
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, pages 48 - 60
July 14, 2022 ©2022 Association for Computational Linguistics

Cross-TOP: Zero-Shot Cross-Schema Task-Oriented Parsing

Melanie Rubino
Amazon Alexa AI
New York, USA

rubinome@amazon.com

Nicolas Guenon des Mesnards
Amazon Alexa AI
New York, USA

mesnarn@amazon.com

Uday Shah
Amazon Alexa AI
New York, USA

shahuda@amazon.com

Nanjiang Jiang
Department of Linguistics
The Ohio State University
jiang.1879@osu.edu

Weiqi Sun
Amazon Alexa AI
New York, USA

weiqisun@amazon.com

Konstantine Arkoudas
Amazon Alexa AI
New York, USA

arkoudk@amazon.com

Abstract

Deep learning methods have enabled task-
oriented semantic parsing of increasingly com-
plex utterances. However, a single model is
still typically trained and deployed for each
task separately, requiring labeled training data
for each, which makes it challenging to support
new tasks, even within a single business vertical
(e.g., food-ordering or travel booking). In this
paper we describe Cross-TOP (Cross-Schema
Task-Oriented Parsing), a zero-shot method for
complex semantic parsing in a given vertical.
By leveraging the fact that user requests from
the same vertical share lexical and semantic
similarities, a single cross-schema parser is
trained to service an arbitrary number of tasks,
seen or unseen, within a vertical. We show
that Cross-TOP can achieve high accuracy on
a previously unseen task without requiring any
additional training data, thereby providing a
scalable way to bootstrap semantic parsers for
new tasks. As part of this work we release
the FoodOrdering dataset, a task-oriented pars-
ing dataset in the food-ordering vertical, with
utterances and annotations derived from five
schemas, each from a different restaurant menu.

1 Introduction

Propelled by deep learning, task-oriented parsing
has made significant strides, moving away from
flat intents and slots towards more complex tree-
based semantics that can represent compositional
meaning structures (Gupta et al., 2018; Aghajanyan
et al., 2020; Rongali et al., 2020; Mansimov and
Zhang, 2021). However, most semantic parsing sys-
tems remain task-specific: they can only produce
representations with the set of intents and slots

seen during training. To support multiple tasks,
this approach requires collecting data, training, and
maintaining a model for each task separately. This
is costly when multiple tasks need to be supported,
as is usually the case for digital voice assistants
such as Alexa and Google Assistant, which may
need to support hundreds or thousands of different
tasks in a given business vertical (e.g., restaurants
in the food-ordering vertical, hotels in the travel
vertical, and so on).

In this paper we present Cross-TOP, a method
for building a single semantic parsing model that
can support an arbitrary number of tasks in a given
vertical. User requests pertaining to the same ver-
tical have lexical and semantic similarities; their
main differences lie in their unique schemas. In
the food-ordering domain, for example, a customer
may request a main dish with various options and
possibly a drink and a side. However, depending on
the specific restaurant menu, the output semantic
representations can differ greatly; see Figure 1.

Cross-TOP makes use of a powerful pre-
trained transformer-based encoder-decoder lan-
guage model, with schema-specific context added
to the input along with the utterance. In this way,
the model learns to generate parses for a new, un-
seen task, by attending to the schema in the input
rather than by needing to see it during training. We
show that this approach is quite effective and pro-
vides a quick solution to the practical problem of
bootstrapping semantic parsers for new tasks within
a vertical, using a single model in production.

The parser is trained on a number of initial tasks,
where each task has some training data available.
Moreover, we assume that every task has a unique

48

Figure 1: The Cross-TOP parser processes utterances
from multiple tasks with different schemas. The light-
ning bolts represent fuzzy matching, which is used to
append schema elements to the input (cf. Section 2).

schema. That schema consists of all possible in-
tents and slots for the task at hand; both intents
and slots can be arbitrarily nested (compositional).
For every slot S, the schema also includes natural-
language phrases for the various values of S. All
schemas for the five tasks in our dataset can be
found in Appendix B. Cross-TOP uses constrained
decoding to ensure that it generates well-formed
parses that can be resolved to executable represen-
tations that can be directly used by the back end.

