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Abstract

Recently, there has been a trend to investigate
the factual knowledge captured by Pre-trained
Language Models (PLMs). Many works show
the PLMs’ ability to fill in the missing factual
words in cloze-style prompts such as “Dante
was born in [MASK].” However, it is still a
mystery how PLMs generate the results cor-
rectly: relying on effective clues or short-
cut patterns? We try to answer this ques-
tion by a causal-inspired analysis that quan-
titatively measures and evaluates the word-
level patterns that PLMs depend on to gener-
ate the missing words. We check the words
that have three typical associations with the
missing words: knowledge-dependent, posi-
tionally close, and highly co-occurred. Our
analysis shows: (1) PLMs generate the miss-
ing factual words more by the positionally
close and highly co-occurred words than the
knowledge-dependent words; (2) the depen-
dence on the knowledge-dependent words is
more effective than the positionally close and
highly co-occurred words. Accordingly, we
conclude that the PLMs capture the factual
knowledge ineffectively because of depending
on the inadequate associations.

1 Introduction

d Do Pre-trained Language Models (PLMs) capture
factual knowledge? LAMA benchmark (Petroni
et al., 2019) answers this question by quantita-
tively measuring the factual knowledge captured
in PLMs: query PLMs with cloze-style prompts
such as “Dante was born in [MASK]?” Filling in
the mask with the correct word “Florence” is con-
sidered a successful capture of the corresponding
factual knowledge. The percentage of correct fill-
ings over all the prompts can be used to estimate
the amount of factual knowledge captured. PLMs
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Knowledge-Dependent:
Columbus born between 25 August and 31 October
1451, died 20 May 1506 was an Italian explorer.

Positionally Close:
Columbus born between 25 August and 31 October
1451, died 20 May 1506 was an Italian explorer.

Highly Co-occurred:
Columbus born between 25 August and 31 October
1451, died 20 May 1506 was an Italian explorer.

Figure 1: The associations we investigated. The un-
derlined words are the missing words that need to be
generated. The bold words, which hold specific asso-
ciations with the missing words, are considered as the
word-level patterns that PLMs may use to generate the
missing words.

show a surprisingly strong ability to capture fac-
tual knowledge in such probings (Jiang et al., 2020;
Shin et al., 2020; Zhong et al., 2021), which elicits
further research on a more in-depth question (Cao
et al., 2021; Elazar et al., 2021a): How do PLMs
capture the factual knowledge? In this paper, we
try to answer this question with a two-fold analysis:

Research Question 1 Which association do
PLMs depend on to capture factual knowledge?

Research Question 2 Is the association on which
PLMs depend effective in capturing factual knowl-
edge?

We use association to refer to the explicit associa-
tion between the missing words and the remaining
words in the context. We define three typical asso-
ciations between words. Figure 1 illustrates these
associations in a mask-filling sample.

Definition 1 Knowledge-Dependent (KD): Ac-
cording to a Knowledge Base (KB), the missing
words can be deterministically predicted when pro-
viding the remaining words.

Definition 2 Positionally Close (PC): The remain-
ing words are positionally close to the missing
words.
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Figure 2: The overview of the proposed analysis framework. The dependence measure quantifies how much the
PLMs depend on each association to capture factual knowledge when per-training. The effectiveness measure
evaluates whether the dependence on an association is good for the factual knowledge performance in probing.

Definition 3 Highly Co-occurred (HC): The re-
maining words have a higher co-occurrence fre-
quency with the missing words.

Question 1 investigates how much PLMs depend
on a specific group of remaining words to predict
the missing words in pre-training samples. We
select the remaining words to be investigated ac-
cording to their association with the missing words.
We propose a causal-inspired method to quantify
the word-level dependence in each sample. The
average dependence on the remaining words that
hold the same association with the missing words
over all the samples indicates how PLMs rely on
this association to predict the missing words. We
refer to this average dependence as dependence
on the association. The above analysis is named
dependence measure.

In Question 2, we reveal the effectiveness of
dependence by the correlation between the quanti-
fied dependence on associations and the factual
knowledge capturing performance. The perfor-
mance is probed with additionally crafted cloze-
style prompts(Elazar et al., 2021a). The more the
dependence on an association positive correlates
with the probing performance, the more effective
this association is. We refer to the second analysis
as effectiveness measure. According the experi-
ment results, we have the following observations:

Observation 1 The PLMs depend more on the po-
sitional close and highly co-occurred associations
than the knowledge-dependent association to cap-
ture factual knowledge.

Observation 2 Depending on the knowledge-
dependent association is more effective for factual
knowledge capture than positional close and highly
co-occurred associations.

By connecting the two observations, we can an-
swer the question of “how PLMs capture factual
knowledge” as: The PLMs are capturing factual

knowledge ineffectively since the PLMs depend
more on the PC and HC association than the
KD association.

The contribution of this paper can be summa-
rized as follows: (1) We quantify the word-level
dependence for mask filling with a causal-inspired
method, revealing the word-level patterns that
PLMs use to predict the missing words quantita-
tively. (2) We compare the effectiveness of the
dependence on different associations, which pro-
vides direct insights for improving PLMs for fac-
tual knowledge capture. (3) This paper introduces
causal theories into PLMs by formulating the effect
measurement process in mask language modeling.
It paves the path to measure the causal effects be-
tween entities or events described in natural lan-
guage.

