
Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages, pages 1 - 8
May 26, 2022 ©2022 Association for Computational Linguistics

BERT-Based Sequence Labelling Approach for Dependency Parsing in
Tamil

C S Ayush Kumar, Advaith Das Maharana, Srinath Murali Krishnan, Premjith B, and Soman K P
Center for Computational Engineering and Networking (CEN)

Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham, India
b premjith@cb.amrita.edu

Abstract

Dependency parsing is a method for doing
surface-level syntactic analysis on natural lan-
guage texts. The scarcity of any viable tools
for doing these tasks in Dravidian Languages
has introduced a new line of research into
these topics. This paper focuses on a novel
approach that uses word-to-word dependency
tagging using BERT models to improve the
malt parser performance. We used Tamil, a
morphologically rich and free word order lan-
guage. The individual words are tokenized
using BERT models and the dependency rela-
tions are recognized using Machine Learning
Algorithms. Oversampling algorithms such as
SMOTE (Chawla et al., 2002) and ADASYN
(He et al., 2008) are used to tackle data im-
balance and consequently improve parsing re-
sults. The results obtained after oversampling
(label accuracy of 69.94% IndicBERT-SVM)
are used in the malt parser and this can be
accustomed to further highlight that feature-
based approaches can be used for such tasks.

1 Introduction

Grammatical structures are directly involved in so-
cial interactions in the use of languages and this is
central for language variation and change. A depen-
dency parser examines a sentence’s grammatical
structure, finding linkages between head words and
modifier words. Dependency parsing is a method
for doing surface-level syntactic analysis on natu-
ral language texts. The dependency parser creates
a parse tree by scanning the words of a sentence
in linear time. It keeps a partial parse, a stack of
words presently being processed, and a buffer of
words yet to be processed at each step.

In contrast to its corresponding constituency
structure, the dependency tree structure is consid-
ered a cutting-edge approach for parsing free word
order languages such as Dravidian languages. A
typical challenge for developing parsers in such
low resource languages is non-projectivity, which

emerges because of languages with free word order
or long-distance dependencies, leading to a signif-
icant proportion of sentences in many languages
requiring a non-projective dependency analysis.

Tamil is a Dravidian language spoken mostly in
Malaysia, Sri Lanka, Singapore and southern India
(Chakravarthi et al., 2021). Tamil is agglutinative
and contains many morphological suffixes. Tamil
has two core word classes: nouns and verbs, with
hundreds of distinct word forms possible through
concatenative and derivational morphology (Pre-
mjith and Soman, 2021). With the exception of
head-final, Tamil has a rich morphology that al-
lows it to have any word order. This is a critical
challenge in Dravidian languages since the subtask
of proper label prediction in dependency parsing
is extremely imprecise. Enhancing the prediction
of these proper dependency relations betters the
dependency parsing scores considerably on parsing
tasks in transition-based parsing algorithms.

Only a few works on dependency parsing for
Indic languages have been mentioned in the litera-
ture, let alone focusing on improving the prediction
of dependency relation labels because there are a
limited number of tools available. The lack of orga-
nized data makes this process extremely challeng-
ing, as unstructured text is difficult to parse on its
own. The necessity of developing and improving
a parser for Tamil is known to find applications in
tasks like semantic parsing, machine translation,
relation extraction, and many others. A key advan-
tage of dependency parser is its ability to gain im-
portant semantic information for languages that are
flexible with the placement of their part of speech
(Butt et al., 2020).

In this paper, we tried to bring about machine
learning approaches built upon a novel way of
generating word embeddings through various pre-
trained multilingual BERT models (Barua et al.,
2020) for improving the dependency relation pre-
diction. These models are fine-tuned to improve

1



and study the variational changes within the mod-
els and improving the performance of dependency
parsing for Tamil Language. The currently avail-
able parsers deal with word and sentence level em-
beddings, but for a free word language, the word’s
dependency tags information is held at elementary
character level which is fed onto machine learning
algorithms like Regression, Decision Tree, Ran-
dom Forrest Classification, and Support Vector Ma-
chine (Devlin et al., 2019).

