multiple references and more
challenging errors for CGEC.

2. We propose a STG model and then conduct ex-
periments to compare with two categories of
benchmark models (Seq2Seq and Seq2Edit).
Experimental results illustrate that our STG
model outperforms these models on FCGEC.

3. We find a significant gap between human per-
formance and benchmark models that encour-
age future models to bridge it.

2 Corpus Construction

2.1 Data Collection

We collect raw sentences mainly from two re-
sources to obtain various Chinese grammatical er-
ror corpus from native speakers. (1) Public ex-
amination websites. We crawl the multi-choice
grammatical error problems (More erroneous sen-
tences than correct sentences) through public web-
sites which contain exercises and exams designed
by teachers and experts. These problems cover pub-
lic school examinations for native students from
elementary to high school. (2) News aggregator

sites. To balance the quantity of erroneous sen-
tences and correct sentences, we attain a diverse
range of high quality sentences without grammati-
cal error in news aggregator sites.

In total, we collect 54,026 raw sentences from
these resources. After removing duplicated or in-
complete sentences, there are 41,340 sentences in
our FCGEC corpus. We describe in detail the data
sources and data structures in Appendix A & B.

2.2 Fine-grained Data Format

To facilitate model for grammatical error detection
and correction, we designate three-tier hierarchical
levels of golden labels in FCGEC as follows:

Detection Level. As a preliminary procedure to
correcting grammatical errors, we require the bi-
nary classification of a given sentence according to
whether it contains grammatical errors or not.

Identification Level. The labels in this level
could be regarded as necessary for a multi-class
categorization problem. As the examples shown in
Table 1, we group grammatical errors into seven
categories based on the error hierarchy. The defini-
tion of error types are as follows: Incorrect Word
Collocation (IWC) is a word-level grammatical
error in which the related words are combined in
the improper pattern. Component Missing (CM)
and Component Redundancy (CR) are also word-
level errors that some components (e.g., subject
and object) of the sentence are missing or redun-
dant. Structure Confusion (SC) is a syntax-level
grammatical error that combines two similar gram-
matical structures into a single incorrect one. In-
correct Word Order (IWO) covers grammatical
errors in word-level and pragmatic-level. Com-
pared to the previous work (Zhang et al., 2022),
we also take into account the errors that require
logic, common sense on top of syntax (e.g., recur-
sive relationships). Illogical (ILL) and Ambiguity
(AM) are pragmatic errors. The former comprises
contradictory statements, while the latter includes
expressions with indeterminate meanings.

Correction Level. In the correction level, we
propose an operation-oriented paradigm to con-
struct GEC labels instead of the error-coded or
rewriting paradigms utilized in previous works (Ng
et al., 2014; Sakaguchi et al., 2016). In rewriting
paradigms, the annotators directly rewrite the raw
sentences to the correct sentences without grammat-
ical errors. However, it is difficult for annotators
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[Delete]不 [Modify]浮现→发生
为了避免地震的悲剧 不 再 浮现 ，我们都

To prevent the tragedy of the earthquake from not emer-

[Delete] not [Modify] emerging → happening

[Switch]加固↔建造 ↓[Insert]避难所

应该 加固 并 建造 。
ging again, we should fortify and build .

[Switch] fortify↔ build ↑[Insert] shelters

Figure 1: An example of operation-oriented paradigm.

to rewrite in a consistent style, which leads to a
drop in annotation quality. As for the error-coded
paradigm, the annotators may diverge in determin-
ing the boundaries of the erroneous spans, thus
raising the complexity of the procedure.

In contrast, the operation-oriented paradigm is
on the basis of four fundamental correction oper-
ations : Insert, Delete, Modify and Switch. As an
example shown in Figure 1, this paradigm is more
compatible with the conventions of the annotator
when correcting errors. Meanwhile, annotators
only need to consider what operations are required
to correct the sentences, instead of paying atten-
tion to the erroneous span (e.g., the selection of
the words is left to post-processing for unified opti-
mization). In addition, we have a large amount of
correction prompts (explanations of grammatical
error problems) developed by teachers and experts
based on these four operations that can be utilized
to accelerate annotation process.

2.3 Annotation Procedure

The annotators are asked to follow the given
prompts to complete the three levels of labeling.
Notably, we allow annotators to add unlimited ref-
erences to sentences with grammatical errors based
on the four operations in error correction level.

In order to improve annotation efficiency, we
have developed a visual online tool to support the
annotation procedure. In addition, we applied pat-
tern matching and rule-based scripts to automati-
cally convert a large amount (72.3%) of prompts
into operation labels. We show the interface of our
visual annotation tool in Appendix C.

As for annotation process, we hire 20 undergrad-
uate students and 4 expert examiners to annotate
and verify the GEC labels. We follow the annota-
tion procedure in SuperGLUE (Wang et al., 2019a)

Type Example

IWC
自己有双聪明能干的手，什么都能做出来。

You have smart hands to do everything.

(Tips: “hands” cannot be combined with “smart”)

CM
绿色植物具有产生氧气。

Plants have (the ability) to produce oxygen.

(Tips: Lack of object “the ability” )

CR
我们已走了约十里左右的路程。

We had walked about 10 miles or so.

(Tips: “about” and “or so” are redundant)

SC

交通事故发生的原因是开车看手机造成的。

Traffic accidents are caused by (because) looking

at cell phones while driving.

(Tips: the structure of “because” and “caused by”

cannot appear together in one sentence)

IWO
我改正并认识了自己的错误。

I corrected and realized my fault.

(Tips: realize the fault first and correct it later)

ILL
我们应该防止事故不发生。

We should prevent accidents from not occurring.

(Tips: double negation causes illogical errors)

AM
刚一开门，看病的就进来了。

As the door opened, the doctor/patient came in.

(Tips: there is an ambiguity about who comes in)

Table 1: Examples of different types of errors.

that each annotator should work on test data first.
After that, they can compare their labels with the
gold ones. We encourage them to discuss their
mistakes, questions and standards with other an-
notators and experts. To attain high-quality anno-
tation with multiple references, we duplicate the
sentences in our corpus 2 to 4 times. Furthermore,
it is guaranteed that the redundant sentences are
annotated by different annotators. Then experts
are asked to review data that the annotators could
not in agreement on the labels and add reasonable
references. It is worth mentioning that we search
for possible synonyms of the characters generated
by Insert and Modify operations in annotation. We
believe that supplying more word choices to anno-
tators can improve the multi-reference rate. More-
over, we set up a weekly communication meeting
to discuss common issues in annotation and adapt
the labeling criteria. In total, the entire annotation
procedure lasted for more than 4 months.

2.4 Quality Control

To ensure the high-quality of our FCGEC, we adopt
the following five criteria: (1) Each sentence is in-
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Corpus Source Paradigm Sentence #Error #Refs #Length
NLPCC(2018) CFL Error-coded 2000 1983(99.15%) 1.1 29.7

CGED CFL Error-coded 30145 25837(85.71%) 1.0 46.6
CTC-Qua(2021) Native Error-coded 972 482(49.59%) 1.0 48.9
MuCGEC(2022) CFL Rewriting 7063 6544(92.65%) 2.3 38.5
FCGEC (Ours) Native Operation 41340 22517(54.47%) 1.7 53.1

Table 2: The comparison of different Chinese grammatical error correction corpus. Numbers in row #Error mean
the percentage of incorrect sentences in the corpus. #Refs indicates the average number of references contained in
each sentence on average while #Length stands for the average number of characters in each sentence. Note that
CGED is a combined corpus from 2016 to 2018 (Rao et al., 2018, 2020).

