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Abstract
We propose an autoregressive entity linking
model, that is trained with two auxiliary tasks,
and learns to re-rank generated samples at in-
ference time. Our proposed novelties address
two weaknesses in the literature. First, a re-
cent method proposes to learn mention detec-
tion and then entity candidate selection, but
relies on predefined sets of candidates. We
use encoder-decoder autoregressive entity link-
ing in order to bypass this need, and propose
to train mention detection as an auxiliary task
instead. Second, previous work suggests that
re-ranking could help correct prediction errors.
We add a new, auxiliary task, match prediction,
to learn re-ranking. Without the use of a knowl-
edge base or candidate sets, our model sets a
new state of the art in two benchmark datasets
of entity linking: COMETA in the biomedical
domain, and AIDA-CoNLL in the news do-
main. We show through ablation studies that
each of the two auxiliary tasks increases per-
formance, and that re-ranking is an important
factor to the increase. Finally, our low-resource
experimental results suggest that performance
on the main task benefits from the knowledge
learned by the auxiliary tasks, and not just from
the additional training data.

1 Introduction

Entity linking (Zhang et al., 2010; Han et al., 2011)
is the task of linking entity mentions in a text doc-
ument to concepts in a knowledge base. It is a ba-
sic building block used in many NLP applications,
such as question answering (Yu et al., 2017; Dubey
et al., 2018; Shah et al., 2019), word sense disam-
biguation (Raganato et al., 2017; Uslu et al., 2018),
text classification (Basile et al., 2015; Scharpf et al.,
2021), and social media analysis (Liu et al., 2013;
Yamada et al., 2015).

Early definitions decompose the task of entity
linking (EL) into two subtasks: Mention Detection
(MD) and Entity Disambiguation (ED). Many sta-
tistical and LSTM-based methods propose to cast

SOCCER - Japan Get Lucky Win, China In Surprise Defeat. 
Japan began the defence of their Asian Cup title with a lucky 
2-1 win against Syria in a Group C championship match on 
Friday. But China saw their luck desert them [...]

Source Text

SOCCER - Japan Get Lucky Win, China national football team 
In Surprise Defeat. Japan national football team began the 
defence of their AFC Asian Cup title with a lucky 2-1 win 
against Syria national footballer team in a Group C 
championship match on Friday. But China Chinese Super 
League [...]

GENRE (De Cao et al., 2021)

SOCCER - Japan national football team Get Lucky Win, China 
national football team In Surprise Defeat. Japan national 
footballer team began the defence of their AFC Asian Cup title 
with a lucky 2-1 win against Syria national football teams in a 
Group C championship match on Friday. But China national 
Football team saw their luck desert them [...]

Our Multi-Task Model

Figure 1: Example of an Entity Linking (EL) source text
and generated outputs. Entity mentions to be recognized
and disambiguated are denoted in blue in the source text.
In the outputs, red denotes errors, green denotes correct
answers, yellow denotes close matches.

EL as a two-step problem, and optimize for both
MD and ED (Guo et al., 2013; Luo et al., 2015;
Cornolti et al., 2016; Ganea and Hofmann, 2017).

Recent entity linking methods based on language
models propose to cast entity linking as a single,
end-to-end trained task (Broscheit, 2019; Poerner
et al., 2020; El Vaigh et al., 2020), rather than a
two-subtask problem. An example is autoregres-
sive entity linking (Petroni et al., 2021; De Cao
et al., 2021b), which formulates entity linking as
a language generation problem using an encoder-
decoder model. A more recent approach (De Cao
et al., 2021a) increases performance, and is instead
based on a two-step architecture: first mention de-
tection with a transformer encoder, and then au-
toregressive candidate selection with an LSTM.
However, this candidate selection module needs
a predefined set of candidate mentions.

Methods based on word embedding models
(Basaldella et al., 2020) propose to learn entity dis-
ambiguation by mapping embedding spaces. Their
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high accuracy at 10 results show that re-ranking
could increase entity linking performance.

Contributions. In this paper, we propose an
autoregressive entity linking method, that is trained
jointly with two auxiliary tasks, and learns to re-
rank generated samples at inference time. Our pro-
posed novelties address two weaknesses in the lit-
erature.

First, instead of the two-step method (De Cao
et al., 2021a) that learns to detect mentions and
then to select the best entity candidate from a pre-
defined set, we propose to add mention detection
as an auxiliary task to encoder-decoder-based au-
toregressive EL. By using encoder-decoder-based
autoregressive EL, we bypass the need for a prede-
fined set of candidate mentions, while preserving
the benefit of the knowledge learned from mention
detection for the main EL task.