2 Method

2.1 Overview

We take a quick overview of our two-fold analy-
sis with a running example in Figure 2. Figure 2a
illustrates how to measure the dependence on the
remaining words “Columbus” and “died” when pre-
dicting the missing words “20 May 1506.” We let
the PLM generate the missing words based on the
original input first, then mask the remaining words
in the input and let PLMs generate again. The
difference between these two predictions is quan-
tified and used to measure the dependence. The
remaining and missing words hold the knowledge-
dependent association in this sample. We repeat
this measure on all the samples whose remaining
and missing words have the KD association. Then
the dependence on the KD association can be esti-
mated by the average of the quantified difference.

Figure 2b measures the effectiveness of the de-
pendence on each association by calculating the
correlation coefficient between the dependence and
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Association Knowledge-Dependent Positionally Close Highly Co-occurred

Input
Wt born between 25 August

and 31 October 1451, Wt Wo

was an Italian explorer.

Columbus born between 25
August and 31 October 1451,
Wt Wo Wt an Italian explorer.

Wt born between 25 August
and 31 October 1451, died Wo

was an Italian Wt.

SCM

cW

tW oW

do(Wt={MASK, MASK})
do(Wt={Columbus, died})

do(Wt={MASK, MASK})
do(Wt={died, was})

cW

tW oW

cW

tW oW

do(Wt={MASK, MASK})
do(Wt={Columbus, explorer})

Table 1: To analyze the dependence of associations, we do interventions on treatment words to reveal their causal
effects on the outcome words.

the probing performance. Following (Petroni et al.,
2019; Elazar et al., 2021a), the probing perfor-
mance is indicated by the prediction accuracy and
consistency when querying on the same fact with
different prompts. Since the dependence on asso-
ciations are quantified in the dependence measure,
we can calculate the correlation coefficient between
the dependence and performance over all the sam-
ples. Their correlation measures whether the de-
pendence on an association is harmful or beneficial
to the performance, showing the effectiveness of
the dependence on an association quantitatively.
Section Outline We organize the rest of this sec-
tion as follows. In Section 2.2.1, we formalize how
we quantify the dependence with the causal effect
estimation. Section 2.2.2 gives detail about how
we build the probing samples for different associa-
tions. Section 2.3.1 introduces the metrics we used
to indicate the performance of factual knowledge
capture. Section 2.3.2 describes the details about
the effectiveness measure of associations.

2.2 Quantify the Dependence on Associations

2.2.1 Causal Effect Estimation for PLMs
To study the causal effect of the different input
words, we build a Structured Causal Model (SCM)
for the missing words generation process and ap-
ply interventions on some input words to estimate
their effect quantitatively. We consider the miss-
ing words as outcome words and the remaining
words that hold a certain association (e.g. position-
ally close) with the outcome words as treatment
words. Then, we can formally represent the word
generation process with SCM, as the following
structural equations:

wc = f(I), wt = PLM(wc)

wo = PLM(wc, wt).
(1)

Separate the words in a sentence into three
groups: treatment words Wt, outcome words Wo,
and context words Wc (specified by wt, wo, and
wc respectively). Equation 1 formulates the fol-
lowing data generation process: (1) Sample a sen-
tence from the natural text space I and get the con-
text words wc using function f . (2) Generate the
treatment words wt by the PLM based on wc only.
(3) Generate outcome words wo based on both the
wc and wt.

To obtain the quantitative causal effect of treat-
ment words Wt on outcome words Wo, we apply
the do-calculus do() (Pearl, 2009) on treatment
words Wt to introduce interventions for estimating
the causal effect. do() denotes the operation of
forcibly setting the value ofWt. Then the causal ef-
fect of Wt on Wo can be estimated by the Average
Treatment Effect (ATE) (Rubin, 1974):

E [P (Wo|do(Wt = ŵt))]

−E [P (Wo|do(Wt = wm))] .
(2)

Accordingly, we define ATE for PLMs as:

τ =
∑
I

PLM(do(Wt = ŵt), wc)P (s)

−
∑
I

PLM(do(Wt = wm), wc)P (s),
(3)

where ŵt is the ground truth of the treatment words
Wt (the original value of Wt without intervention).
wm is the intervention value (several [MASK]s) for
Wt, and we use it to simulate removing the ground-
truth value ŵt from the input. P (s) denotes the
probability of selecting the sample s that consists
of wt, wo, and wc from I. PLM(·, ·) denotes the
output of PLMs with certain input. Table 1 illus-
trates the interventions on the SCM for different
associations.
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The raw output of PLMs is a probability distribu-
tion over fixed vocabulary. We transform the output
into reciprocal rank to quantify the differences:

PLMk(wt, wc) =

{
1

rankŵo
, if rankŵo ≤ k

0, otherwise
.

(4)
ŵo is the ground-truth outcome words. rankŵo is
the rank position of ŵo according to the generation
probability of ŵo output by PLM(wc, wt). We
set k to 100 and use PLM100 to replace PLM in
Equation 3 to calculate ATE. The ATE reflects the
effect of Wt on the prediction of Wo, it can be
regarded as a quantitative estimation of how much
PLMs depend on Wt when generating Wo.