Subset Sent. Err. #S #D #I #M
Train 36340 19761 3930 10468 8705 7459
Valid 2000 1102 262 465 553 453
Test 3000 1654 421 1496 919 746

Table 3: Some statistics of FCGEC, including the num-
ber of sentences, the number of erroneous sentences,
and the number of four operations (#S, #D, #I, #M de-
note Switch, Delete, Insert, Modify, respectively).

spected by two specialized annotators to correct
spelling and punctuation errors before annotation.
Meanwhile, they have to eliminate the incomplete
sentences (due to unexpected text truncation). (2)
The specialized annotators were also asked to tag
the sentences from news aggregator source that
might have grammatical problems while checking
spelling errors. Then these potential sentences will
be discussed in weekly communication meeting.
(3) We ask the annotators to read our guidelines
and annotate twenty test instances. Then experts
check their accuracy of the annotation. The annota-
tors that meet the accuracy (90%) could continue
to label the official data. (4) We assign 2x to 4x
annotators per sentence for the corpus. In case
their annotations are different, the experts will de-
termine the correct labels. After that, annotators
can also learn from these mistakes to achieve self-
improvement. (5) After annotation, we unify the
annotated labels under the minimal operation cri-
teria inspired by Dahlmeier and Ng (2012) which
applies fewer operations during correcting gram-
matical errors. More details about minimal opera-
tion algorithm is described in Appendix E.

2.5 Data Statistics and Comparison

We compare our corpus with other Chinese gram-
matical error datasets in Table 2. Moreover, the
concrete statistics of FCGEC are shown in Table 3

Figure 2: Correlation between types and operations.

and Appendix D. We summarize the advantages of
our FCGEC in the following three aspects:

Multiple References. As discussed in Bryant
and Ng (2015) and Zhang et al. (2022), the training
and evaluation of GEC models can benefit from
multiple references. In order to obtain more ref-
erences, we ask the annotators to submit different
reasonable operations for correcting errors. Mean-
while, we specifically provide several choices of
synonyms for the generated text during annotation.
We search for synonyms using both fine and coarse
granularity. The fine-grained approach is to obtain
synonyms from electronic dictionaries, while the
coarse-grained way relies on similarity of the word
vectors. It enhances the ratio of multiple references.

More Pragmatic Data. Pragmatic data involves
errors in logic, common sense, ambiguity, etc. We
increase the proportion of pragmatic data (Table 6)
compared to other CGEC datasets, thus rendering
the data more complex and challenging. Notably,
we fix the ambiguity errors by providing references
to correct them from different semantics.

Effective Error Types. We assign more refined
error types to the grammatical errors, and these
types are closely related to the correction opera-
tions. As shown in Figure 2, error types are always
highly relevant to particular operations (e.g., CM
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and CR rely on Insert and Delete operations respec-
tively). We believe that error types can be utilized
as auxiliary data to improve the performance of the
GEC models to correct grammatical errors.

3 Benchmark Models

We divide the GEC task into a classification task
and a correction task. The classification task in-
volves the error detection and error type identifi-
cation. We adopt the pre-trained language models
(PLMs) based approaches for these tasks. As for
the correction task, we propose a STG model to
correct errors. Meanwhile, two categories of main-
stream GEC models (Seq2Seq and Seq2Edit) are
applied as benchmark models for our FCGEC.

3.1 Baselines for Classification Task

In error detection subtask, the model needs to deter-
mine whether a given sentence contains grammat-
ical errors. Therefore, it is a binary classification
task while the type identification subtask can be
regarded as a multi-class classification task. The
model should predict which of the seven error types
the given erroneous sentences belong to. Note that
some sentences may have multiple error types.

Recently, PLMs are proved to be effective and
achieve success in various fields, such as BERT
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
BERT-WWM (Cui et al., 2021), MacBERT (Cui
et al., 2020) and StructBERT (Wang et al., 2019b).
Therefore, we adopt different PLMs enhanced mod-
els as the benchmark models for these classification
tasks. Specifically, we treat multiple PLMs as the
backbone network and apply fully-connected lay-
ers on top of it for detection and identification.

3.2 Proposed STG Model

To correct grammatical errors, we propose an effec-
tive benchmark model, STG, which tackles error
correction in the low-resource settings. Figure 3
gives an overview of our model. STG decomposes
the error correction task into three processing mod-
ules: Switch , Tagger and Generator. The Switch
module determines the order of characters that ap-
pear in the output on the basis of pointer network
(Vinyals et al., 2015). Our Tagger module predicts
the operation tags of each character and the number
of characters that need to be generated in sequence.
As for the Generator module, it fills in the charac-
ters that are not present in source sentence. Notably,
each module can be trained independently.

! " # $ %&' ( ) ! *

! ' ( $ %&" # ) ! *

TAGGER Module

I revised and realized my shortcomings

! ' ( $ %&" # ) ! *

K K K K M M

GENERATOR Module

K K K K K

! ' ( $ %&# + ) ! *

I realized and corrected my shortcomings

SWITCH Module

Figure 3: The architecture of our STG model.

Switch Module. The input to Switch module for
character i is the hidden representation hi ∈ Rd

from PLM, where d denotes the dimension of hid-
den representations. Then Switch module deter-
mines the next position index for character i based
on the pointer network. We apply the self-attention
to predict which possible character e(i) would be
pointed to. It can be formulated as:

p (e(i)|hi) = attention
(
hi, he(i)

)
(1)

The self-attention with scaled dot-product can
be computed as below:

A = Attention (Q,K) = softmax

(
QKT

√
d

)

(2)
where A is attention score matrices, Q and K are
both linear projections of h. More details about our
Switch module can be found in H.1.

Tagger Module. We first define five tags corre-
sponding to the three operations (except Switch
operation) as follows: the KEEP (K) tag is utilized
to maintain the source character while the DEL (D)
tag is assigned to remove character from source
sequence. The tag of INS_t (I_t) represents the
insertion of t words after the current character. The
substituted character is marked as MOD (M) tag
for Modify operation. As for the special case where
the character is both substituted and required to
insert other characters, we set the tag of MINS_t
(MI_t) similar to I_t. Modification tags can per-
form a combination of multiple operations on a sin-
gle character at the same time, thus eliminating the
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need to correct the sentence via iterations as other
edit-based methods. Limited by space, we provide
some concrete examples in the Appendix H.2.

We take the prediction of tags and the number t
of characters to be inserted or substituted for each
character as classification task. Therefore, we apply
two fully-connected layers to obtain tags and the
number t. They can be written as:

T = σ (Whsi + b) (3)

where T denotes the tag or number t while hsi is
the hidden representations of character i. And σ
stands for the softmax function. W and b are the
learned weights and bias.