Second, previous work suggests that re-ranking
could correct prediction errors (Basaldella et al.,
2020). We propose to train a second, new auxiliary
task, called Match Prediction. This task teaches the
model to re-rank generated samples at inference
time. We define match prediction as a classification
task where the goal is to identify whether entities
in a first sentence were correctly disambiguated in
the second sentence. We train this second task with
samples generated by the model at each training
epoch. At inference time, we then rank the gener-
ated samples using our match prediction scores.

Our multi-task learning model outperforms the
state of the art in two benchmark datasets of entity
linking across two domains: COMETA (Basaldella
et al., 2020) from the biomedical and social media
domain, and AIDA-CoNLL (Hoffart et al., 2011)
from the news domain. We show through three
ablation study experiments that each auxiliary task
provides improvements on the main task. Then,
we show that using our model’s match prediction
module to re-rank generated samples at inference
time plays an important role in increasing perfor-
mance. Finally, we devise three experiments where
we train auxiliary tasks with a smaller dataset. Re-
sults suggest that our model’s performance is not
only due to more training datapoints, but also due
to our auxiliary task definition.

2 Related Work

Entity Linking (EL). Entity Linking is often (Hof-
fart et al., 2011; Steinmetz and Sack, 2013; Pic-
cinno and Ferragina, 2014; De Cao et al., 2021a)

trained as two tasks: Mention Detection (MD) and
Entity Disambiguation (ED). Mention detection is
the task of detecting entity mention spans, such
that an entity mention m is represented by start and
end positions. A mention m refers to a concept in
a given knowledge base. Entity disambiguation is
the task of finding the right knowledge base con-
cept for an entity mention, thereby disambiguating
its meaning.

Early EL methods (Hoffart et al., 2011; Stein-
metz and Sack, 2013; Daiber et al., 2013) rely on
probabilistic approaches. Hoffart et al. (2011) pro-
pose a probabilistic framework for MD and ED,
based on textual similarity and corpus occurrence.
They test their framework using the entity candi-
date sets available in the AIDA-CoNLL dataset.

More recently, neural methods propose to train
end-to-end EL models. Francis-Landau et al.
(2016) propose a convolutional neural EL model to
take into account windows of context.

Kolitsas et al. (2018) propose a neural model for
joint mention detection and entity disambiguation.
They use a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) to encode spans of entities.
They then embed candidate entities and train layers
to score the likelihood of a match.

Sil et al. (2018) introduce an LSTM-based model
that uses multilingual embeddings for zero-shot
transfer from English-language knowledge bases.

EL as Language Modeling. Language mod-
eling approaches have enabled new, end-to-end
definitions of the entity linking task. These new
settings enable to bypass the two-step MD-then-ED
setting for entity linking, and propose to cast entity
linking as a single task.

Broscheit (2019) propose to reformulate end-to-
end EL problem as a token-wise classification over
the entire set of the vocabulary. Their model is
based on BERT (Devlin et al., 2019). The train-
ing combines mention detection, candidate genera-
tion, and entity disambiguation. If an entity is not
detected, then the prediction is O. If an entity is
detected, the classification head has to classify it
as the corresponding particular entity within the
vocabulary.

De Cao et al. (2021b) propose an autoregressive
setting for EL. They use BART (Lewis et al., 2020)
and cast entity linking as a language generation
task. In this setting, the input is the source sentence
with the entity mention. The goal is to generate an
annotated version of the input sentence, such that
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the entity mention is highlighted and mapped to a
knowledge base concept. Brackets and parentheses
are used to annotate the entity mention and concept:
“I took the [flu shot] (influenza vaccine).”. They
then introduce a constrained beam search to force
the model to annotate. De Cao et al. (2021c) is a
multilingual extension of this work.

EL as Embedding Space Mapping. Language
models like BERT, as well as embedding models
like FastText (Bojanowski et al., 2017), enable to
retrieve context-aware representations of entities
and knowledge base concepts.

Basaldella et al. (2020) propose to map the em-
beddings of entity mentions to the embeddings of
knowledge base concepts. They find that the right
mapping is more often found among the ten closest
concept embeddings (accuracy at 10) rather than
being the closest concept embedding (accuracy at
1). Their results suggest that generated sample
re-ranking could improve entity linking systems.

Concurrently, Wu et al. (2020) propose a method
that uses re-ranking for zero-shot retrieval of enti-
ties. They use entity definition embeddings to find
candidate entities from a knowledge base, and then
train a cross-encoder to re-rank the candidates.