The models chosen are specific to understanding
the relationship of embeddings of words at char-
acter level, where learning through regression and
SVM infers the dimensional separability and fea-
ture space projections, while Decision Tree and
Random Forest are well known relevant feature ex-
tractors. The four different models for dependency
parsing compared directly and analyzed. To train
the models we have tokenized sentences of Tamil
TTB into individual words and extracted its respec-
tive dependency tags, further this data is embedded
and then used to train our models.

Initial results suggest bias towards the majority
dependency class tags, appearing due to the im-
balances in dependency tag distribution. Where
models like SVM become difficult to use as the
class wise accuracy is strikingly low for minor-
ity class labels. One method of tackling the issue
of data imbalance is through Oversampling Algo-
rithms, yielding a higher-class wise accuracy while
slightly compromising the overall accuracy which
are discussed over the experiment section. The
CoNLL-U formatted data is processed and then
BERT case models are used for the token embed-
ding which is used to train the machine learning
models. The dependency of each word is label
encoded which is then further used in training the
models. Our best observed values were for the
support vector machines fed with embedding gen-
erated by IndicBERT (Kakwani et al., 2020) with
label accuracy of 67%, which was further passed
onto a transition-based parser giving 52% labeled
and 89% unlabeled attachment score. Due to the
high imbalance in the dataset, on oversampling of
the data, the observed labeled accuracy was around
56% with improvement in the overall class wise
accuracy for some of the minority classes.

2 Dataset Description

Universal Dependencies (UD) (McDonald et al.,
2013) is a project that aims to create cross-

linguistically consistent treebank annotation for a
variety of languages. The purpose is to facilitate
multilingual parser creation, cross-lingual learn-
ing, and parsing research from the standpoint of
language typology. The Universal Dependency for-
malism is now widely used to construct Universal
Dependency Treebanks (UDTs) with annotations
(Nivre et al., 2016), where in UDv2.7, Indian lan-
guages like Tamil have fewer than 12K tokens.

This paper is worked on over Tamil Tree Bank
(Ramasamy and Žabokrtský, 2012), which has
longer sentences over Multi-Word Tamil Tree Bank
(MWTT). Cored with complex concepts such as
elision, relative clauses, conjunct propagation, rais-
ing and control structures, and expanded case
marking based on the Enhanced Universal Depen-
dency annotation, it forms around 536 sentences
(Sarveswaran and Dias, 2020). There are 400 train-
ing sentences and 120 testing sentences in the
Tamil UDT (Universal Dependency Treebanks),
with around 30 unique observed dependency tags
in the dataset.

3 Related Works

Dependency parsing and the building of annotated
treebanks are currently being researched for Hindi
and Telugu (Bharati et al., 2009; Nivre, 2009; Ze-
man, 2009). In 2009, as part of the ICON 2009
conference, there was an NLP tools contest focused
on parsing Indian languages (Hindi, Bangla, and
Telugu). As the data were feasible, the building of
a large-scale treebank dependency (Begum et al.,
2008) for Telugu (with a goal of 1 million words)
that has about 1500 annotated sentences were one
such notable attempt for building a dependency
parser in Dravidian languages.

Previous works that used Tamil dependency tree-
banks have been published, a paper (Dhanalakshmi
et al., 2010) that used a machine learning approach
to Tamil dependency parsing. This paper described
grammar teaching tools in the sentence and word
analyzing level for Tamil language. As part of the
parser development, Selvam et al. (2009) created
small dependency corpora with 5000 words. Other
works such as Janarthanam et al. (2007) focused
on parsing the spoken language utterances using
dependency framework. Those works did not make
use of treebank to the parser development, rather
they were based on linguistic rules. The work (Ja-
narthanam et al., 2007) used relative position of
words to identify semantic relations. Along with

2



the previously mentioned work there was one more
work (Liyanage et al., 2014) that discussed Tamil
syntactic parsing. Liyanage et al. (2014) used mor-
phological analyzer and heuristic rules to identify
phrase structures.