Generator Module. As we can leverage the
masked language modeling (MLM) task (Devlin
et al., 2018) of BERT-style PLMs for generating
the characters which do not appear in the source
sequence, Generator module inserts or substitutes
the character with a certain number t of [MASK] to-
ken according to their tags. Then it predicts which
characters are suitable to fill into the masked places.

Training and Testing. During the training pro-
cess, we utilize cross-entropy loss Lswitch, Ltag

and Lgen for the three modules. The STG model
can be trained in two paradigms: independent and
joint. The difference between them is whether each
module is trained separately and thus they cannot
utilize the shared encoder. We combine the loss in
joint paradigm as follows:

L(θ) = λ1Lswitch + λ2Ltag + λ3Lgen + γλ∥Θ∥2
(4)

where λ· is the coupling co-efficiency that regulates
the three losses.Θ represents all trainable parame-
ters in STG model and γ denotes the coefficient of
L2-regularization. Ltag is always larger than the
other two losses, thus we generally set it one order
of magnitude smaller. Furthermore, we train STG
model with type identification (TTI) task to utilize
auxiliary type data to improve model performance.

As for testing phase, we feed the erroneous sen-
tence into each module in a pipeline fashion to
correct errors. Specifically, we adopt constrained
beam search to decode the sequence order.

3.3 Other Baselines for Correction Task

In order to present mainstream error correction
models on our corpus, we take two categories of
approaches as benchmark models:

Seq2Seq Models. A portion of the works adopt
Transformer-based (Vaswani et al., 2017) encoder-
decoder architecture as Seq2Seq fashion for cor-
recting grammatical errors. The neural machine
translation (NMT) based method is adopted in Fu
et al. (2018) to tackle CGEC. Besides, Kaneko et al.
(2020) utilize BERT-fuse to incorporate BERT into
an encoder-decoder model for GEC. Meanwhile,
MuCGEC (Zhang et al., 2022) presents a bench-
mark model based on Seq2Seq architecture with
the Chinese BART (Shao et al., 2021).

Seq2Edit Models. Recent works also focus on
the Seq2Edit models, which correct errors by la-
beling manipulations of each character. LaserTag-
ger (Malmi et al., 2019) is applied to modify the
sequence with three types of edits: insertion, dele-
tion and substitution. PIE (Awasthi et al., 2019)
presents iterative edit with custom inflection opera-
tions to correct the grammatical errors. GECToR
(Omelianchuk et al., 2020) is an iterative sequence
tagging framework with custom g-transformations
that we adapt it to CGEC follow the efforts of
Zhang et al. (2022).

4 Experimental Results

4.1 Evaluation Metrics

Classification Task. We regard the error detec-
tion task and error type identification task as clas-
sification tasks. Therefore, we adopt four com-
mon metrics, i.e., Accuracy, Precision, Recall and
Macro F1 score to evaluate the model performance.

Correction Task. As for correction task, we
employ two different metrics : (1) Exact Match
metric is obtained by calculating the percentage
of corrected sentences for model outputs that ex-
actly matched with the golden references. (2) The
character-level edit metrics proposed by MuCGEC
(Zhang et al., 2022) are utilized to compute fine-
grained model performance. After obtaining the
optimal sequence for character-level editing, they
merge consecutive edits of the same type into span-
level for both model outputs and golden references.
Then MuCGEC calculates the highest Precision,
Recall and F0.5 score by comparing the edits of
model outputs with each golden reference.

4.2 Experimental Settings

We conduct detailed experiments for fairly compar-
ing benchmark approaches on our FCGEC. In clas-
sification tasks, we adopt officially released PLM
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Model Acc P R F1

• Grammatical Error Detection
BERT 72.17 71.99 72.12 71.75
MacBERT 74.12 74.15 74.25 73.98
RoBERTa 74.84 74.82 74.91 74.68
MacBERT-Large 77.07 76.99 77.01 76.86
RoBERTa-Large 76.82 76.69 76.86 76.68
StructBERT-Large 77.63 77.48 77.73 77.52
Human 82.65 84.08 83.88 82.63
• Grammatical Error Type Identification
BERT 56.53 56.87 63.15 59.15
MacBERT 53.51 56.20 64.58 59.22
RoBERTa 54.90 58.78 65.34 61.33
MacBERT-Large 57.86 57.29 63.51 59.76
RoBERTa-Large 60.04 59.86 69.28 64.10
StructBERT-Large 57.86 60.13 67.98 62.68
Human 73.04 76.74 57.15 64.40

Table 4: Average performance comparison on baselines
among 10 independent runs for classification tasks.

parameters from HuggingFace website1. Then we
fine-tune the different PLMs on our FCGEC for 4
epochs with batch size of 64. As for the correction
task, we employ RoBERTa as the backbone PLM
of our STG model and other benchmark models
for training 100 epochs. Notably, the BART PLM
(Lewis et al., 2019) utilized in Seq2Seq models
is substituted by CPT (Shao et al., 2021). We set
maximum t to 6 in Tagger module (It can cover
98% of the cases). In addition, we apply AdamW
(Kingma and Ba, 2014) optimizer with a learning
rate of 2e-5 and weight decay of 1e-2 for all tasks.

4.3 Human Evaluation Results

We hire 25 annotators from the crowd-sourcing
platform of NetEase with a wide range of degrees
and occupations. Specifically, annotators are re-
stricted to be native speakers. We require them to
annotate 10 instances for familiarization with the
task requirements. Then they annotate 7,500 pieces
of data (we randomly select 1,500 sentences from
the test set and duplicate them 5 times), which
is used to evaluate our human performance. As
shown in Table 4 and 5, the error detection task is
relatively easy for humans while error type identifi-
cation task is harder due to the fact that it has more
categories. As for correction task, it is also chal-
lenging for humans to correct grammatical errors.
We further discuss the human performance based
on the model performance in Section 4.4.

1https://huggingface.co/models

4.4 Overall Performance
The results of the classification tasks on FCGEC are
shown in Table 4 for different PLMs from which
several observations can be derived. First, the large-
size variant PLMs perform better than other base-
size models on the both detection and identification
tasks as they can represent richer semantic infor-
mation. To illustrate this observation, we roughly
divide the error types into semantic and syntactic
groups. We find that the average accuracy improve-
ment for larger PLMs is significantly higher on the
semantic group (7.6%) compared to the syntactic
group (2.8%). Second, StructBERT-Large outper-
forms all PLMs on detection task while RoBERTa-
Large achieves better performance on identifica-
tion task, demonstrating two strong baselines at
FCGEC. Moreover, there is an interesting observa-
tion on identification task that the humans have a
lower performance of Recall than all PLMs, while
the Precision is significantly better than them.

In terms of the correction task, Table 5 demon-
strates the results of benchmark models on FCGEC.
The overall performances of Seq2Edit-based mod-
els are better than the Seq2Seq-based models. Fur-
thermore, our STG-series models substantially out-
perform them on FCGEC, which proves the effec-
tiveness of STG architecture. Finally, there is still a
significant gap comparing best-performing models
with humans in all tasks. Moreover, the difficulty
of the task also increases gradually on the detection,
identification and correction, which are reflected on
the difference of gap between models and humans.