Basaldella et al. (2020) also introduce the
COMETA dataset: an entity linking benchmark
based on social media user utterances on medical
topics, and linked to the SNOMED-CT biomedi-
cal knowledge base (Donnelly et al., 2006). The
dataset has four splits, based on whether the
dev/test set entities are seen during training (strat-
ified) or not (zeroshot), and on whether the entity
mapping is context-specific (specific) or not (gen-
eral). Liu et al. (2021a) propose a self-alignment
pre-training scheme for entity embeddings, and
show that it benefits the context-free splits (strat-
ified general and zeroshot general). Liu et al.
(2021b) propose MirrorBERT: a data-augmented
approach for masked language models. Lai et al.
(2021) and Kong et al. (2021) propose convolution-
based and graph-based methods, respectively, for
embedding mapping between entities and knowl-
edge base concepts.

All of the above methods use knowledge base
concepts. In our biomedical entity linking setting,
we choose the harder zeroshot specific split. We
propose to use the language modeling task setting
instead of the embedding mapping method. We
therefore bypass the need to embed each and every
knowledge base concept, whereas only a small por-

tion (<10%) of the SNOMED-CT knowledge base
concepts are used in the COMETA dataset.

3 Multi-Task Learning for Autoregressive
Entity Linking

We propose an autoregressive entity linking model,
that is trained along with two auxiliary tasks, and
uses re-ranking at inference time.

In this section, we first describe the main entity
linking task. Then, we define the two auxiliary
tasks: Mention Detection and a new task, called
Match Prediction. Third, we train our multi-task
learning architecture with a weighted objective. Fi-
nally, we propose to use the match prediction mod-
ule for re-ranking during inference. An overview
of our architecture is in Figure 2.

3.1 Autoregressive Entity Linking
We train autoregressive entity linking as a lan-
guage generation task. We follow the setting of the
encoder-decoder model of De Cao et al. (2021b).
They train their model to generate the input sen-
tence containing both the entity mention and the
target entity, annotated with parentheses and brack-
ets. For simplicity, we omit these annotations from
the examples in the figures.

For entity linking (EL), we optimize the follow-
ing negative log-likelihood loss:

LEL = −
N∑
i=1

logP (yi|y1, ..., yi−1,x) (1)

where x is the input sentence, and y is the output
sentence of length N .

3.2 Entity Mention Detection
We introduce mention detection (MD) as an auxil-
iary task to encoder-decoder autoregressive EL, in
order for the knowledge learned from MD to bene-
fit the main EL task, while bypassing the need for
predefined candidate sets. MD teaches the model
to distinguish tokens that are part of entities from
tokens that are not part of any entity. As a result,
this task is in essence a token-wise binary classi-
fication task. Broscheit (2019) propose a similar
task definition, but combine entity detection with
entity disambiguation. Their task definition is a
classification task over the entire knowledge base
vocabulary, rather than our binary setting.

In this task, we train the model to predict where
the tokens of the entities are in the input sentence
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HeadTagging Head

(Target Sentence)

I took the flu shot. I took the flu shot. I took the flu shot.
I took the flu vaccine.

1. Entity Mention 
Detection (MD)

2. Autoregressive 
Entity Linking (EL)

3. Entity Match 
Prediction (MP)

Decoder (MP)Decoder (MD)

Tagging Head
(Source Sentence)

I took the flu shot.
O  O  O  E  E O

I took the influenza vaccine.
O  O  O    E      E  O I took the influenza vaccine.

Prediction: 0.45
Entities do not match

Multi-Task Training Inference Time

Input

Autoregressive
Entity Linking

𝑘 sampled outputs
Ranked by LM probability

𝑘 sampled outputs
Ranked by prediction score

Entity Match 
Prediction

Generating & Re-ranking
𝑘 sampled outputs

Figure 2: Architecture of our proposed multi-task autoregressive entity linking model. Each task is trained using a
shared encoder and a task-specific decoder and output layer. The auxiliary mention detection task uses datasets
derived from one entity linking dataset, whereas the match prediction task uses sampled outputs. At inference time,
we use the match prediction module to re-rank generated samples.

and in the target (annotated) sentence. Therefore,
this auxiliary task has to output two sequences of
entity indicators: “E” for entity mention or concept
tokens, and “O” for all other tokens. To train our
model to generate sequences for the input and tar-
get sentences, we augment our existing dataset. We
create two datasets of the same size: the first has se-
quences of entity indicators for the input sentences,
and the second has sequences of entity indicators
for the target sentences.