Most zero-shot cross-schema semantic pars-
ing work has been in the context of the Text-to-
SQL task (Zhong et al., 2020; Lin et al., 2020;
Wang et al., 2020; Rubin and Berant, 2021; Yu
et al., 2020; Gan et al., 2021). Cross-schema task-
oriented parsing introduces its own challenges. In
SQL, the schemas are database schemas, and the
parser is trained on some initial databases and then
evaluated on another database. There is a lot of
invariant structure across different tasks in the out-
put space (since output sequences are always SQL
queries), as well as common patterns in how SQL
structures tend to align with natural language. How-
ever, for the schemas defined in task-oriented pars-
ing for the food-ordering domain, the only invari-
ant structures are the parentheses and some lexical
overlap among the intents and slots. Therefore,
cross-schema parsing in general is more challeng-
ing for task-oriented parsing. However, restricting

the scope to a given vertical imposes more common
structure that can prove helpful.

To evaluate our methodology, we focus on tasks
in the food-ordering domain, where each task con-
tains examples from a restaurant with the schema
generated from its menu. Our main contributions
are as follows:

• We present a new technique for zero-shot intra-
vertical cross-schema semantic parsing that
jointly encodes utterance tokens and schema
elements.

• We release a new task-oriented parsing dataset
for food ordering to evaluate similar efforts.
The FoodOrdering dataset includes examples
from five restaurants, totaling close to 30,000
synthetically-generated training examples and
963 human-generated test utterances with la-
bels.

• We show that our method achieves up to 73%
exact match accuracy on a previously unseen
ordering task, proving the method’s viability
for effortlessly handling a new task.

2 Model

Our method trains a single schema-aware model to
serve multiple tasks and bootstrap new ones from
the same business vertical in a zero-shot setting.
It leverages the transfer learning capabilities of a
transformer-based pretrained encoder-decoder lan-
guage model.

Terminology Each task is defined by a unique
schema consisting of intents, slots belonging to
those intents, and catalogs enumerating the pos-
sible slot values for each slot. For example, in
the pizza-ordering task the TOPPING slot belongs
to the PIZZAORDER intent, and values for this slot
could be mushrooms, pepperoni, and so on. In
our predefined catalogs, multiple slot values could
refer to the same slot value entity, for example
peppers and green peppers can both be mapped
to TOPPING_PEPPERS—or perhaps TOPPING_35—
in the back end. Cross-TOP predicts parse trees that
contain slot values, which are then entity-resolved
into those unique back-end identifiers through this
many-to-1 mapping.

A task schema can optionally define invocation
keywords for each intent, to identify how these
are expressed in natural language, for example
{drink, drinks} for a DRINK_ORDER intent. This

49

is used for augmenting model input with fuzzy-
matched schema elements later on. Fuzzy string-
matching algorithms compute lexical similarity be-
tween strings. If some schema elements have a
significant overlap with certain utterance tokens,
then there is a “match” and that schema element
will be appended to the input utterance before en-
coding.

Model Inputs As just mentioned, to achieve
zero-shot cross-schema parsing, we append fuzzy-
matched schema elements to input utterances.
Given an utterance u, assume our fuzzy-matching
process (described later) determined that the intents
i1 and i2 are present in the request, with slot/slot-
values s1,1/v1,1 for i1, as well as s2,1/v2,1 and
s2,2/v2,2 for i21. The input to Cross-TOP is then
serialized into the following format:
u [I] i1 [S] s1,1 [V] v1,1 [I] i2
[S] s2,1 [V] v2,1 [S] s2,2 [V] v2,2

where markers [I], [S], [V] indicate that the
following tokens are intents, slots and slot values,
respectively. An example is given in Figure 2.

Figure 2: Cross-TOP is trained to attend to input utter-
ances augmented with fuzzy-matched schema elements.