2.2.2 Mark words by Associations
Wikipedia is a rich source of knowledge (Thom
et al., 2007; Hassanzadeh, 2021), and most of
the PLMs nowadays have been pre-trained on
Wikipedia (Devlin et al., 2019; Liu et al., 2019;
Lan et al., 2019), so we take Wikipedia sentences
as pre-training samples to construct the probing
samples for dependence measure. We probe the
mask-filling on these sentences to analyze what
PLMs based on when capturing factual knowledge
in pre-training.

The outcome we want to observe is the predic-
tions of factual words in the sentences. In order to
locate the factual words, we align each sentence
with a triplet (subject, predicate, object) in the KB.
The words that correspond to the object serve as
outcome wordsWo for observation, and the remain-
ing words that hold an explicit association with Wo

are marked as treatment words Wt for intervention.
For different associations, the Wt is identified as:

1. Knowledge-Dependent: all the remaining
words correspond to the predicate and object
in the same triplet with the Wt.

2. Positionally Close: the remaining words clos-
est to Wo.

3. Highly Co-occurred: the remaining words
that have higher Pointwise Mutual Informa-
tion (PMI) (Church and Hanks, 1990) with
Wo. The PMI is calculated over all the
Wikipedia sentences using the following equa-
tion:

PMI(wi; ŵo) =
P (wi|ŵo)

P (wi)
, (5)

where ŵo is a group of words (a span) and wi

is a single word.

4. We further define a Random (R) association,
where the Wt are randomly selected remain-
ing words. It provides some empirical support
for how much the modifications in the context
affect the mask-filling output.

Accordingly, one sentence yields four probing
samples for the four associations, respectively. The
four probing samples share the same Wo but use
different words as Wt to show the dependence on
different associations when predicting the sameWo.
We preserve that the number of words in Wt is the
same among different associations. For example, if
there are two words used as Wt by the KD associa-
tion, we select the top two closest words with Wo

as Wt for PC, and the words have the top two PMI
with Wo for HC. We can obtain a set of probing
samples for each association. The sample sets for
different associations source from the same set of
sentences and have the same size.

2.3 Measure the Effectiveness of Associations
This section investigates which association can lead
to better performance on factual knowledge cap-
ture. We first define the metrics to evaluate the
performance, then we measure the effectiveness of
an association by relating the dependence on this
association with probing performance.

2.3.1 Metrics for Factual Knowledge Probing
Section 2.2 uses the original Wikipedia sentence
as pre-training samples to quantify the dependence
PLMs used to capture the corresponding fact in
pre-training. The performance of capturing the
corresponding fact is probed by having PLMs fill
masks on crafted quires. We construct these queries
by instantiating templates on triplets (Petroni et al.,
2019). Ti(s) denotes the i-th query for the fact
corresponds to s. The accuracy mrr of capturing
this fact is obtained by averaging over all the pre-
dictions obtained with different queries:

mrr (s) =
1

n

n∑
i

PLMk(Ti(s)), (6)

PLMk(Ti(s)) denotes the reciprocal rank of the
ground truth in the PLM’s output for query Ti(s),
it is defined in Equation 4.

The consistency of the capture is indicated by
the percentage of the pairs of queries that have the
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same result (Elazar et al., 2021a):

con (s) =

∑
i 6=j 1PLM(Ti(s))=PLM(Tj(s))

n(n− 1)
. (7)

There are n different queries on every fact, and
we can get

(
n
2

)
= n(n− 1) pairs of predictions in

total. PLM(Ti(s)) denotes the top-1 output for the
query Ti(s). The value of 1PLM(Ti(s))=PLM(Tj(s))

is an indicator function that takes the value 1 if
the PLMs returns identical at top-1 for Ti(s) and
Tj(s) and 0 otherwise. The PLMs are better on
the consistency metric if they keep the predictions
consistent when queries only vary on the surface
forms. E.g., the two queries “Dante was born in
[MASK]” and “The birthday of Dante is [MASK]”
should return the same results.

Finally, we evaluate the factual knowledge cap-
ture performance by jointly examining the accuracy
and consistency (Elazar et al., 2021a):

test(s) = mrr (s) · con (s) (8)

test(s) measures the probing performance on
template-based queries. We also define a metric to
measure how well the PLMs memorize the miss-
ing words in pre-training samples (Wikipedia sen-
tences):

train(s) = PLMk(s). (9)

2.3.2 Correlate Performance with
Dependence

We have quantified the dependence on each asso-
ciation and defined the metrics for probing perfor-
mance in the above sections. We then calculate
the Pearson correlation coefficient (Kirch, 2008)
between dependence and probing performance to
reveal the effectiveness of different associations.
An association is considered more effective if the
probing performance positively correlates with its
dependence more.

Because only part of the facts has available tem-
plates, the samples in the dependence measure
without templates are ignored in the calculation.
The factual knowledge captured by different PLMs
may vary significantly due to the differences in
model scale, pre-training data, or other settings.
To make the correlation coefficient comparable be-
tween different PLMs, we calculate the correlation
only on the factual knowledge gathered correctly
by the PLM. I.e., only the pre-training samples with
train(s) = PLMk(s) = 1 are involved.