As shown at the left of Figure 2, we use two dif-
ferent tagging heads for mention detection: one for
the input sentence, and one for the output sentence.
We use two tagging heads as the model learns dif-
ferent mappings from two different kinds of input.
For the input sentence, we feed the encoder em-
beddings to the first tagging head. We cast this
as a classification problem. For mention detection
on the output sentence, we use a separate decoder,
and feed this decoder’s embeddings to the second
tagging head. We cast this task as a generation task.
For both tasks, we optimize a cross entropy (CE)
loss. In summary, we optimize the following loss
function for mention detection (MD):

LMD =CE (Enc(x), Ent(x))

+ CE (Dec(Enc(x)), Ent(y))
(2)

where Enc(·) is the encoder representation, Dec(·)
is the decoder representation, and Ent(·) indicates

the corresponding sequence of entity indicators.
The method of De Cao et al. (2021a) has two

steps, where the first step is to detect mentions.
Here, mention detection is an auxiliary task rather
than a main part of the pipeline. We employ
encoder-decoder autoregressive EL as our main
end-to-end pipeline.

3.3 Entity Match Prediction

In their biomedical entity linking experiments us-
ing word embedding space mapping, Basaldella
et al. (2020) find that accuracy at 10 is often more
than double the accuracy at 1. They then suggest
that re-ranking could significantly improve perfor-
mance. We build on this observation to introduce
the second auxiliary task: entity match prediction
(MP). The goal of this task is to teach the model
to re-rank generated samples based on the input
sentence, with the aim to help narrow the gap with
the accuracy at 10 scores.

The input to this task is composed of two sen-
tences: the first one is the input sentence, and the
second is a sentence where entity mentions are
replaced by entities that may or may not be the
matching target entities. We train the model to pre-
dict whether the entities match (score of 1) or not
(score of 0) between both sentences. The entity
match must be complete – all target entities must
be generated – for a score of 1.

At regular intervals during training, we gener-
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ate k samples for each input sentence using beam
search on the autoregressive entity linking part of
the trained model. We then form k sentence pairs.
The corresponding ground truth label for a given
sentence pair indicates whether the entities match
or not. This data generation setting exposes the
model to its own successes and failures in the main
entity linking task.

It may be the case that no generated sample con-
tains entities that match the input sentence, and
therefore that all labels for a pair are 0. In this
case, the model would not be shown what an ex-
ample of matching entities looks like. To mitigate
this issue, we decide to add one additional sen-
tence pair, where the second sentence is the target
sentence used in the autoregressive entity linking
training. We add this additional sentence pair to all
datapoints for consistency.

We train entity match prediction using a mean
squared error loss:

LMP =
(
PMP(ŷ|x)− 1

)2
+

k∑
i=1

(
PMP(ys

i |x)− ŷMP
i

)2 (3)

where ŷ is the target sentence, ys
i is the i-th gen-

erated sample, PMP(·|·) is the probability that the
entities in the left-hand sequence match the ones
in the right-hand sequence, and ŷMP

i is the ground
truth label for entity match prediction for the i-th
generated sample.

De Cao et al. (2021a) propose to rank candidate
concepts from a predefined set after the detecting
entity mentions. In our case, we do not learn to
rank predefined sets of candidates, nor do we rank
concepts. Instead, we generate sentences using
beam search, and propose to learn to re-rank them.

3.4 Multi-Task Learning

We propose to optimize simultaneously for all three
tasks using a single loss function. We set one
weight for each auxiliary task. We discuss the task
weight hyperparameter tuning in §4.3.

Given the losses defined in equations 1, 2, and
3, our loss function for multi-task learning is as
follows:

LMTL = LEL + λMDLMD + λMPLMP (4)

where λMD and λMP are the auxiliary task weights
for mention detection and match prediction, respec-
tively.

As shown in Figure 2, we use three separate de-
coders for training: one for each task. We use two
separate tagging heads for mention detection. For
the match prediction task, we feed the last decoder
output to the classification head. This follows the
training scheme of BART (Lewis et al., 2020) for
sentence classification tasks.

Our proposed multi-task definition is inspired by
our prior work (Mrini et al., 2021a,b). In our prior
research papers, we introduce multi-task learning
architectures for biomedical question summariza-
tion and entailment. We find that closely related
tasks benefit each other during learning, through ei-
ther multi-task learning or transfer learning (Mrini
et al., 2021c).

Our model architecture is also inspired by
MT-DNN (Liu et al., 2019), a multi-task model
that obtained state-of-the-art results across many
NLP tasks involving sentence representation. In
the MT-DNN architecture, the encoder is shared
across tasks, and prediction heads are task-specific.
Nonetheless, other multi-task architectures remain
compatible with our auxiliary tasks and re-ranking,
which are the novelties we focus on in this work.