Paper Title UAS Score
Goutam (2012) 94.5
Kolachina and Agarwal (2010) 91.82
Husain (2009) 85.76

Table 1: UAS Scores of Parsing Indian Languages.

Paper Title LAS Score
Sarveswaran and Dias (2020) 62.39
Goutam (2012) 88.60
Kolachina and Agarwal (2010) 70.12
Husain (2009) 65.01

Table 2: LAS Scores of Parsing Indian Languages.

The literature on Tamil dependency parsing is
sparse, though there are some recent works on de-
veloping a Tamil Dependency parser which has
been studied in many contexts, a neural based
parser (Sarveswaran and Dias, 2020) and a rule-
based parsing (Ramasamy and Zabokrtsky, 2011).
To our idea, these are the initial attempts to create
a Tamil dependency treebank.

4 Methodology

The dependency parser’s internal structure is made
up entirely of directed relationships between lexical
components in the sentence. Vital information that
is typically buried in the more sophisticated phrase-
structure parses is explicitly encoded by these head-
dependent interactions. Another reason to employ
a dependency-based method is that head-dependent
connections approximate the semantic link between
predicates and their arguments, making them valu-
able in a variety of applications including ques-
tion answering, information extraction, and co-
reference resolution. Hence the correct dependent
prediction is crucial in the task of Dependency Pars-
ing. Learning contextual information is essential
over generating contextual-independent word em-
beddings for effectively encoding sentence-level
features even inside single-word embeddings, yield-
ing results that are equivalent or even superior to
those achieved with sentence representations (Mi-
aschi and Dell’Orletta, 2020).

The data extracted with morphological and part
of speech information is fed on to various pre-
trained multilingual Bidirectional Encoder Rep-
resentation like mBERT, XLM-RoBERTA, In-
dicBERT and DistilBERT for generating the em-
bedding at character level. The generated embed-
ding is of different dimensions based on the mor-
phology, unified by taking linear combinations of
all vectors generated for each word in a sentence.
These embeddings are passed on to various ma-
chine learning models to analyze performance of
which the best model jointly works with transition-
based dependency parsing.

We follow the Transition-based dependency
parser (Nivre, 2008) which, includes two important
systems; a transition mechanism that transforms a
phrase into a dependency tree, and a machine learn-
ing classifier that can predict the next transition
for each system structure that passes a statement.
Dependency parsing can be accomplished as a de-
terministic search over the transition system, led by
the classifier, given these two components. A stack
of partially processed tokens, an input buffer con-
taining the remaining tokens, and a collection of
arcs representing the partially created dependency
tree make up a parser configuration in this system.
There are four transitions possible in this system
that can only capture projective dependency trees:

• Left-Arc(r): From next to the top, add an arc
labelled r; pop the stack.

• Right-Arc(r): Add an arc from top to next,
labelled r, and put next onto the stack.

• Reduce: Pop the stack.

• Shift: Push next onto the stack.

Reduce operations, such as Left-Arc and Right-
Arc, are named after shift-reduce parsing metaphor
in which reducing involves merging components on
the stack. When it comes to using operators, there
are few prerequisites. When ROOT is the second
member on the stack, the Left-Arc operator cannot
be used (since by definition the ROOT node cannot
have any incoming arcs). Both the Left-Arc and
Right-Arc operators must have two components on
the stack before they may be used.

A transition-based parser can also be defined by
expressing the current state of the parse as a config-
uration, which includes the stack, an input buffer
of words or tokens and a collection of relations that

3



create a dependency tree. We begin with an initial
configuration in which the ROOT node is on the
stack, the tokens in the sentence are in the buffer
and the parsing is represented by an empty set of
relations. The stack and word list should be empty
in the end target state and the set of relations will
represent the final parse.