Sample in Dependence Measure

# Wikipedia sentences 4,779,753
# Different triplets 3,795,229
# Different predicates 565
# Sentences with synthetic templates 1,119,875

Queries in Effectiveness Measure

# Template-based queries 7,645,635
# Different triplets 654,112
# Different predicates 38
# Different templates 328

Table 2: Statistics of the probing data.

3 Experiments and Discussions

3.1 Probing Data and PLMs

We use the TREX dataset (Elsahar et al., 2018),
which aligns KB triplets with Wikipedia sentences,
to construct the samples for the dependence mea-
sure following the definition in Section 2.2.2. We
employ the templates from (Elazar et al., 2021a)
to construct the queries to probe the factual knowl-
edge for the effectiveness measure. Table 2 shows
the statistics for the data in the dependence mea-
sure and the effectiveness measure. The PLMs
we analyzed include BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), SpanBERT (Joshi
et al., 2020), and ALBERT (Lan et al., 2019).

3.2 Dependence on Associations

The dependence on an association is the aver-
age ATE over the probing samples whose treat-
ment words hold that association with the outcome
words. Table 3 shows the quantified dependence
of different associations. The accuracy in Table 3
represents the accuracy of recovering the masked
factual words in pre-training samples, revealing
how well does PLMs memorize the pre-training
samples. It is calculated by Equation 9 with k = 1.

We find a general trend over all the picked
PLMs: the Positionally Close (PC) association
takes the dominant effect on the prediction results,
the Highly Co-occurred (HC) association comes
second, and the least for the Knowledge-Dependent
(KD) association. The trend does not change much
as increasing the model scale (large vs. base), us-
ing additional training data (RoBERTa vs. BERT),
or improving the masking strategy (SpanBERT vs.
BERT). Consequently, the accuracy drops the most
when perturbing the positionally close words but
least on knowledge-dependent words1.

1Table 6 in the Appendix shows the accuracy decrease
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Model Accuracy Dependences on Associations (k = 100)

KD PC HC R

BERT-base-cased 0.3623 0.1585 0.4085 0.1779 0.1081
BERT-large-cased 0.3692 0.1603 0.4113 0.1791 0.0996
BERT-large-cased-wwm 0.5030 0.1384 0.4477 0.2305 0.1072
SpanBERT-large 0.5223 0.1351 0.3679 0.2383 0.1157
RoBERTa-base 0.3511 0.1352 0.3926 0.2093 0.1053
RoBERTa-large 0.4276 0.1360 0.3962 0.2162 0.0985

BERT-large-uncased-wwm 0.5035 0.1410 0.4350 0.2290 0.1089
ALBERT-xxlarge-v2 0.4758 0.2852 0.4338 0.3801 0.2704

Table 3: The quantified dependence on associations. Accuracy denotes the performance of filling in the masks in
pre-training samples. The PLMs use cased and uncased vocabularies are separated.
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Figure 3: The correlations between the dependence on associations and the probing performance on factual knowl-
edge capture.

The results provide quantitative evidence for
Question 1 of “Which association do PLMs de-
pend on to capture factual knowledge?:” PLMs
prefer the associations founded with position-
ally close or the highly co-occurred words to the
knowledge-based clues. It is different from how a
conventional KB works, e.g., an object can be re-
trieved by the corresponding subject and predicate.

3.3 Correlations between Dependence and
Performance

We show the correlation between association’s de-
pendence and the probing performance in Figure 3.
Each point in the figure represents a piece of fac-
tual knowledge s. We refer to it as a fact for con-
venience. The horizontal axis indicates test(s) for
the fact, showing the probing performance of the
fact with effectiveness measure. The vertical axis
shows the dependence of associations when cap-
turing this fact, which is quantified by the causal
effect estimation defined in Section 2.2.1. The
straight lines are the regression lines and different
associations are shown in different line styles2.

when perturbing the different associations.
2We standardize the quantified value of dependence (de-

noted as Std. Dependence) and plot a bucket of facts as a
single point to show the trends clearly. The correlations with-

As we can see from the results, the dependence
on the KD association positively correlates with
the probing performance. The dependence on the
HC association has a slightly positive correlation
or almost has no correlations sometimes (such as
ALBERT in Figure 3d). The PC association holds
a negative correlation with the performance.

These results can give an empirical answer to “Is
the association on which PLMs depend effective in
capturing factual knowledge?:” the more PLMs
depend on the Knowledge-Dependent (KD) as-
sociation, the better PLMs can capture the cor-
responding factual knowledge. Meanwhile, rely-
ing much on the positionally close association is
harmful to the probing performance.

The dependence measure results reveal that
the PLMs depend most on the positionally close
but least on the knowledge-dependent association.
However, in effectiveness measure, we find that
the positionally close association is the most in-
effective for factual knowledge capture while the
knowledge-dependent association is the most effec-
tive. By connecting the two results, we can con-
clude the answer to the question in the title: The
PLMs do not capture factual knowledge ideally,

out standardization for more PLMs are in Table 8
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Pre-training samples for the dependence measure (Wikipedia Sentence) Dep.