3.5 Inference-time Re-ranking

In order to bridge some of the gap between ac-
curacy at 1 and accuracy at 10 (Basaldella et al.,
2020), we propose to use the entity match predic-
tion module to re-rank generated samples. The
right side of Figure 2 illustrates the process.

At inference time, we first generate k samples
ranked by their language modeling probability. We
then use the separate entity match prediction (MP)
decoder to predict an entity match probability. To
do so, we input the source sentence and a generated
sample to the MP decoder. We use the resulting
MP probabilities to re-rank the k generated sam-
ples. We select the sample with the highest MP
probability to compute the evaluation metrics.

4 Experiments

4.1 Datasets and Setup

We use two benchmark datasets for English-
language entity linking. We use the standard data
splits for both datasets, as detailed in Table 1.

AIDA-CoNLL (Hoffart et al., 2011) is a dataset
consisting of annotated news articles from the
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AIDA-CoNLL COMETA
Split Documents Mentions Mentions
Train 942 18,540 13,714
Dev 216 4,791 2,018
Test 230 4,485 4,283

Table 1: Statistics of Entity Linking benchmark datasets.

(a) Choosing the optimal λMD, setting λMP = 0.3.

(b) Choosing the optimal λMP, given the optimal λMD.

Figure 3: Task weight tuning on the dev set for Mention
Detection (MD) and Match Prediction (MP). We first
optimize for λMD (a), and then λMP (b).

Reuters Corpus (Lewis et al., 2004). The knowl-
edge base concepts come from the titles of the
English-language Wikipedia. Each news article
contains multiple entity mentions. Articles are
sometimes too long for the maximum sequence
length of our model. We follow De Cao et al.
(2021a) and cut the articles into separate chunks.
We use the Micro-F1 metric for evaluation. We
only evaluate mentions present in the knowledge
base, following the In-KB setting (Röder et al.,
2018), in line with previous work (De Cao et al.,
2021b,a). This dataset contains candidates for each
entity mention. We do not use entity candidates,
although several baselines do (Kolitsas et al., 2018;
Martins et al., 2019; De Cao et al., 2021a).

COMETA (Basaldella et al., 2020) is a dataset
of biomedical entity mentions from social media
(Reddit) utterances. In this dataset, each user-
written utterance contains exactly one entity men-
tion. The metric used to evaluate this dataset is
accuracy at 1 (Acc@1). We measure Acc@1 by
checking whether the correct knowledge base con-
cept is present in the top generated sample. We use
the zeroshot specific split, where the entity men-
tion and disambiguation pairs in the test set are
not seen during training, and the entity linking is
context-specific.

4.2 Training Details

We use BART Large (Lewis et al., 2020) as our
base model. We use three decoders, all initialized
from the same checkpoint decoder. We found in
initial experiments that separate decoders for all
tasks benefit the main EL task. We train for 100
epochs on AIDA-CoNLL, and for 10 epochs on
COMETA.

4.3 Task Weight Tuning

For each dataset, we optimize the auxiliary task
weights λMD for mention detection, and λMP for
match prediction. We select these hyperparame-
ters based on the highest performance in Micro-F1
(AIDA-CoNLL) or accuracy at 1 (COMETA) on
the dev set.

We trial all values from 0.1 to 1.0 with 0.1 incre-
ments, for both task weights. We start by optimiz-
ing λMD given λMP = 0.3, and then optimize λMP

given the optimal λMD weights. The results are in
Figure 3. The graphs show that performance on the
main entity linking task can vary visibly when the
weights of the auxiliary tasks change. The varia-
tion is likely due to the large auxiliary task datasets,
which could dominate training. Moreover, the op-
timal task weights are different for every dataset
and domain: we find that the optimal auxiliary
task weights are λMD = 0.4 and λMP = 0.6 for
AIDA-CoNLL, and λMD = 0.5 and λMP = 0.3
for COMETA. We use these task weights for the
next experiments.

4.4 Results and Discussion

AIDA-CoNLL. The test results for the AIDA-
CoNLL dataset are on Table 2. Our model estab-
lishes a new state of the art for this task.

Compared to the state-of-the-art encoder-
decoder autoregressive EL model on AIDA-
CoNLL (De Cao et al., 2021b), our method shows
a 2.0-point improvement in Micro-F1 score. This
increase shows that our model is able to correct
some errors with the re-ranking at inference time,
and that our multi-task setting benefits the main
entity linking task.