Figure 1: Schematic block for proposed methodology

The approach is similar to neural based parser
oracle of Wang et al. (2020), which is replaced
with machine learning algorithms for arc predic-
tion (see Figure 1), where a sentence with ‘n’ words
w = [w1, w2, w3, . . . , wn] is fed to the Encoder
for obtaining the concatenation of several token em-
beddings is E = [e1, e2, e3, . . . , en] from BERT
models pretrained with Indian Languages. The best
model architecture was observed based on the test
set. We used MaltParser, an open-source implemen-
tation of transition-based dependency parsing with
a range of transition systems and customized classi-
fiers, receives the embeddings equipped with a ma-
chine learning classifier. To overcome the problem
of highly imbalanced label distribution oversam-
pling algorithms such as SMOTE and ADASYN al-
gorithms to up sample the Tamil training set which
improved the results from initial experiments.

5 Experiments & Results

UD Treebanks in CoNLL-U format annotations are
marked with the morphological, POS and depen-
dency label information required for construction
of the parse tree. Tamil UDT provides dataset seg-
regations for training, validation, and testing. To in-
duce the randomness, the data is combined and ran-

dom sampled same ratio, following the approach
of Loganathan et al. (Green et al., 2012). As part
of exploratory data analysis, we analyzed the dis-
tribution of dependency relations in the Train-Test
dataset combined (see Figure 2).

As observed, the classification task was highly
biased towards the majority classes on account of
the high imbalance in the dataset. To extract the
character level significance of Tamil language, the
sentences are broken down on to tokens as specified
in the CoNLL-U formatting. In the encoder mod-
ule, we have used different types of BERT models
for this task, namely mBERT, XLM-RoBERTa, In-
dicBERT and DistilBERT with a range of different
results. These tokens are embedded using these
models which are trained with Tamil and other In-
dic languages to retain the contextual information
of the token.

Figure 2: Class Distribution of Dependency Relation
Label

We have used BERT embedding for the tokeniza-
tion of the input sentences solely because the indi-
vidual word tokens are exclusively dependent on
the sentence itself rather than having just a corre-
sponding index for the word itself like Word2Vec.
Each individual sentence requires its own input id’s
which are a sequence of integers which map ev-
ery input token with its respective token index in
the BERT tokenizer vocabulary. The large BERT
model that is used here has around 24 transformer
encoders and each output per token from one of the
layers can be used as a work embedding. Further
as mentioned these embedded tokens can be fed to
the Parser Oracle of the Malt parser.

Malt parser works based on a transition system

4



and two stacks. At each step, a transition is pre-
dicted using machine learning models, altered from
liblinear and libsvm provided by the open-sourced
parser. The input to these models is composed of
the encoding of tokens in stacks and the current
state of the machine. The embeddings passed on
to the oracle are experimented with learning algo-
rithms like linear regression to understand the sep-
arability of the data in its dimension in an attempt
to establish linear relationship with the words. De-
cision Tree and Random Forrest classifiers are well
performing important feature extractors, which is
implemented to better the parsing task and study
the head-dependent tag relation based from the gen-
erated BERT embeddings.

The algorithm closely follows a rule-based ap-
proach for parsing tasks. The sentences are to-
kenized and fed on to classifier trees, which im-
proved the results over the regression models. A
Support Vector Machine classifier is employed to
solve the parsing task, which is a multi-class clas-
sification problem. The multi-class problem is di-
vided into a series of binary-class problems since
SVMs are binary classifiers, that classify the em-
beddings generated by projecting it into higher di-
mension to achieve separability.

Figure 3: Precision & Recall Before Oversampling
(IndicBERT-SVM)

The graph above (see Figure 3 ) , we can clearly
observe that there is a large amount of misclassifica-
tion in quite a few classes. This is mainly because
of the high amount of imbalance in our dataset. To
counter this issue, we have over-sampled the data

using algorithms like ADASYN and SMOTE. The
main goal of using these techniques was to improve
class-wise accuracy.