4.5 Comparative Analysis
Independent training vs. Joint training. As we
describe in Section 3.2, the Switch, Tagger, Gener-
ator modules in our STG can be trained flexibly ei-
ther independently or jointly. In Table 5, STG with
joint training (STG-Joint) brings gains of 4.17%
in EM score and 4.86% in F0.5 score compared
with independent training STG (STG-Indep). The
results indicate that the performance of correction
can be enhanced during joint training since each
module of STG can share more information and
complement each other under a unified optimiza-
tion objective.

Investigate the benefit of error type identifica-
tion to correction. In Figure 2, we illustrate the
correlation between error types and the operations
of correction. We observe a significant association
among error types and operations, which motivates

1906

https://huggingface.co/models


Model EM P R F0.5

• Seq2Seq Models
BERT-fuse 10.88 19.06 18.94 19.04
MuCGEC 21.16 39.47 26.19 35.84
• Seq2Edit Models
PIE 22.07 29.15 29.77 29.27
LaserTagger 28.42 36.60 31.16 35.36
GECToR 15.66 31.06 18.74 27.45
• Our Models
STG-Indep 29.93 43.16 32.88 40.62
STG-Indep+TTI 30.77 44.89 33.52 42.04
STG-Joint 34.10 48.19 37.14 45.48
Human 65.25 79.46 67.57 76.76

Table 5: Performance comparison for error correction
tasks. Notably, EM indicates the metric of Exact Match.

us to treat error type identification as an auxiliary
task (TTI) for training STG model. As shown in
Table 5, STG-Indep+TTI indicates that the three
modules of STG are trained independently with the
TTI task incorporated. Our STG achieves better
performance after integrating the TTI task com-
pared with STG-Indep, which demonstrates the
efficient error type data can be utilized as auxil-
iary data to enhance model correction performance.
Moreover, STG-Indep+TTI can also obtain an ac-
curacy improvement of 1.78 points on the error
type identification task compared to RoBERTa.

Fine-grained performance analysis. In Fig-
ure 4, we demonstrate the fine-grained performance
based on grammatical error types for identification
task with RoBERTa-Large and correction task with
STG-Joint. Notably, the dark sectors in the pie
chart of the identification task indicate the propor-
tion of errors for visual comparison. First, we ob-
serve the minimum error rate on SC, indicating
that the PLM is more sensitive to syntactic struc-
ture errors. Second, the PLM performs weakly in
terms of word-level errors, especially CR. After
analyzing the error scenarios, we discover that the
PLM may easily treat CR and CM errors as IWC
errors. Furthermore, the PLM fails to determine
the error types at the pragmatic level (i.e., ILL and
AM), which illustrates the challenge of FCGEC.

As for correction task, it is clear that the perfor-
mance on CM and IWC is inferior. We consider this
potentially due to the fact that CM and IWC always
require the generation of characters, increasing the
difficulty of correction. Moreover, the model en-
counters trouble with AM due to the inclusion of

36.70%
46.08%

25.70%

49.26% 39.33%

51.46%

47.73%

AM

IWO

IWC

SC

ILL

CM

CR

Identification Task (Error Rate) Correction Task (EM / F0.5 score)

33.67/
47.31

22.22/
33.14

50.00/
60.49

44.33/
53.27 27.82/

36.89

40.78/57.92
13.64/18.04

(17.94%)

(18.49%)

(17.16%)

(12.27%)

(25.20%)

(6.22%)

(2.66%)

Figure 4: The fine-grained performance on identifica-
tion and correction tasks. The numbers in the sectors of
the pie chart indicate the error rate and EM / F0.5 score
on identification task and correction task, respectively.

pragmatic data such as ambiguity. It is hard for the
model to distinguish the semantics in the sentences
and correct it. In addition, we present more com-
parisons and fine-grained analyses in Appendix I.

Influence of the three modules in STG. The
correction performance of our STG model is af-
fected by three modules simultaneously. Thus we
further investigate the impact of these modules on
the STG-Joint. As shown in Figure 5, we ana-
lyze the char-level and sentence-level accuracy of
each module. We ignore the Keep tag when cal-
culating the char-level accuracy in Tagger module.
Tagger-t Acc. is computed for the number t of
I_t and MI_t tags. The first observation is that
the performance of model is mainly constrained by
Tagger module, while it fails to predict tags and
number t precisely. Secondly, the performance of
the Generator module illustrates that it is possible
to achieve acceptable performance via only utiliz-
ing non-autoregressive approach with fine-tuning.
Furthermore, despite the high performance of the
Switch module, its role as the first module in the
pipeline has a significant impact on the Tagger and
Generator modules. Therefore a more robust per-
formance of the Switch module is needed.

5 Related work

There already exists a lot of work on grammatical
error correction for datasets and approaches. In
terms of the dataset, most researches focus on En-
glish GEC. NUCLE (Dahlmeier et al., 2013), an
early annotated corpus of GEC research, collects
the erroneous sentences from students’ essays in
NUS. JFLEG (Napoles et al., 2017) is constructed
from TOEFL exam with native sounding judge-
ment. W&I (Bryant et al., 2019) collects the texts
from non-native English students around the world
in an online web platform and then manually an-
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Figure 5: The performances of three modules in STG.

notates them for GEC. By contrast, the errors in
LOCNESS (Bryant et al., 2019) are acquired from
essays written by native English students. Unlike
the previous dataset, CWEB (Flachs et al., 2020)
focuses on grammatical errors in low error density
domains from websites. However, the scale of the
data is relatively insufficient in CGEC. NLPCC
(Zhao et al., 2018), CGED (Rao et al., 2020), YA-
CLC (Wang et al., 2021a) and MuCGEC (Zhang
et al., 2022) are four publicly available non-native
speaker resources for CGEC community, which
encourage us to construct a high-quality CGEC
corpus derived from native speakers.

As for the progress of GEC approaches, Seq2Seq
and Seq2Edit are two mainstream approaches that
achieve competitive results. Most of the work is
based on Seq2Seq framework that generates the
correct sentences directly (Zhou et al., 2019; Wan
et al., 2020; Zhao and Wang, 2020; Kaneko et al.,
2020). Furthermore, after Malmi et al. (2019) first
apply the Seq2Edit approach, PIE (Awasthi et al.,
2019) and GECToR (Zhang et al., 2022) are pro-
posed to correct errors with iterating. After that,
Tarnavskyi et al. (2022) employ an ensembling ap-
proach on GECToR for better performances.

6 Conclusion

In this paper, we construct a large-scale corpus
for Chinese grammatical error detection, identifica-
tion and correction. Compared to previous CGEC
corpus, our FCGEC is more complicated and chal-
lenging with pragmatic data. Furthermore, we pro-
vide multiple references so that the models can be
evaluated for better performance. Furthermore, we
propose a STG model to correct grammatical errors.
Extensive experiments demonstrate that our STG
outperforms the baselines and achieves the state-of-
the-art performance. However, experiments show
that there exists a notable gap between cutting-edge
models and humans. Therefore, it encourages the
future GEC models to bridge the gap.

Limitations

The limitations of our work can be categorized into
two main aspects: our corpus and model.