Our model scores a Micro-F1 0.2 higher than the
model of De Cao et al. (2021a). However, De Cao
et al. (2021a) use a predefined candidate set of con-
cepts, whereas the encoder-decoder autoregressive
EL models – including our own – do not. This
shows that our model is able to bypass the knowl-
edge base, and that our method leverages language
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Method Micro-F1
Hoffart et al. (2011) 72.8
Steinmetz and Sack (2013) 42.3
Daiber et al. (2013) 57.8
Moro et al. (2014) 48.5
Piccinno and Ferragina (2014) 73.0
Kolitsas et al. (2018) 82.4
Peters et al. (2019) 73.7
Broscheit (2019) 79.3
Martins et al. (2019) 81.9
van Hulst et al. (2020) 80.5
Févry et al. (2020) 76.7
Kannan Ravi et al. (2021) 83.1
De Cao et al. (2021a) 85.5
Encoder-Decoder Autoregressive EL Models
De Cao et al. (2021b) 83.7
Our model 85.7

Table 2: Results on the AIDA-CoNLL test set.

modeling to gain knowledge of the news domain.
COMETA. There are no predefined sets of can-

didate concepts in the COMETA dataset. In this
task, there is a knowledge base of biomedical con-
cepts from which the model can choose. Similarly
to our AIDA-CoNLL setting, our model does not
use the knowledge base.

We consider three baselines for our biomedical
entity linking benchmark. The first baseline is the
embedding mapping method of Basaldella et al.
(2020). They use BioBERT and a max-margin
loss with negative target embeddings. The sec-
ond baseline is the BERT- and classification-based
method of Broscheit (2019). We train this baseline
by classifying tokens into the concepts present in
the COMETA dataset, as opposed to the entire vo-
cabulary of 350K knowledge base concepts. This
is for computational purposes, as a 350K-way clas-
sification would be difficult to train. The third
baseline is the autoregressive, single-task model
of De Cao et al. (2021b). We train this baseline
as a reference point for our model. We do not in-
clude De Cao et al. (2021a) as a baseline, as their
method uses predefined sets of candidate concepts,
and COMETA does not include them.

The test results of the COMETA dataset experi-
ments are on Table 3. Our model is able to exceed
over five percentage points the baselines that use
the knowledge base concepts. This shows that our
method can efficiently generalize without the need
for a knowledge base, but only through learning

Method Acc@1
Basaldella et al. (2020) 27.0
Broscheit (2019) 24.5
Encoder-Decoder Autoregressive EL Models
De Cao et al. (2021b) 30.9
Our model 32.4

Table 3: Results on the COMETA test set.

AIDA-CoNLL COMETA
MD MP Rk Micro-F1 Acc@1
Ablation of Auxiliary Tasks and Re-ranking
✗ ✗ ✗ 83.7 30.9

Ablation of Auxiliary Tasks
✓ ✗ ✗ 84.3 31.2
✗ ✓ ✓ 85.4 32.1

Ablation of Re-ranking
✓ ✓ ✗ 84.8 31.5

MD, MP and Re-ranking (Ours)
✓ ✓ ✓ 85.7 32.4

Table 4: Results of the ablation studies on the test
sets. We perform ablation studies on Mention Detection
(MD), Match Prediction (MP), and the re-ranking of
generated samples (Rk).

about the biomedical domain. Note that we use
the zeroshot specific split here, where the entity
mention and disambiguation pairs in the test set
are not seen during training. Moreover, our model
exceeds the autoregressive single-task baseline by
1.5%. This increase shows that our multi-task set-
ting and re-ranking can generalize, and increase
performance under zeroshot settings.

4.5 Ablation Studies

We perform two types of ablation studies to analyze
the added value of our novelties. First, we evaluate
how do the two auxiliary tasks and the re-ranking
impact entity linking performance. Second, we
implement a low-resource scenario for the auxiliary
tasks, as we ask whether the main task benefits
more from the knowledge learned the auxiliary
tasks, or from the additional training data.

Auxiliary Tasks and Re-ranking. Our main
novelties are multi-task learning with two auxiliary
tasks, and the re-ranking of generated samples at
inference time. The first auxiliary task, mention
detection, aims to preserve the knowledge learned
from detecting mentions of entities, while allowing
the encoder-decoder model to bypass the need for
predefined sets of entity candidates. The second
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auxiliary task, match prediction, aims to teach the
model how to predict whether entities were cor-
rectly disambiguated given an input sentence and a
generated sample.

We perform ablation studies to gauge the added
value of each task and re-ranking. We perform
three additional experiments, keeping the same
number of model parameters. First, we remove the
match prediction training objective (λMP = 0.0),
and therefore also remove the re-ranking, but we
keep the optimally weighted mention detection ob-
jective. Second, we remove the mention detection
training objective by setting λMD = 0.0, but we
keep the optimally weighted mention prediction
objective, along with the re-ranking. Third, we
keep both optimally weighted auxiliary tasks, but
remove the inference-time re-ranking of generated
samples. Finally, we compare our results to De Cao
et al. (2021b) as it does not have both auxiliary
tasks nor the re-ranking.