KD: Kimwenza is a community in the Democratic Republic of the Congo in the Mont Ngafula commune in the south of the capital, Kinshasa . 0.8564

Case 1

PC: Kimwenza is a community in the Democratic Republic of the Congo in the Mont Ngafula commune in the south of the capital, Kinshasa . 0.0000
HC: Kimwenza is a community in the Democratic Republic of the Congo in the Mont Ngafula commune in the south of the capital, Kinshasa . 0.0000

Template-based Queries for the effectiveness measure MRR

The capital of Congo is Kinshasa . 1.0
Kinshasa is the capital of Congo . 1.0
Congo’s capital is Kinshasa . 1.0

Pre-training samples for the dependence measure (Wikipedia Sentence) ATE

KD: Drayton is a hamlet in England, in the county of Northamptonshire, . . ., hundred of Fawsley, ¾ of a mile on the low-lying north western side of
the town of Daventry .

0.0000

Case 2

PC: Drayton is a hamlet in England, . . ., in the parish and union of Daventry, hundred of Fawsley, ¾ of a mile on the low-lying north western side of
the town of Daventry .

0.9496

HC: Drayton is a hamlet in England, . . ., in the parish and union of Daventry, hundred of Fawsley, ¾ of a mile on the low-lying north western side of
the town of Daventry .

0.8452

Template-based Queries for the effectiveness measure MRR

Drayton is located in Daventry . 0.0
Drayton is in Daventry . 0.0
Drayton can be found in Daventry . 0.0

Table 4: Two cases from SpanBERT-large. The quantified dependence on associations (denoted by Dep.) and the
performance of factual knowledge capture (denoted by MRR).

since they depend more on the ineffective asso-
ciations than the effective one.

3.4 Case Study

To illustrate the analysis result intuitively, we
show two cases with SpanBERT-large in Table 4.
The MRR shows the probing performance on the
template-based query (calculated by Equation 6).
In Case 1, the knowledge-dependent association
gains the biggest effect, and the predictions are ro-
bust in all the template-based probing. However,
the positionally close association takes the main
effect in Case 2, while the PLM fails to recall the
word “England” with the template-based queries.

3.5 Discussions

Generality of the Proposed Probing Method
Generally, the dependence measure offers a way to
measure how much the word-level patterns cause
the prediction of missing words in Mask Language
Model (MLM). Because words are readable, di-
rectly visible, and can be manipulated from the
input side directly, the word-level patterns can pro-
vide more intuitive interpretations than numeric
representation vectors (Elazar et al., 2021b) or neu-
rons (Vig et al.). We use the proposed method to
estimate the causal effect of three typical associa-
tions in this paper, while this method can be easily
adapted to quantify the dependence on any word-
level patterns.
Reconsidering “PLM as KB” If we want to use
a PLM like a KB, whether the PLM has the same
inner workflow as KBs deserves to be considered.
The prevalent KBs index knowledge as subject-
predicate-object triplets and can infer with triplets

(Speer et al., 2017; Bollacker et al., 2008; Vran-
dečić and Krötzsch, 2014). However, we find out
that the knowledge-dependent association, which
represents the process of inferring a missing object
based on the given subject and predicate, has the
lowest dependence in the PLMs. It provides evi-
dence that the PLMs work quite differently with
KBs and can not serve stably as KBs for now.
Overfiting and Generalization Figure 4 shows
the correlations between the dependence on associ-
ations and the mask-filling accuracy on pre-training
samples (referred to as memorizing accuracy). The
memorizing accuracy increases most as the depen-
dence of the PC association increases, demonstrat-
ing that the more PLMs depend on the positionally
close words, the better PLMs can recover the pre-
training samples. However, there is an opposite
trend in probing performance as shown in Figure 3.
The additionally crafted queries used to evaluate
the probing performance are mostly unseen in per-
training. If we consider these queries as the test
set and the pre-training samples as the train set, we
can conclude that the dependence on the PC associ-
ations makes the PLMs tend to overfit the training
data and degrade the generalization on the test set.
Factual Knowledge Capture in Pre-training We
want to focus on the pre-training samples that help
PLMs to capture factual knowledge. So we recon-
struct the pre-training samples that predict some
missing factual words (object) based on the factual
clues (subject, predicate). We conduct the depen-
dence measure on these samples to investigate how
the factual knowledge is captured in pre-training.
The mask-filling accuracy on these pre-training
samples denotes how well PLMs memorize them
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Figure 4: The correlations between the dependence on associations and the mask-filling accuracy on the pre-
training samples (Wikipedia sentences).

in pre-training. We name it as “train” in Equation 9
and “Memorizing Accuracy” in Figure 4.
Overlap between Associations The clues for dif-
ferent associations overlap sometimes, e.g., some
remaining words may hold the KD and PC asso-
ciations with the missing words at the same time.
The overlaps do not impair the estimations because
we use a set of samples to estimate the effect of
each association. The samples that hold the same
association stay in the same set, and the average
causal effect in all these samples is the quantified
dependence of this association. The sample sets are
quite different for different associations. Table 5
shows the corresponding statistics of the overlaps.