Limitations of FCGEC. In our FCGEC, a small
number of sentences can be considered as different
types of grammatical errors depending on correc-
tion methods. We do not provide a finer distinction
between error types in this version. However, such
fine-grained labels may supply more benefit in cor-
rection tasks (employing TTI as a auxiliary task).

Limitations of STG. The major limitation of our
STG is that although no iteration is required, it cor-
rects the errors via a pipeline paradigm with each
modules in inference stage, thus it takes more time
in the inference stage. Moreover, we consider that
better performance may be achieved if the Genera-
tor module is pre-trained with a massively parallel
corpus such as Lang-8 (Zhao et al., 2018), which
we do not conduct in this paper.

Ethics Statement

Licensing Issues. FCGEC is a CGEC dataset col-
lected from public examination websites and news
aggregator sites. We collect the original grammat-
ical error data or news data under the license of
these sites or request for their permission. Mean-
while, the full attribution for original source of the
data is cited in our FCGEC. In addition, we also
commit not to use the corpus for commercial pur-
poses, but only for the research studies.

Annotator Compensation. In our annotation
procedure, we hire two categories of annotators.
The first type is the annotators who annotate or
examine the data for our FCGEC. We estimate that
a skillful annotator requires about 1 to 2 minutes
for each sentence to identify the error types and
correct errors. On this basis, we pay the annotator
7 yuan (about 1 dollar) for 10 sentences. The sec-
ond category is annotators from the crowd-sourcing
platform of NetEase for computing human perfor-
mances on FCGEC. Since they only require to do
the measurement of the data, we set the compensa-
tion to 4 yuan (about 0.6 dollar) per 10 sentences.
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A Source of Data Collection

For the source of public examination websites, we
collect the practice exercises from KS5U (http:
//5utk.ks5u.com/main.aspx), which are accessible
online for public usage. As for the news aggregator
sites (e.g., ZAKER, IT Home etc.), we randomly
collect the titles or topic sentences from these sites.
After that, we manually check and correct the sen-
tences as we describe in Section 2.4 to ensure the
quality of our corpus.

B Data Structure

We employ the JSON format to construct our
FCGEC, as illustrated below:

{

“id(The global id of the instance)”: {

“sentence”: The original sentence,

“error_flag”: Whether sentence contains errors,

“error_type”: The error types of sentence,

“operation” : [

{ The operation of the first reference },

{ The operation of the second reference },

{ ... }],

“external” : Additional information

}

}

For the format of four operations, we define each
of the operations as follows:

» Suppose the given sentence is “A B C D E”.

1. Switch operation
{“Switch”:[0,2,1,3,4]} (“A B C D E” → “A C B D E”)

// The values in the list indicate the order of the original

character index after the swap (Index starts from 0).

2. Delete operation
{“Delete”:[3]} (“A B C D E” → “A B C E”)

// The characters indexed in the list will be deleted.

3. Insert operation
{“Insert”:[{“pos”:1,“tag”:“INS_1”,“label”:[“F”]}]}

(“A B C D E” → “A B F C D E”)

// Insert a “F” after the character indexed by “pos”.

4. Modify operation
{“Modify”:[{“pos”:2,“tag”:“MOD_1”,“label”:[“F”]}]}

(“A B C D E” → “A B F D E”)

// Modify the character with index “pos” to “F”.

C Visual Interface of Annotation Tool

As shown in Figure 6, we develop a visual annota-
tion tool for the annotation process. Given an erro-

neous sentence, annotators are able to utilize this
tool for easily identifying the error types and cor-
recting the errors via four operations, i.e., Switch,
Delete, Insert and Modify. Concretely, the annota-
tors only need to drag or click on the small blocks
which represent each character at the bottom of
the main form to complete the corresponding op-
eration. In order to support multiple references of
the correction task, we provide a button for adding
a reference up to five. Moreover, the small form
on the right side displays correction prompts from
teachers and experts to inform the annotators of
the correction. Our tool can automatically convert
these prompts to operations via rules. In addition,
the real-time correction labels are displayed on the
bottom of this small form.

Furthermore, our tool enables convenient com-
parison of multiple annotation operations of a sen-
tence by different annotators, so that expert examin-
ers can select the reasonable references. In practice,
this flexible annotation tool has greatly accelerated
our annotation procedure.

Figure 6: The screenshot of our annotation tool.

D More Statistics of FCGEC

We conduct more statistics on our corpus, including
the length distribution of sentences, the proportion
of error types in each category and the distribution
of the number of reference numbers.

Length distribution of sentences. We compute
the distribution of sentence lengths in our corpus.
As shown in Figure 7, the length of the longest
sentence is 359, while the shortest only contains
9 characters. Furthermore, the average sentence
length is 53.06. Based on this, we can use various
types of PLMs to encode sentences from the corpus
without having to deal with exceeding the length.

Distribution of error types. In Table 6, we cal-
culate the proportion of grammatical errors in the
seven error categories on train set, validation set
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Figure 7: The length distribution of sentences in the
whole corpus.

IWC CM CR SC IWO ILL AM
• Train set
19.45 19.83 8.07 15.93 14.25 17.56 4.92
• Validation set
21.58 20.71 6.41 19.41 16.90 11.27 3.73
• Test set
18.50 25.21 6.23 17.17 17.96 12.27 2.66

Table 6: The proportion (%) of error types in Train,
Validation and Test set, respectively.

and test set. We can observe that the error types are
split as closely as possible with a similar distribu-
tion. Moreover, we can notice that the pragmatic
type of error (ILL, AM and part of the IWO) also
accounts for a significant proportion. Therefore our
corpus tends to be more challenging.

The distribution of references. For the erro-
neous sentences, we allow the annotators to correct
them through a variety of references. Thus the dis-
tribution of sentences with respect to the number of
references is shown in Figure 8. First, we analyze
sentences with a single reference and find that most
of them are due to two scenarios: (1) The sentence
is short or the grammatical error is very simple and
obvious. (2) Some categories of errors often have
only one way to correct them, such as IWO and
ILL. Second, for sentences that contain two refer-
ences, the errors of SC play a significant role in
them. This is due to the fact that SC errors are al-
ways corrected by removing one of the two similar
grammatical structures. More references for cor-
recting sentences often indicate the need to insert or
modify characters. Furthermore, we consider that
the number of references could be increased via an
enhanced and more refined annotation process and

𝟏

𝟐

𝟑

𝟒

≥ 𝟓

References

Figure 8: The distribution of the sentences in terms of
references in our FCGEC.

Attribute Value

Gender (Male / Female) 9 / 16
Age [18, 54]
Native Language Chinese

Education

Middle School Student
Specialty
Undergraduate Student
Bachelor’s Degree
Master’s Degree

Occupation

Students
Freelancers
Factory Workers
Federal Employees
Professionals (e.g., Lawyers)
Office Staffs (e.g., Managers)

Table 7: The demographic information of annotators.

by assigning more annotators to each sentence.

E Algorithm of Minimal Edit

Given a pair containing the incorrect sentence and
the corrected sentence, we design an algorithm to
generate the operation labels under the minimal
operation criteria from such pair. The algorithm
is illustrated in Algorithm 1. It is mainly utilized
in the following two scenarios: (1) Automatically
convert the prompts of teachers and experts into
operation labels for our visual annotation tool. (2)
Based on this algorithm, we can unify the oper-
ation labels after annotation procedure to ensure
that fewer operations are adopted during correct-
ing grammatical errors for quality control. Besides,
this can also help us to check for mistakes and guar-
antee the consistency of the data in the annotation.