We show the results of all ablation experiments
on the dev sets in Table 4. The lowest scores are
obtained when both auxiliary tasks and re-ranking
are ablated. This shows the added value of all
of our main novelties on the main entity linking
task. In addition, each auxiliary task individually
increases performance, as shown on the second and
third row of results. The auxiliary match predic-
tion task along with re-ranking provide a larger
performance increase than the auxiliary mention
detection task alone. This could be due to the fact
that the match prediction task gets a larger number
of samples to train on. Finally, the difference in
performance between our model and the re-ranking
ablation study shows that re-ranking of generated
samples is an important contribution to the final
performance. This result backs the suggestion of
Basaldella et al. (2020) that re-ranking can bridge
some of the gap between Acc@1 and Acc@10.

Impact of additional training data. In this
subsection, we ask whether the main task benefits
more from the knowledge learned by the auxiliary
tasks, or from the large sizes of the auxiliary task
datasets. The mention detection task has two dat-
apoints for every EL datapoint, while the match
prediction task has k + 1 = 11 datapoints for ev-
ery EL datapoint. Therefore, in a given training
epoch, there are more datapoints to train on for the
auxiliary tasks in comparison with the main task.

We devise three experiments to gauge whether
a lower amount of training datapoints for auxiliary

% of Train Set AIDA-CoNLL COMETA
MD MP Micro-F1 Acc@1

Ablation of Auxiliary Tasks and Re-ranking
0% 0% 83.7 30.9

Low-Resource Experiments
50% 9% 84.5 32.0
50% 100% 85.4 31.4
100% 9% 84.5 31.8
No Low-Resource (Ours)
100% 100% 85.7 32.4

Table 5: Results on the test sets of the low-resource
experiments. We reduce the training datasets of the
auxiliary mention detection MD and match prediction
MP tasks to measure the benefit of multi-task learning.

tasks impacts the main task results. We propose
a low-resource regimen of training for auxiliary
tasks, such that we bring the ratio of training data-
points down to 1:1 between the auxiliary tasks and
the main task. We train on one out of every two
MD datapoints, and on one of out every 11 MP
datapoints. In other words, we skip 50% of the
training data of the MD task, and 91% of the train-
ing data of the MP task. We spread out the input
such that, at each training step, the model sees one
EL input sentence, one MD input sentence, and
one MP input sentence pair. In each epoch, we skip
the same datapoints so that the model only sees a
reduced number of training datapoints.

In the first experiment, we train for both auxil-
iary tasks on a train set ratio of 1:1 with the main
task. In the second and third experiments, we apply
the low-resource setting only to the mention de-
tection task, and only to the match prediction task,
respectively. In all three experiments, we keep the
same selection of skipped datapoints for each task,
and we keep re-ranking.

We show the results of the low-resource experi-
ments in Table 5. For reference, we add the results
from our model and the model without auxiliary
task nor re-ranking of De Cao et al. (2021b). The
results show that globally, there is a slight decrease
in performance when the training set is smaller,
compared to our model. However, the low-resource
experiments show a significant increase in perfor-
mance compared to the ablation experiment of the
first row. This shows that our proposed method’s
edge does not only come from the additional train-
ing data, but also from our formulation of the auxil-
iary tasks, and the re-ranking of generated samples.
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5 Conclusions

We propose a multi-task learning and re-ranking
approach to autoregressive entity linking. Our main
two novelties address two weaknesses in the litera-
ture. First, whereas the two-step method of De Cao
et al. (2021a) improves performance, it relies on
predefined sets of entity candidates. We propose
to instead train mention detection as an auxiliary
task to autoregressive EL, in order to bypass the
need for entity candidate sets, and to preserve the
knowledge learned by mention detection. Second,
previous work suggests that a sizeable portion of
errors could be corrected with re-ranking. We pro-
pose to use samples generated at training time to
teach the model to re-rank outputs.

Our model establishes a new state of the art in
both COMETA and AIDA-CoNLL. The increases
in performance across both datasets show that
our model can learn and leverage domain-specific
knowledge, without using a candidate set or a
knowledge base. To analyse our model, we de-
vise three ablation study experiments, and show
that our model benefits from both auxiliary tasks
and re-ranking. In particular, we show that re-
ranking plays a major role in increasing entity link-
ing scores. Then, we propose three low-resource
experiments for auxiliary tasks. The results show
that our model’s performance is not only due to
additional training datapoints, but also due to how
we defined our auxiliary tasks.