Figure 4: Precision & Recall After Oversampling
(IndicBERT-SVM)

As observed (see Figure 4), there was a sig-
nificant improvement in the class-wise accuracy
while the overall accuracy remained constant. Both
ADASYN and SMOTE functions are based on the
K-Nearest Neighbours (KNN), difference being
that ADASYN uses density distribution to deter-
mine the number of synthetic samples generated re-
spectively for every minority class. This is done by
changing the weights of the various minority sam-
ples adaptively which compensates for the skewed
distributions. SMOTE creates an equivalent num-
ber of synthetic samples for each original minority
sample. With respect to our experiment, we have
seen that ADASYN yields better results as com-
pared to SMOTE.

The difference being that ADASYN uses density
distribution to determine the number of synthetic
samples generated respectively for every minor-
ity class. This is done by changing the weights
of the various minority samples adaptively which
compensates for the skewed distributions. SMOTE
creates an equivalent number of synthetic samples
for each original minority sample.

We experimented with four different BERT mod-
els for this task and have achieved varying results
based on the model used. IndicBERT being a multi-
lingual ALBERT pre-trained model trained upon 11
Indian languages, outperformed every other BERT

5



Encoder/Model Regression Decision Tree Random Forest SVM
mBERT 53.33 52.26 55.35 58.21
XLM-RoBERTa 50.47 55.19 57.98 59.64
IndicBERT 54.21 56.93 60.71 62.33
DistilBERT 48.76 51.52 55.44 58.31

Table 3: Label Accuracy Before Oversampling

Encoder/Model Regression Decision Tree Random Forest SVM
mBERT 50.75 53.64 57.47 65.94
XLM-RoBERTa 52.82 59.66 61.31 66.35
IndicBERT 56.40 59.91 63.38 67.94
DistilBERT 49.36 52.36 56.23 63.57

Table 4: Label Accuracy After Oversampling

model. XLM-Roberta and mBERT had compara-
ble results but often XLM-RoBERTA gave better
results as it uses sentence wise tokenization com-
pared to the word wise tokenization observed in
mBERT. While DistilBERT is more compact and
shows equivalent results to the other models it was
observed to be the least performing model out of
the four used. We included DistilBERT in our
experiments to demonstrate the effectiveness of
Transformer-based language models in a produc-
tion context. The results suggests (see Table 3)
IndicBERT-SVM as the better performing model,
when parsed through Malt Parser we observed La-
bel Attachment Score of 52. Which is lower
compared to the approaches followed by Bharati
et al. (2009), Kolachina and Agarwal (2010) &
Sarveswaran and Dias (2020) (see Table 1), trained
by mixing tree banks of various languages to cal-
culate the respective LAS score, leading to higher
scores, focused on 3 languages-Tamil, Telugu and
Hindi.

Figure 5: Ground Truth - Parsed Sentence

Figure 6: Parsed Sentence Before Over Sampling

Figure 7: Parsed Sentence After Over Sampling

To overcome such low scores, we move ahead
with the method of oversampling, which yielded
better results due to the fact that for distinct mi-
nority class instances. ADASYN uses a weighted
distribution based on how difficult it is to learn,
with more synthetic data generated and trained
for challenging minority class cases lesser in sam-

6



ples. Alongside increasing the number of data sam-
ples. As perceived (see Table 4), LS Scores have
drastically improved upon training with syntheti-
cally generated data to improve the parser perfor-
mance. Our best performing model IndicBERT-
SVM’s scores are closer to method of Nivre (2009)
for Telugu Language and Sarveswaran and Dias
(2020) (see Table 1) without mixed language train-
ing giving Label Attachment Score of 56. Con-
sidering a sample sentence from our test set (see
Figure 5) marked with it’s ground truth dependency
relation and syntactic heads. The LAS and UAS
scores was significantly improved by assigning the
right dependency tags before (see Figure 6) and
after the oversampling algorithm (see Figure 7).