In addition, we can convert the data from other
formats (i.e., rewriting and error-coded paradigm)
to our operation labels through this algorithm. Thus
we can apply our STG model to other datasets.
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Algorithm 1 Attain the operation labels via mini-
mum edit distance.

Input: Source sentence S and target sentence T .
Output: The operation labels L that convert S to T .

1: if S == T then
2: return [{}]
3: end if
4: L = [{}]
5: tags = [“Copy”, “Modify”, “Delete”, “Insert”]
6: mov = [(−1,−1), (−1,−1), (−1, 0), (0,−1)]
7: Calculate the character frequency fS of S, and fT of T .
8: if fS == fT then
9: Calculate the longest common substring s1 and sec-

ond longest one s2 between S and T .
10: Swap the positions of s1 and s2 with their indexes

pori in S. Then the swapped sentence Sswap and
indexes pswap can be obtained.

11: if Sswap == T then
12: L = [{“Switch” : pswap}]
13: else
14: goto 17
15: end if
16: else
17: Calculate the Levenshtein distance and then obtain the

edit path matrix Mp.
18: ops = []
19: getOperations(Mp, len(S), len(T ), ops)
20: Merge labels with adjacent index and the same opera-

tion in ops to get L
21: end if
22: return L

23: Function getOperations(Mp, i, j, ops)
24: if i == 0 and j == 0 then
25: return
26: end if
27: for all op such that op ∈ tags do
28: if Mp[i][j].get(op) then
29: ops.append([i, j, op])
30: getOperations(Mp, i+mov[0], j+mov[1], ops)
31: break
32: end if
33: end for
34: EndFunction

F The Demographic of Humans

In order to evaluate human performance on our
FCGEC, we employ 25 annotators from the crowd-
sourcing platform of NetEase. Moreover, with
the aim of measuring human performance as com-
pletely as possible, we hire a diverse range of an-
notators with different aspects (Education, occupa-
tion, age, etc.). As shown in the Table 7, the plat-
form of NetEase provides us with their non-private
demographic information about the annotators.

It is worth mentioning that we ask the annota-
tors to label more data (randomly sampling 50%
of the test set and then duplicating them 5 times)
compared to other work as a way to attain more
precise human performance.

G Details of Pre-trained Language
Models

We enhance the performance of the model with
PLMs for both the classification and correction
tasks. In order to enable better reproduction of our
results, we provide the details and links to officially
released pre-trained parameters in the Table 8.

In Seq2Seq models, we adopt CPT as the Chi-
nese BART model. In particular, since some Chi-
nese punctuation is missing in the vocabulary of the
BART model (e.g., Chinese quotation marks), we
avoid performance degradation by substituting the
punctuation with their English counterparts during
pre-processing stage.

H Details of Our STG Model

To better illustrate the details of our STG model, we
present additional input samples and the processing
for the three modules in this section.

H.1 Switch Module
As we describe in Appendix B, the labels of Switch
indicate the order of the original character index af-
ter swapping. However, the index of the next char-
acter is predicted for each character in our Switch
module. Therefore, we need to fill this gap by
converting these labels. We demonstrate the differ-
ences between these two label types in Figure 9.

! " # $ %&' ( ) ! *

1 2 3 4 5 6 7 8 9 10 11

[CLS]

0

[SEP]

12
I revised and realized my shortcomings

Sequence

Ori. Label

Index

1 5 6 4 2 3 7 8 9 10 110 12

Sw. Label 5 3 7 2 6 4 8 9 10 11 121 -1

Figure 9: Comparison of the differences in the two types
of Switch labels. Ori. Label and Sw. Label indicate
the annotated labels and the processed labels in Switch
module, respectively.

In Switch module, we utilize pointer network
with self-attention mechanism to predict which
character will be pointed to of each character. Fur-
thermore, we adopt cross-entropy as the loss func-
tion to measure the margin between attention score
matrix A and the golden labels for optimizing.

H.2 Tagger Module
In section 3.2, we introduce five tags (K, D, INS_t,
M and MI_t) that correspond to the three operations
(i.e., Delete, Insert and Modify) in Tagger module.
For better understand our tags, we present some
concrete examples in Figure 10.
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PLM Name Parameters Url Model Size

• PLMs of Basic Size
BERT (Devlin et al., 2018)
→ BERT-wwm-ext 12 layers

768-d hidden Size
12 attention heads

https://github.com/ymcui/Chinese-BERT-wwm
102MRoBERTa† (Liu et al., 2019)

→ RoBERTa-wwm-ext
MACBERT (Cui et al., 2020)
→ MacBERT-base

https://github.com/ymcui/MacBERT

CPT† (Shao et al., 2021)
→ CPT-base

10 layers of encoder
2 layers of decoder
768-d hidden Size
12 attention heads

https://github.com/fastnlp/CPT 116M

• PLMs of Large Size
RoBERTa (Liu et al., 2019)
→ RoBERTa-wwm-ext-large

24 layers
1024-d hidden Size
16 attention heads

https://github.com/ymcui/Chinese-BERT-wwm

325M
MACBERT (Cui et al., 2020)
→ MacBERT-large

https://github.com/ymcui/MacBERT

StructBERT (Wang et al., 2019b)
→ Structbert.ch.large

https://github.com/alibaba/AliceMind/tree/
main/StructBERT

Table 8: Detailed information of PLMs. Models with mark † are utilized as the backbone in correction task. The
names after → are the specific version of the PLM models.
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[SEP]
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[SEP]
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Example 1:

[{“Insert”: :[{“pos”:4, “tag”:“INS_2”,``label’’:[“XY”]}]
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[SEP]
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Example 2:

[{“Modify”: :[{“pos”:5, “tag”:“MOD_2”,``label’’:[“XY”]}]
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[SEP]
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Example 3:

[{“Modify”: :[{“pos”:1, “tag”:“MOD_2+INS1”,``label’’:[“XYZ”]}]
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[SEP]
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Example 4:

[{“Modify”: :[{“pos”:3, “tag”:“MOD_2+DEL1”,``label’’:[“X”]}]
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[SEP]
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Example 5:

Figure 10: Examples of the tags for five typical cases in
Tagger module.

With this well-designed tagging criterion, our
STG model can perform arbitrary manipulations
of the sequence without iteration. During the train-
ing stage, we employ two classification layers to
determine the tags and the number t of INS_t and
MI_t, separately. Meanwhile, The cross-entropy is
also applied to compute the loss. We optimize both
of the parameters in the two classification layers
simultaneously by combining the loss of them.
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[SEP]
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Construct Input to GeneratorModule

[{“Modify”: :[{“pos”:5, “tag”:“MOD_2”,``label’’:[“XY”]}]Example :
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[SEP]
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A B C D KJ[MASK] G H I[CLS] [SEP][MASK]

GeneraterModule

X YOutput Characters:

Figure 11: An example about the model input of gener-
ator module.