4 Related Works

Probing Factual Knowledge in PLMs Factual
Knowledge Probing in PLMs has attracted much
attention recently. LAMA (Petroni et al., 2019)
propose a benchmark that probes the factual knowl-
edge in the PLMs with cloze-style prompts and
shows PLMs’ ability to capture factual knowledge.
This ability can be further explored by tuning the
prompts for probing Jiang et al. (2020); Shin et al.
(2020); Zhong et al. (2021).

Motivated by the probing results, some recent
works analyze the captured factual knowledge from
more perspectives. Cao et al. (2021) analyze the
distribution of predictions and the answer leakage
in probing. Poerner et al. (2020) propose that the
PLMs could predict based on some correlation be-
tween surface forms rather than infer according to
facts. Elazar et al. (2021a) reveal that the PLMs’
outputs are inconsistent as querying the same fact
with different prompts.

This paper proposes a more fine-grained inspec-
tion of word-level patterns in the input. In addition
to constructing more challenging probing data as in-
put or analyzing the outputs more detailedly, we try

to reveal the inner mechanism of PLMs by conduct-
ing intervention on the input and then observing
the change in the output.
Causal-inspired Interpretations in NLP A
causal-inspired approach to explanation is to gen-
erate counterfactual examples and then compare
the predictions (Feder et al., 2021a). Feder et al.
(2021b) propose a framework for producing expla-
nation for NLP models using counterfactual rep-
resentation. Vig et al. analyze the effect of neu-
rons (or attention heads) on the gender bias using
causal mediation analysis. In this paper, we revisit
the word-level post-hot interpretation (Sun et al.,
2021; Li et al.) from a causal-effect perspective:
intervene on some specified words in the input and
measure the difference in the output to estimate
the causal effect of these words. Furthermore, we
evaluate the effectiveness of different causes by
calculating correlations between their effects and
performance. As far as we know, our work is the
first study to probe and evaluate word-level patterns
in the factual knowledge capture task.

5 Conclusion

In this paper, we try to answer the question of
How Pre-trained Language Models Capture Fac-
tual Knowledge by measuring and evaluating differ-
ent associations that PLMs use to capture factual
knowledge. We present three word-level associ-
ations, knowledge-dependent, positionally close,
and highly co-occurred in the analysis. The analy-
sis results show that the PLMs rely more on the in-
effective positionally close and highly co-occurred
associations when capturing factual knowledge,
and somewhat ignore the effective knowledge-
dependent clues. These findings indicate that
we should pay more attention to the knowledge-
dependent association to let PLMs capture factual
knowledge better.
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Appendix

A Probing Sample Construction for the
Dependence Measure

We detail how we construct the probing samples
for the dependence measure as follows. We take
a subject-predicate-object triplet in Wikidata3 as a
piece of factual knowledge (Petroni et al., 2019;
Cao et al., 2021; Kassner et al., 2021; Elazar
et al., 2021a). A subject-predicate-object triplet
is aligned with a Wikipedia sentence by matching
the subject, predicate, and object with their corre-
sponding spans, respectively. A subject-predicate-
object triplet is aligned with a Wikipedia sentence
by matching the subject, predicate, and object with
their corresponding spans, respectively. The words
that correspond to the object are the factual words
that are masked and need to be predicted, and we
investigate how the different remaining words con-
tribute to the prediction.

The remaining words that have three typical as-
sociations with the masked words are considered
in the analysis. The rules to identify the remaining
words that have the Knowledge-Dependent (KD)
association are:

1. The Wo and the Wt describe the same subject-
predicate-object triplet in KB.

2. The Wt are the natural language description
of the subject and predicate, the Wo are that
for the object.

3. If the subject and predicate corresponding to
Wt are given correctly (i.e., Wt = ŵt), the
ground-truth value of the object is unique in
the KB.

The first rule makes the Wt and Wo grounded in
the same piece of factual knowledge. The second
rule makes predicting the outcome words similar
to inferring the object using a KB when giving
the subject and predicate. The third rule means
if the treatment words are given correctly, there
should be one and only one ground-truth value for
the object. The third rule is similar to the N-1
relationship (Cao et al., 2021) in KB and lets the
ground-truth treatment words can be regarded as a
sufficient condition to predict the unique outcome
words deterministically.

3https://www.wikidata.org/

We use the T-REx4 dataset to provide the initial
alignment between KB triplets and the Wikipedia
sentences. We use the aliases in KB as keys for
fuzzy string match (Levenshtein distance is less
than 2, stemming before matching, etc.) to align
more subjects, predicates, and objects with spans
in the sentence. The sentences that have no aligned
triplet are filtered out.

Sometimes, the outcome words in a single sen-
tence relate to multiple triplets that satisfy the
rules for KB. E.g., there are two groups of remain-
ing words that can infer the outcome words de-
terministically based on KB. We select them all
as the Wt when probing the KB association and
keep the number of the masked words be the same
in interventions for the other associations. DKD,
DPC, and DHC denote the sample sets for the
Knowledge-Dependent (KD), Positionally Close
(PC), and Highly Co-occurred (HC) associations,
respectively.