Acknowledgements

KM performed this work during an internship
at Meta AI (previously Facebook AI). We thank
Jingbo Shang and Ndapa Nakashole for insightful
discussions. We thank the anonymous reviewers
for their feedback.

Ethical Considerations

This work deals with user-generated text in the
medical domain. However, our work and models
should not be used as text understanding tools for
real-life medical systems without human supervi-
sion and verification. Our system is not error-free,
and using it could lead to a misunderstanding of
the true intentions of people seeking medical care.

References
Marco Basaldella, Fangyu Liu, Ehsan Shareghi, and

Nigel Collier. 2020. Cometa: A corpus for medical

entity linking in the social media. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 3122–
3137.

Pierpaolo Basile, Valerio Basile, Malvina Nissim, and
Nicole Novielli. 2015. Deep tweets: from entity
linking to sentiment analysis. In Proceedings of the
Italian Computational Linguistics Conference (CLiC-
it 2015).

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Samuel Broscheit. 2019. Investigating entity knowledge
in bert with simple neural end-to-end entity linking.
In Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
677–685.

Marco Cornolti, Paolo Ferragina, Massimiliano Cia-
ramita, Stefan Rüd, and Hinrich Schütze. 2016. A
piggyback system for joint entity mention detection
and linking in web queries. In Proceedings of the
25th International Conference on World Wide Web,
pages 567–578.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems, pages 121–124.

Nicola De Cao, Wilker Aziz, and Ivan Titov.
2021a. Highly parallel autoregressive entity link-
ing with discriminative correction. arXiv preprint
arXiv:2109.03792.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021b. Autoregressive entity retrieval.
In International Conference on Learning Representa-
tions.

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel
Artetxe, Naman Goyal, Mikhail Plekhanov, Luke
Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and
Fabio Petroni. 2021c. Multilingual autoregressive
entity linking. arXiv preprint arXiv:2103.12528.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Kevin Donnelly et al. 2006. Snomed-ct: The advanced
terminology and coding system for ehealth. Studies
in health technology and informatics, 121:279.

1980

https://openreview.net/forum?id=5k8F6UU39V


Mohnish Dubey, Debayan Banerjee, Debanjan Chaud-
huri, and Jens Lehmann. 2018. Earl: joint entity and
relation linking for question answering over knowl-
edge graphs. In International Semantic Web Confer-
ence, pages 108–126. Springer.

Cheikh Brahim El Vaigh, François Torregrossa, Robin
Allesiardo, Guillaume Gravier, and Pascale Sébil-
lot. 2020. A correlation-based entity embedding ap-
proach for robust entity linking. In 2020 IEEE 32nd
International Conference on Tools with Artificial In-
telligence (ICTAI), pages 949–954. IEEE.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGer-
ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En-
tities as experts: Sparse memory access with entity
supervision. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4937–4951, Online. Association
for Computational Linguistics.

Matthew Francis-Landau, Greg Durrett, and Dan Klein.
2016. Capturing semantic similarity for entity link-
ing with convolutional neural networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1256–1261.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2619–2629.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To link or not to link? a study on end-to-
end tweet entity linking. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1020–1030.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective
entity linking in web text: a graph-based method. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Informa-
tion Retrieval, pages 765–774.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in
text. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 782–792.

Manoj Prabhakar Kannan Ravi, Kuldeep Singh, Isa-
iah Onando Mulang’, Saeedeh Shekarpour, Johannes
Hoffart, and Jens Lehmann. 2021. CHOLAN:
A modular approach for neural entity linking on
Wikipedia and Wikidata. In Proceedings of the 16th

Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 504–514, Online. Association for Computa-
tional Linguistics.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas
Hofmann. 2018. End-to-end neural entity linking.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 519–529.

Luyang Kong, Christopher Winestock, and Parminder
Bhatia. 2021. Zero-shot medical entity retrieval with-
out annotation: Learning from rich knowledge graph
semantics. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
2401–2405, Online. Association for Computational
Linguistics.

Tuan Lai, Heng Ji, and ChengXiang Zhai. 2021. Bert
might be overkill: A tiny but effective biomedical
entity linker based on residual convolutional neural
networks. arXiv preprint arXiv:2109.02237.

David D Lewis, Yiming Yang, Tony Russell-Rose, and
Fan Li. 2004. Rcv1: A new benchmark collection
for text categorization research. Journal of machine
learning research, 5(Apr):361–397.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Fangyu Liu, Ehsan Shareghi, Zaiqiao Meng, Marco
Basaldella, and Nigel Collier. 2021a. Self-alignment
pretraining for biomedical entity representations. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4228–4238.
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