Our format is inspired from BRIDGE (Lin et al.,
2020), but instead of table/column/column-value in
a database schema, task-oriented parsing schemas
uses intent/slot/slot-value. While the longer input
sequences increase the computation required for
inference, the latency impact is mitigated by the
parallelizability of the transformer architecture.

Model Outputs The model is trained to generate
a linearized parse tree similar to the target shown
in Figure 2, which is reminiscent of the TOP de-
coupled notation (Aghajanyan et al., 2020). TOP
decoupled is itself derived from the TOP notation
(Gupta et al., 2018) by removing tokens that are
not direct children of slot nodes. Unlike TOP de-
coupled, leaf nodes in our output semantics are
not tokens copied from the source utterance, but

1There can be more than one slot value v identified for the
same slot s, in which case the input will be of the form:
u [I] i1 [S] s1,1 [V] v1,1,1 [V] v1,1,2 . . .

instead must be valid slot values belonging to the
task’s catalogs. As exemplified in Figure 2, the
fuzzy-matched slot value for the utterance segment
large-size is the catalog entry large. It can hap-
pen that utterance token and catalog value are iden-
tical, as is the case for peppers here. By predicting
slot values instead of unresolved utterance tokens,
Cross-TOP jointly learns to perform semantic pars-
ing and entity resolution, thus eliminating the need
to train and maintain a separate entity resolution
system for every new task.

Fuzzy-Matching Details The viability of our
schema-aware encoding depends on our ability
to extract the proper schema elements. We lever-
age the fuzzy-matching method from the BRIDGE
codebase2 and compute lexical similarity scores
between an input utterance and every slot value.3

If multiple slot values representing the same en-
tity match the utterance, we pick the one with the
higher similarity score. Slots are added to the input
if at least one of their slot values was added.4 In-
tents are added to the input if at least one of their
slots is added.5

In addition, if any of the predefined intent
invocation keywords (cf. Terminology) fuzzy-
match the utterance, then that intent is added
along with the fuzzy-matched keyword, for exam-
ple adding [I] PIZZAORDER : pizza instead of
simply [I] PIZZAORDER. Given that intent names
can be arbitrary and carry little semantic content,
this design helps the pretrained language model
by bridging the gap between natural language and
back-end executable representations.

Constrained Decoding The target parses con-
tain only schema elements and parentheses. Cross-
TOP leverages constrained decoding at inference
time to generate valid catalog values and parses
according to the schema. For example, the string
(DRINK_ORDER (SIZE coke)) is not valid, as the
slot value coke is not a catalog entry for the
slot SIZE. In this work we also implement a

2https://github.com/salesforce/
TabularSemanticParsing

3This works in a vertical with small catalogs, such as
restaurant menus. To make it scale to much larger catalogs,
one could use sub-linear fuzzy string-matching algorithms and
offline parallel processing.

4Slots that are parents of other slots are also provided with
catalog entries to allow fuzzy matching. For example, a NOT
slot for negation will use {with no, without, hold the . . .}.

5A slot shared across two intents will trigger both their
inclusion, but experiments indicate that the neural parser can
learn to discard such false detection.

50

https://github.com/salesforce/TabularSemanticParsing
https://github.com/salesforce/TabularSemanticParsing

parentheses-balancing constraint, as well as a set
of valid next-token constraints, where each vocab-
ulary subword has a corresponding entry in a dic-
tionary mapping it to a list of valid subwords that
may follow it. The content of such a dictionary is
task-specific but is built programmatically from the
task schema. The detailed constraints are provided
in Appendix D. Section 5 quantifies the benefits of
constrained decoding in the zero-shot setting.

3 The FoodOrdering Dataset

We release a dataset for cross-schema zero-shot
task-oriented parsing: the FoodOrdering dataset,6

comprising five food-ordering tasks for five ficti-
tious restaurants: PIZZA, SUB, BURRITO, BURGER

and COFFEE.