For the Highly Co-occurred association (HC),
the remaining words that are top-k in PMI with
the ground-truth outcome words ŵo are selected
as Wt. The k is the number of words with the
KD associations for the same sentence. The PMI
between words is calculated by all the Wikipedia
sentences. If the ŵo consists of multiple words,
occurring with all the words in ŵo altogether are
taken as co-occurring. The order of the words in
ŵo are ignored for efficiency. Table 5 shows more
details about the probing samples.

B More Probing Results

The Pearson correlation coefficients between the
dependence on associations (raw value without
standardization) and the performance are shown
in Table 8. The three metrics, accuracy (defined in
Equation 6), consistency (defined in Equation 7),
and the overall performance metric (defined in
Equation 8), are reported respectively. The cor-
relation coefficients between the dependence and
the performance are consistent with the slopes of
the regression lines in Figure 3. Table 6 shows the
accuracy decreasing results after masking the treat-
ments words when generating the missing words
in Wikipedia sentences.

4https://hadyelsahar.github.io/t-rex/
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Probing Samples in Dependence Measure

# Average treatment words 4.0023
# Average outcome words 1.8588
# Average words 23.1031

Word-level Overlap Between Associations

DKD ∩DHC 44.25% (8,455,641)
DKD ∩DPC 20.83% (3,981,305)
DPC ∩DHC 18.75% (3,582,576)
DKD ∩DPC ∩DHC 8.3349% (1,592,560)

Sample-level Overlap Between Associations

DKD ∩DHC 3.12% (149,479)
DKD ∩DPC 0.06% (2,995)
DPC ∩DHC 0.12% (5,777)
DKD ∩DPC ∩DHC 0.0001% (547)

Template-based Queries in Effectiveness Measure

# Average treatment words 1.9484
# Average outcome words 1.5844
# Average word per sample 6.9617

Table 5: Statistic of the probing data in the dependence measure.

Model Input Context (Accuracy, %)

Complete w/o KD w/o PC w/o HC w/o R

BERT-base-cased 36.23 22.05 (-14.17) 2.67 (-33.56) 19.68 (-16.54) 26.71 ( -9.52)
BERT-large-cased 36.92 22.11 (-14.81) 2.70 (-34.22) 19.04 (-17.88) 27.11 ( -9.81)
BERT-large-cased-wwm 50.30 35.22 (-15.08) 11.50 (-38.80) 26.09 (-24.21) 39.04 (-11.25)
SpanBERT-large 52.23 36.87 (-15.35) 16.66 (-35.57) 26.78 (-25.44) 39.87 (-12.35)
RoBERTa-base 35.11 23.07 (-12.03) 4.81 (-30.30) 16.38 (-18.72) 25.70 ( -9.41)
RoBERTa-large 42.76 28.26 (-14.50) 8.98 (-33.78) 21.21 (-21.54) 32.67 (-10.09)
BERT-base-uncased 36.90 23.53 (-13.37) 3.33 (-33.58) 20.78 (-16.12) 28.53 ( -8.37)
BERT-large-uncased 38.62 24.58 (-14.04) 2.88 (-35.74) 21.61 (-17.00) 29.83 ( -8.79)
BERT-large-uncased-wwm 50.35 35.03 (-15.31) 11.92 (-38.43) 26.16 (-24.18) 39.03 (-11.32)
ALBERT-xxlarge-v2 47.58 23.02 (-24.56) 11.58 (-36.00) 15.25 (-32.34) 24.42 (-23.16)
ALBERT-xlarge-v2 40.87 16.13 (-24.74) 8.15 (-32.72) 9.57 (-31.30) 15.11 (-25.76)
ALBERT-large-v2 39.02 8.03 (-30.99) 3.82 (-35.20) 4.52 (-34.50) 9.00 (-30.02)
ALBERT-base-v2 32.76 3.63 (-29.13) 1.74 (-31.03) 1.76 (-31.00) 3.63 (-29.13)
ALBERT-xxlarge-v1 47.50 23.68 (-23.83) 12.20 (-35.30) 15.79 (-31.71) 25.27 (-22.24)
ALBERT-xlarge-v1 48.19 21.15 (-27.04) 11.81 (-36.38) 12.82 (-35.38) 22.57 (-25.62)
ALBERT-large-v1 43.64 14.14 (-29.50) 7.52 (-36.12) 7.93 (-35.71) 14.80 (-28.84)
ALBERT-base-v1 40.95 27.39 (-13.56) 13.13 (-27.83) 19.30 (-21.65) 30.05 (-10.90)

Table 6: The accuracy of the predictions when different treatment words are missing.