6 Conclusion & Future Works

This paper explores the use of a malt parser for
transition-based dependency parsing of Tamil lan-
guage and how an improvement in LS scores can di-
rectly improve the overall parser performance. We
show that for a morphologically rich, agglutinative
language like Tamil, with appropriate vector repre-
sentations from BERT trained by Indic languages
yields enhanced parsing. Various Bert models were
used to improve the dependency relation prediction
accuracy and the best performing model’s scores
are comparable to other methods without mixed
language training. The synthetic data generated
by oversampling algorithms eliminates the need
for more data to an extent, but we suggest train-
ing the model using a variety of datasets for the
low-resource language to efficiently build a parser
with strong contextual embeddings for Dravidian
Languages.

We plan to use these techniques to improve
our results in the near future on building effec-
tive parser for Dravidian Languages. In the future,
we’d like to explore how the outcomes of our data
split evolve when additional data is added, this may
be an excellent tool for self-training. Because the
amount of the tuning data for the SVM (Soman
et al., 2009), (Premjith et al., 2019) appears to be
the most relevant, the UAS may be improved by in-
cluding self-training data in our tuning sets. The ap-
proach of contextual embedding and oversampling
algorithms can be extended to other parsing algo-
rithms like graph based parsing techniques, which
open up wide variety of possibilities of improv-
ing the task of Dependency Parsing for Dravidian
Languages.

References
Aindriya Barua, S Thara, B Premjith, and KP Soman.

2020. Analysis of contextual and non-contextual
word embedding models for hindi ner with web
application for data collection. In International
Advanced Computing Conference, pages 183–202.
Springer.

Rafiya Begum, Samar Husain, Arun Dhwaj,
Dipti Misra Sharma, Lakshmi Bai, and Rajeev
Sangal. 2008. Dependency annotation scheme for
Indian languages. In Proceedings of the Third In-
ternational Joint Conference on Natural Language
Processing: Volume-II.

Akshar Bharati, Mridul Gupta, Vineet Yadav, Karthik
Gali, and Dipti Misra Sharma. 2009. Simple parser
for Indian languages in a dependency framework.
In Proceedings of the Third Linguistic Annotation
Workshop (LAW III), pages 162–165, Suntec, Singa-
pore. Association for Computational Linguistics.

Miriam Butt, Rajamathangi S., and Sarveswaran Ken-
gatharaiyer. 2020. Mixed categories in tamil via
complex categories.

Bharathi Raja Chakravarthi, KP Soman, Rahul Pon-
nusamy, Prasanna Kumar Kumaresan, Kingston Pal
Thamburaj, John P McCrae, et al. 2021. Dravidian-
multimodality: A dataset for multi-modal sentiment
analysis in tamil and malayalam. arXiv preprint
arXiv:2106.04853.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Velliangiri Dhanalakshmi, M Anand Kumar, R U
Rekha, K P Soman, and S Rajendran. 2010. Gram-
mar teaching tools for tamil language. In 2010 Inter-
national Conference on Technology for Education,
pages 85–88.

Rahul Goutam. 2012. Exploring self-training and co-
training for hindi dependency parsing using partial
parses. In 2012 International Conference on Asian
Language Processing, pages 37–40.

Nathan Green, Loganathan Ramasamy, and Zdeněk
Žabokrtský. 2012. Using an SVM ensemble system
for improved Tamil dependency parsing. In Pro-
ceedings of the ACL 2012 Joint Workshop on Sta-
tistical Parsing and Semantic Processing of Morpho-
logically Rich Languages, pages 72–77, Jeju, Repub-

7

https://aclanthology.org/I08-2099
https://aclanthology.org/I08-2099
https://aclanthology.org/W09-3030
https://aclanthology.org/W09-3030
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/T4E.2010.5550056
https://doi.org/10.1109/T4E.2010.5550056
https://doi.org/10.1109/IALP.2012.38
https://doi.org/10.1109/IALP.2012.38
https://doi.org/10.1109/IALP.2012.38
https://aclanthology.org/W12-3410
https://aclanthology.org/W12-3410


lic of Korea. Association for Computational Linguis-
tics.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao
Li. 2008. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. In 2008 IEEE
international joint conference on neural networks
(IEEE world congress on computational intelli-
gence), pages 1322–1328. IEEE.