Dataset Construction To gauge zero-shot capa-
bilities, only three out of five tasks come with
training data. For SUB and BURRITO, the train-
ing portion of the data was synthetically generated
by sampling around 50 human-designed templates
for which slot values are themselves sampled from
predefined catalogs. The catalogs and templates
are released along with the dataset, but a couple of
examples are given in Table 4. We generated up to
10,000 unique pairs of natural language and target
parses. For PIZZA we randomly sampled 10,000
utterances out of the 2.5M provided by Arkoudas
et al. (2021). All five tasks have evaluation data
generated by humans and collected through Me-
chanical Turk; see Appendix A for details. MTurk
workers generated natural language orders, which
were then annotated internally. More examples can
be found in Appendix C.

Dataset Statistics All tasks follow a common
structure of intents and slots, but each task has a
different number of intents, slots and slot values. In
Table 1, the #SltValEntities column does not count
the total number of slot values, but rather the total
number of slot value entities, which are resolved
slot values (cf. Terminology). BURRITO has 7
distinct intents while COFFEE is a single-intent task.
The design differences between the task schemas
reflect a real-world setting: each restaurant comes
with its own preexisting back end that dictates the
design and contents of the corresponding schema.
On average there are 1.7 intents and 6.2 slots per

6https://github.com/amazon-research/
food-ordering-semantic-parsing-dataset

utterance, and an average depth7 of 3.4. Detailed
numbers are provided in Table 5 of Appendix C.

Task Schemas Each task has a unique schema,
but all schemas are governed by similar rules: only
slot nodes can be children of intent nodes, and
there is no limit on the number of intents per utter-
ance nor slots per intent. Slot nodes can be parents
either of slot values or of other slots. NOT is an ex-
ample of a generic (task-agnostic) slot that allows
us to negate any slot that admits negation, such as
TOPPING. Refer to Appendix B for the details of
the five schemas.

4 Experimental Setup

Our experimental setup reflects the practical sce-
nario of having to scale a technology to service
multiple applications under constrained production
resources. We consider a single model to serve
all tasks, so we train with synthetic data for only
three of the tasks (PIZZA, BURRITO and SUB), and
test zero-shot generalization on two unseen tasks
(BURGER and COFFEE).

Training Details In this work we use BART-
Large (Lewis et al., 2020), a transformer-based pre-
trained encoder-decoder language model. We fine-
tune the publicly available 24-layer BART-Large
checkpoint8 totaling 406M parameters, using the
transformers codebase. We expand the tar-
get vocabulary by adding special tokens for input
markers [I], [S] and [V]. The training dataset
was created by concatenating synthetic data from
the three training tasks. Models are trained for
50 epochs with early stopping patience of 4, us-
ing cross-entropy sequence loss and the AdamW
optimizer. We use the human-generated data of
the three training tasks as our development set for
early stopping and hyperparameter tuning. Hy-
perparameter tuning is described in Appendix E.
Our best model uses a batch size of 16, learn-
ing rate 1e-05 and linear learning rate scheduler
with warm-up ratio of 0.1. The hyperparameter
no_repeat_ngram_size was disabled by set-
ting it to 0.

Evaluation Details We use Unordered Exact
match accuracy (Unordered EM) to measure per-

7Queries are by design multi-intent, hence implicitly
rooted in a parent ORDER node, which is factored in the com-
putation of depth.

8https://huggingface.co/facebook/
bart-large

51

https://github.com/amazon-research/food-ordering-semantic-parsing-dataset
https://github.com/amazon-research/food-ordering-semantic-parsing-dataset
https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/bart-large

Dataset #Train/Synthetic #Eval #Int #Slt #SltValEntities Example utterance

PIZZA 10,000 348 2 10 166 "Can i get one large pie with no
cheese and a coke."

BURRITO 9,982 191 7 11 34 "One carnitas quesadilla with
white rice and black beans."

SUB 10,000 161 3 8 62 "Get me a cold cut combo with
mayo and extra pickles."

BURGER 0* 161 3 9 44 "A vegan burger with onions and a
side of sweet potato fries."

COFFEE 0* 104 1 9 43 "One regular latte cinnamon iced with
one extra espresso shot."