In particular, we try a small trick (Note that the
trick is not adopted for the results of our STG mod-
els in Table 5, for fair comparison) that can further
improve the performance of the model, which is
to utilize the weighted cross-entropy loss. As the
majority of tags in a sentence are Keep, it is intu-
itive to increase the weight of other tags to solve
this typical category imbalance problem. After we
conduct experiment on STG-Joint with this trick,
we observe a 0.72% performance improvement in
Exact Match.

H.3 Generator Module
In Generator module, we exploit the features of
BERT-style PLMs to predict the characters which
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Model Switch Delete Insert Modify
EM F0.5 EM F0.5 EM F0.5 EM F0.5

Ratio (%) 20.90 34.42 27.32 17.35
Seq2Seq (MuCGEC) 12.33 20.85 31.45 54.42 10.90 18.57 8.58 23.56
Seq2Edit (LaserTagger) 16.16 20.51 40.43 59.62 7.34 13.23 15.18 28.14
STG-Joint (Ours) 35.62 48.94 42.60 59.29 12.79 18.99 19.14 34.15

Table 9: The metric (%) of Exact Match and F0.5 score for each operation on the subset of test set. The first row
(i.e., Ratio) represents the proportion of each operation to the total.

do not appear in the source sentence. The outputs
of Tagger module are utilized to generate the in-
put sequence with [MASK] tokens. We present an
example of the input sequence in Figure 11.

After that, the Generator module predicts the
indexes of the characters in vocabulary list that
should be filled in at [MASK]. Similarly, the cross-
entropy loss is adopted for optimizing the parame-
ters in Generator module.

I More Comparisons and Analysis

To further investigate the differences in the ability
of the correction models, we present more compar-
isons and analyses in this section.

Performance on four operations of correction.
Table 9 illustrates another perspective of the fine-
grained results that we calculate the performance
of correction models on different operations. More
specifically, we split the entire test set into four
small subsets that contain only one operation for
incorrect sentences. Then we compare our STG-
Joint model with the best performing models in the
Seq2Seq and Seq2Edit categories, respectively.

First, we can observe that our STG-Joint is sig-
nificantly outperforms the other two models in
terms of Switch operation. This is due to the fact
that we design a special Switch module to effi-
ciently handle such operation. Secondly, the per-
formance of STG-Joint and LaserTagger is com-
parable in terms of Delete operation. However,
Seq2Seq model behaves relatively weakly, due to
its arbitrary modifications that often tend to delete
more characters. Lastly, we discover that all mod-
els have poor performances on Insert and Modify
operations, indicating that the task of generating
new characters is more challenging.

Original performance of MuCGEC. In Sec-
tion 4.4, we substitute the original backbone of
the Seq2Seq and Seq2Edit models in MuCGEC
(Zhang et al., 2022) for a fair comparison. We

Model P R F0.5

Seq2Seq+CPT-B 39.47 26.19 35.84
Seq2Seq+BART-L 38.59 36.52 38.16
Seq2Edit+RoBERTa-B 31.06 18.74 27.45
Seq2Edit+StructBERT-L 30.68 21.65 28.32

Table 10: Performance comparison for different PLM
backbones for models in MuCGEC. The suffix of B
represents base size, while L stands for large size.

conduct additional experiments to demonstrate
the original performance of models in MuCGEC.
They employ the PLMs of Chinese-BART-Large2

and StructBERT-Large3 for Seq2Seq and Seq2Edit
(GECToR) model, respectively.

We present the results of MuCGEC in Table 10.
It is clear that the performances of models with
large-size PLMs are better than those of the base-
size PLMs. Specifically, Seq2Seq model is greatly
improved after applying BART-Large as the back-
bone. Moreover, it is close to the results of our
STG-series models. However, there is only a slight
improvement of F0.5 for the Seq2Edit model. After
we further observe the error examples of Seq2Seq
and Seq2Edit on the test set, we discover that the
results of Switch operation are the critical limita-
tion for Seq2Edit model. This also illustrates the
necessity of the Switch module in our STG.

Performances on the validation set. In order to
evaluate the distribution of our split dataset, we
show the results of the best performing models
on the corresponding validation set for the three
tasks (detection, identification and correction) in
Table 11. It is reasonable to observe that the perfor-
mance on the validation set is slightly better than
on the test set. Therefore, we keep the data dis-
tribution on the validation set close to the test set,

2https://huggingface.co/fnlp/bart-large-chinese
3https://github.com/alibaba/AliceMind/tree/main/

StructBERT
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Model Acc P R F1

• Grammatical Error Detection
StructBERT-Large 80.40 80.24 78.55 80.24
• Grammatical Error Type Identification
RoBERTa-Large 60.44 68.17 64.11 65.77

Model EM P R F0.5

• Grammatical Error Correction
STG-Joint 36.71 50.00 39.21 47.39

Table 11: Corresponding validation performance for
reported test result of the best performing models on
three tasks.

which facilitates the model to search for the best
hyperparameters on the validation set. Thus we can
obtain better performance on the test set.

Computing resources and times. In Table 12,
we show the detailed computing resources and hy-
perparameters for training our STG-Joint model.
Meanwhile, we also record the training time con-
sumed under these hyperparameters and devices.

Configuration Value

Device 1 GeForce RTX 3090 (24G RAM)
PLM model RoBERTa-Base-wwm-ext (Liu

et al., 2019)
Number of epochs 100
Batch size 32
Beam size 5 / [1, 5, 10, 20]
Sequence Length 150 / [50, 100, 150]
Learning Rate 1e-5 / [5e-6, 1e-5, 2e-5, 5e-5]
Optimizer Adam
Dropout 0.1
Weight Decay 1e-2
Total training time About 12 hours
Hyperparameters Se-
lection

Best performance on the valida-
tion set with the minimum loss

Table 12: Computing device, hyperparamters and train-
ing time for STG-Joint model. For hyperparameters of
beam size, sequence length and learning rate, the left
side of / is the best hyperparameter while the right side
is the set for hyperparameter search.

J Case Study

In order to explore the performance of the models
on the correction task, we conduct analyses on case
examples. Similarly, we compare STG-Joint with
the best performing models in the Seq2Seq and
Seq2Edit categories (MuCGEC and LaserTagger).
We present the cases in Table 13. Meanwhile, the

English version of the cases can be seen in Table 14.
In particular, since the ground truth contains mul-
tiple references, we represent one of them as an
illustration due to space constraints. Note that the
results of the models in Table 13 are based on the
multiple references.