Samar Husain. 2009. Dependency parsers for indian
languages.

Srinivasan Janarthanam, Udhaykumar Nallasamy, Lo-
ganathan Ramasamy, and C Santhoshkumar. 2007.
Robust dependency parser for natural language dia-
log systems in tamil. In Proceedings of the 5th Work-
shop on Knowledge and Reasoning in Practical Di-
alogue Systems, IJCAI KRPDS, pages 1–6.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, NC Gokul, Avik Bhattacharyya, Mitesh M
Khapra, and Pratyush Kumar. 2020. Indicnlpsuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for indian
languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4948–
4961.

Sudheer Kolachina and Manish Agarwal. 2010. Exper-
iments with maltparser for parsing indian languages.

Chamila Liyanage, Ifancy Ariaratnam, and Ruvan
Weerasinghe. 2014. A shallow parser for tamil.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 92–97.

Alessio Miaschi and Felice Dell’Orletta. 2020. Con-
textual and non-contextual word embeddings: an in-
depth linguistic investigation. In Proceedings of the
5th Workshop on Representation Learning for NLP,
pages 110–119, Online. Association for Computa-
tional Linguistics.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Comput. Linguist.,
34(4):513–553.

Joakim Nivre. 2009. Parsing indian languages with
maltparser.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,

Slovenia. European Language Resources Associa-
tion (ELRA).

B Premjith and KP Soman. 2021. Deep learning ap-
proach for the morphological synthesis in malay-
alam and tamil at the character level. Transactions
on Asian and Low-Resource Language Information
Processing, 20(6):1–17.

B Premjith, KP Soman, M Anand Kumar, and
D Jyothi Ratnam. 2019. Embedding linguistic fea-
tures in word embedding for preposition sense dis-
ambiguation in english—malayalam machine trans-
lation context. In Recent Advances in Computa-
tional Intelligence, pages 341–370. Springer.

Loganathan Ramasamy and Zdeněk Žabokrtský. 2012.
Prague dependency style treebank for Tamil. In
Proceedings of Eighth International Conference on
Language Resources and Evaluation (LREC 2012),
pages 1888–1894, İstanbul, Turkey.

Loganathan Ramasamy and Zdenek Zabokrtsky. 2011.
Tamil dependency parsing: Results using rule based
and corpus based approaches. volume 6608, pages
82–95.

Kengatharaiyer Sarveswaran and Gihan Dias. 2020.
Thamizhiudp: A dependency parser for tamil.

Manu Selvam, A. Natarajan, and R. Thangarajan. 2009.
Structural parsing of natural language text in tamil
language using dependency model. Int. J. Comput.
Proc. Oriental Lang., 22:237–256.

KP Soman, R Loganathan, and V Ajay. 2009. Machine
learning with SVM and other kernel methods. PHI
Learning Pvt. Ltd.

Xinyu Wang, Yong Jiang, and Kewei Tu. 2020. En-
hanced Universal Dependency parsing with second-
order inference and mixture of training data. In Pro-
ceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 215–220, Online. Association for Com-
putational Linguistics.

Daniel Zeman. 2009. Maximum spanning malt: Hiring
world’s leading dependency parsers to plant indian
trees.

8

https://doi.org/10.1109/ICTER.2014.7083901
https://doi.org/10.18653/v1/2020.repl4nlp-1.15
https://doi.org/10.18653/v1/2020.repl4nlp-1.15
https://doi.org/10.18653/v1/2020.repl4nlp-1.15
https://doi.org/10.1162/coli.07-056-R1-07-027
https://doi.org/10.1162/coli.07-056-R1-07-027
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
http://www.lrec-conf.org/proceedings/lrec2012/summaries/456.html
https://doi.org/10.1007/978-3-642-19400-9_7
https://doi.org/10.1007/978-3-642-19400-9_7
https://doi.org/10.1142/S1793840609002093
https://doi.org/10.1142/S1793840609002093
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.18653/v1/2020.iwpt-1.22
https://doi.org/10.18653/v1/2020.iwpt-1.22