1731



Model ATE of Association (k = 100/k = 1)

KD PC HC R

BERT-base-cased 0.1585/0.1416 0.4085/0.3354 0.1779/0.1654 0.1081/0.0950
BERT-large-cased 0.1603/0.1480 0.4113/0.3420 0.1791/0.1788 0.0996/0.0979
BERT-large-cased-wwm 0.1384/0.1506 0.4477/0.3879 0.2305/0.2421 0.1072/0.1124
SpanBERT-large 0.1351/0.1533 0.3679/0.3555 0.2383/0.2544 0.1157/0.1233
RoBERTa-large 0.1360/0.1438 0.3962/0.3366 0.2162/0.2154 0.0985/0.0997
RoBERTa-base 0.1352/0.1192 0.3926/0.3018 0.2093/0.1872 0.1053/0.0929
BERT-base-uncased 0.1439/0.1337 0.4112/0.3357 0.1643/0.1612 0.0901/0.0837
BERT-large-uncased 0.1522/0.1403 0.4401/0.3573 0.1713/0.1700 0.0946/0.0879
BERT-large-uncased-wwm 0.1410/0.1531 0.4350/0.3842 0.2290/0.2418 0.1089/0.1131
ALBERT-base-v2 0.3987/0.2911 0.4269/0.3100 0.4269/0.3100 0.4021/0.2911
ALBERT-large-v2 0.4075/0.3098 0.4716/0.3519 0.4566/0.3450 0.3958/0.3001
ALBERT-xlarge-v2 0.3279/0.2474 0.4336/0.3272 0.4170/0.3130 0.3468/0.2576
ALBERT-xxlarge-v2 0.2852/0.2457 0.4338/0.3601 0.3801/0.3234 0.2704/0.2317
ALBERT-base-v1 0.1429/0.1355 0.3235/0.2782 0.2287/0.2165 0.1167/0.1089
ALBERT-large-v1 0.3638/0.2951 0.4569/0.3612 0.4488/0.3571 0.3621/0.2884
ALBERT-xlarge-v1 0.3223/0.2705 0.4425/0.3639 0.4266/0.3538 0.3116/0.2563
ALBERT-xxlarge-v1 0.2761/0.2384 0.4230/0.3531 0.3708/0.3171 0.2590/0.2224

Table 7: The ATE of associations in more PLMs.

Model Associations (joint/accuracy/consistency)

KD PC HC R

BERT-base-cased 0.1523/0.2222/0.0768 -0.2156/-0.1839/-0.1597 0.0011/ 0.0180/-0.0137 -0.0823/-0.0774/-0.0621
BERT-large-cased 0.1398/0.1879/0.0788 -0.1638/-0.1120/-0.1295 -0.0017/ 0.0095/-0.0141 -0.0810/-0.0741/-0.0638
BERT-large-cased-wwm 0.2492/0.2795/0.1627 -0.1904/-0.1783/-0.1290 0.0800/ 0.0851/ 0.0422 -0.0487/-0.0455/-0.0417
SpanBERT-large 0.2463/0.2784/0.1382 -0.1068/-0.0781/-0.1187 0.1017/ 0.1175/ 0.0254 -0.0384/-0.0307/-0.0391
RoBERTa-base 0.2432/0.3062/0.1223 -0.0414/-0.0440/-0.0366 0.0966/ 0.1252/ 0.0297 -0.0201/-0.0054/-0.0423
RoBERTa-large 0.2212/0.2666/0.1141 -0.1131/-0.1455/-0.0642 0.0749/ 0.0911/ 0.0156 -0.0311/-0.0441/-0.0236

BERT-base-uncased 0.1635/0.2233/0.0954 -0.1454/-0.1269/-0.1182 0.0130/ 0.0410/-0.0114 -0.0659/-0.0630/-0.0596
BERT-large-uncased 0.1507/0.2022/0.0749 -0.2056/-0.1900/-0.1084 0.0247/ 0.0355/ 0.0085 -0.0671/-0.0667/-0.0454
BERT-large-uncased-wwm 0.2526/0.2776/0.1593 -0.1772/-0.1589/-0.1346 0.0866/ 0.0886/ 0.0344 -0.0462/-0.0419/-0.0401
ALBERT-base-v2 0.0453/0.0530/0.0347 -0.1054/-0.1333/-0.0417 0.0071/-0.0005/ 0.0371 -0.0886/-0.1186/-0.0117
ALBERT-large-v2 0.0809/0.0988/0.0370 -0.1130/-0.1457/-0.0826 0.0201/ 0.0158/ 0.0093 -0.0822/-0.1061/-0.0707
ALBERT-xlarge-v2 0.1515/0.2161/0.1064 -0.1184/-0.1152/-0.0759 0.0278/ 0.0524/ 0.0154 -0.0997/-0.0978/-0.0627
ALBERT-xxlarge-v2 0.1685/0.1954/0.1347 -0.1549/-0.1552/-0.1039 0.0445/ 0.0492/ 0.0496 -0.0783/-0.0759/-0.0559
ALBERT-base-v1 0.3034/0.3563/0.1764 -0.0650/-0.0504/-0.1010 0.1564/ 0.1724/ 0.0497 0.0111/ 0.0175/-0.0202
ALBERT-large-v1 0.1466/0.1741/0.1145 -0.0384/-0.0639/-0.0037 0.0598/ 0.0530/ 0.0606 -0.0186/-0.0408/ 0.0026
ALBERT-xlarge-v1 0.1593/0.1816/0.1486 -0.0514/-0.0629/-0.0006 0.0498/ 0.0338/ 0.1172 -0.0081/-0.0288/ 0.0431
ALBERT-xxlarge-v1 0.1926/0.2207/0.1462 -0.1314/-0.1346/-0.0929 0.0629/ 0.0647/ 0.0526 -0.0563/-0.0535/-0.0475

Table 8: The Pearson correlation coefficients between the ATEs and the factual knowledge capture metrics.
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