We can derive several observations from these
case examples. First, in the category of word order
errors (IWO), both Seq2Seq and Seq2Edit models
can correct the elementary errors (Example 10).
However, they fail to solve the more difficult or-
der errors (progressive relationship problem in Ex-
ample 9). Since our STG model is specifically
equipped with the Switch module, it is possible to
correct for these errors. Secondly, in the case of
error categories that require the generation of new
characters (e.g. CM and IWC), more improvements
are required for all models. Finally, the pragmatic
errors are the most difficult to correct (especially
for AM). We encourage future models to pay more
attention to these types of errors.
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Type Erroneous Sentence Ground Truth STG-Joint Seq2Seq Seq2Edit

IWC

1. 近些年来，我国全力做好癌
症筛查、临床治疗和药品供应

工作，努力减少癌症死亡率。

近些年来，我国全力做好癌症

筛查、临床治疗和药品供应工

作，努力降低癌症死亡率。

" % "

2. 我们有吃苦耐劳的人民，又
有优裕的自然资源。

我们有吃苦耐劳的人民，又有

丰富的自然资源。
% % %

CM

3. 笔记本电脑充分显示了快捷
、稳定、方便而成为各种赛事

新闻报道的重要工具。

笔记本电脑充分显示了快捷、

稳定、方便的特点而成为各种

赛事新闻报道的重要工具。

" % %

4. 我们要养成爱读书，特别是
读经典，读名著，让书香溢满

校园。

我们要养成爱读书，特别是读

经典，读名著的习惯，让书香

溢满校园。

% % %

CR

5. 为精简字数，这篇文章不得
不略加删改一些。

为精简字数，这篇文章不得不

略加删改。
" " "

6. 我们发自内心由衷地感谢老
师多年来的默默付出。

我们发自内心地感谢老师多年

来的默默付出。
" % %

SC

7. 一个人变好变坏，关键在于
内因起决定作用。

一个人变好变坏，内因起决定

作用。
" " "

8. 期末考试前出现失眠、烦躁
等现象，这往往是因为太在乎

考试成绩，心理负担过重造成

的。

期末考试前出现失眠、烦躁等

现象，这往往是太在乎考试成

绩，心理负担过重造成的。

" % %

IWO

9. 参加奥运的选手们十分清楚
，一场比赛的输赢，不仅关系

到祖国的荣誉，而且关系到个

人的尊严。

参加奥运的选手们十分清楚，

一场比赛的输赢，不仅关系到

个人的尊严，而且关系到祖国

的荣誉。

" % %

10. 学校自从开展研究性学习
以来，同学们踊跃参与，创新

意识和创新能力得到很大的提

升。

自从学校开展研究性学习以来

，同学们踊跃参与，创新意识

和创新能力得到很大的提升。

" " "

ILL

11. “十一”放假之前，老师反
复强调要防止不发生事故。

“十一”放假之前，老师反复强
调要防止发生事故。

" " "

12. 面对一件棘手的事情，我
们需要三思而后行。多动脑子

，会避免少捅娄子少出错。

面对一件棘手的事情，我们需

要三思而后行。多动脑子，会

少捅娄子少出错。

% % %

AM

13. 很多人认为科学家终日埋
头搞科研，不问家事，有点儿

不近人情，然而事实却是对这

种偏见的最好说明。

很多人认为科学家终日埋头搞

科研，不问家事，有点儿不近

人情，然而事实却是对这种偏

见的最好反驳。

" % %

14. 他决定背着妈妈去医院检
查身体。

他决定瞒着妈妈去医院检查身

体。
% % %

15. 张义和王强上课说话，被
老师叫去办公室了。

张义和王强上课说话，两人被

老师叫去办公室了。
% % %

Table 13: The case study for comparing the performances of models. The characters in red denote the differences
between erroneous sentences and ground truth. We demonstrate the English version in Table 14.
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Type Erroneous Sentence Ground Truth Tips

IWC

1. In recent years, we have struggled to
cut down cancer mortality by improving
cancer screening, clinical care and the
supply of drugs.

In recent years, we have struggled to
reduce cancer mortality by improving
cancer screening, clinical care and the
supply of drugs.

In general, “cut down” can-
not be collocated with “can-
cer mortality”, and “reduce”
should be used.

2. We have industrious people and
favourable natural resources.

We have industrious people and abun-
dant natural resources.

Usually, we pair “abundant”
with “resources”.

CM

3. Laptops demonstrate the speed, sta-
bility and convenience and become an
important tool for news coverage of var-
ious events.

Laptops demonstrate the characteristics
of speed, stability and convenience and
become an important tool for news cov-
erage of various events.

In Chinese, the incorrect
sentence is missing the ob-
ject “characteristics”.

4. We should develop of reading, espe-
cially reading classics and masterpieces,
so that the fragrance of books can over-
flow the campus.

We should develop the habit of reading,
especially reading classics and master-
pieces, so that the fragrance of books
can overflow the campus.

Similarly, the erroneous sen-
tence misses the object “hab-
bit” in Chinese.

CR

5. In order to reduce the word count, this
article had to be slightly redacted some.

In order to reduce the word count, this
article had to be slightly redacted.

The word “some” is redun-
dant and can be deleted.

6. From the bottom of our hearts, we
thank our teachers sincerely for their
quiet dedication over the years.

From the bottom of our hearts, we thank
our teachers for their quiet dedication
over the years.

In Chinese, the word “sin-
cerely” is superfluous and
should be removed.

SC

7. The crucial thing for a person to be-
come good or bad is that the inner rea-
sons play a role in determining it.

For a person to become good or bad, the
inner reasons play a role in determining
it.

The structure of “the crucial
thing for” and “play a role
in” are confusing.

8. Insomnia and irritability before ex-
ams are caused by due to the excessive
psychological burden with caring too
much about exam results.

Insomnia and irritability before exams
are caused by the excessive psychologi-
cal burden with caring too much about
exam results.

We can not apply the struc-
ture of “caused by” and
“due to” in a sentence simul-
taneously.

IWO

9. Olympic athletes understand that win-
ning or losing a race is not only about
the honor of the country, but also about
the dignity of themselves.

Olympic athletes understand that win-
ning or losing a race is not only about
the dignity of themselves, but also about
the honor of the country.

“Honor of the country”
and “dignity of themselves”
should be swapped due to
progressive relationship.

10. The school since introduced the re-
search study, students have participated
enthusiastically and their creative aware-
ness and ability have been greatly en-
hanced.

Since the school introduced the research
study, students have participated enthu-
siastically and their creative awareness
and ability have been greatly enhanced.

“Since” should be placed
at the beginning of the sen-
tence

ILL

11. Before the holiday, teachers empha-
sized over and over again to prevent ac-
cidents from not happening.

Before the holiday, teachers emphasized
over and over again to prevent accidents
from happening.

The double negation causes
logical errors.

12. When faced with difficulties, we
need to think first. More thinking will
avoid less troubles and mistakes.

When faced with difficulties, we need
to think first. More thinking can lead to
less troubles and mistakes.

More thinking leads to
less errors in commonsense,
while “avoid” causes errors.

AM

13. Many people think that scientists
engage in research and do not commu-
nicate with others, yet the facts are the
best illustration of this prejudice.

Many people think that scientists en-
gage in research and do not communi-
cate with others, yet the facts are the best
rebuttal to this prejudice.

The semantic meaning is
rather ambiguous that we
cannot infer the role of facts
on prejudice.

14.He decided to carry (not to tell) his
mother (he was going) to the hospital.

He decided not to tell his mother he was
going to the hospital.

There is an ambiguity in
Chinese.

15. Yi Zhang and Qiang Wang talked in
class and was called to the office by the
teacher.

Yi Zhang and Qiang Wang talked in
class and the two were called to the of-
fice by the teacher.

There is ambiguity on who
was called to the office.

Table 14: The English version of erroneous sentences and ground truth in case study. Furthermore, we provide tips
for better understanding the grammatical errors in Chinese.
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