Table 1: FoodOrdering dataset statistics: sizes of training and evaluation sets, as well as numbers of intents, slots,
and resolved slot value entities defined in each task’s schema. *BURGER and COFFEE have no training data, as they
are used to evaluate zero-shot learning.

formance. It checks for an exact match between
the golden and predicted trees, where sibling or-
der does not matter. The golden parse trees are
executable representations (ready for consumption
by an appropriate back end) that contain resolved
entity names instead of slot values identified by
utterance segments. These entities are fully de-
termined by the many-to-1 mapping mentioned in
Section 2. Validation performance is computed on
the aggregated validation sets for the three training
tasks. Test performance is reported for tasks indi-
vidually. We used a beam size of 6 for validation
and testing.

Pre-Processing and Post-Processing When ap-
pending the schema elements to the input utterance
we do not include the slot/slot-value pair NUMBER,
1 from the fuzzy matching process if it’s the only
quantity matched.9 This choice was made after ob-
serving that the slot values a/an can easily trigger
false positives in fuzzy matching. For example, in
the utterance an order of two sprites, the numeric
quantity to extract is two, but the token an would
trigger an extra unnecessary match. At inference
time, if no NUMBER was generated for an intent, we
add back (NUMBER 1) as a default to the predicted
parse tree. Before computing unordered EM scores,
all slot values are resolved into the appropriate en-
tity names using the many-to-1 mapping mentioned
earlier.

5 Results and Analysis

In the zero-shot setting, Cross-TOP achieves 73%
unordered EM on BURGER and 55% on COFFEE

9Note that we do keep those slot/slot-value pairs for quan-
tities larger than 1.

(Table 2). The rest of this section presents an anal-
ysis of our results.

Schema-aware encoding enables zero-shot trans-
fer learning. The main strength of Cross-TOP is
training and maintaining a single model that can
serve multiple tasks within the same business ver-
tical, and bootstrapping new tasks without retrain-
ing. The zero-shot results in Table 2 support the
claim that joint learning over utterance tokens and
matched schema elements achieves this objective.
For completeness, we show that the zero-shot abil-
ity does not simply come from the conjunction of
constrained decoding and BART’s extensive pre-
training: we perform an ablation exercise where
the input to BART-Large contains no schema infor-
mation at all, but constrained decoding is enabled.
As can be seen in the second row of Table 2, ac-
curacy drops precipitously, by 46 and 23 absolute
points for BURGER and COFFEE, respectively. A
manual analysis of the predictions shows that in the
overwhelming majority of cases, this model only
generates intents and slots that it has seen before
in training and thus fails to correctly parse utter-
ances that have unseen intents/slots. On a subset
of 108 BURGER utterances with at least one intent
unseen in training, the schema-oblivious approach
only gets 4% unordered EM, compared to 64% for
Cross-TOP.

Schema-aware decoding ensures proper exe-
cutable parses. Schema-aware constrained de-
coding ensures that Cross-TOP generates fully exe-
cutable parse trees. Without this component, perfor-
mance drops by 20 absolute points, as shown in the
third row of Table 2. By looking at 15 predicted ut-

52

terances where the output predictions change by re-
moving constrained decoding, we found that 93.3%
of BURGER utterances and 60% of COFFEE utter-
ances contained at least one invalid slot/slot-value
combination. While using constrained decoding
on these utterances is guaranteed to rule out in-
valid combinations, this does not ensure that the
result will be correct. However, on inspection we
found that constrained decoding transforms 60%
of BURGER and 33.3% of COFFEE mismatched
utterances to be completely correct. Table 6 in Ap-
pendix D illustrates how constrained decoding can
help with specific examples.

Cross-TOP improves as more training tasks are
added. While our main result shows that train-
ing with only few tasks allows zero-shot transfer
to new tasks with no retraining, a realistic produc-
tion scenario would be to periodically retrain the
model by incorporating new training data. To quan-
tify the benefits of adding more tasks, we compare
training Cross-TOP using one, two or three tasks.
The results for training on one task are an average
over three models, one trained on PIZZA only, one
on BURRITO and one on SUB. Likewise, results
for training on two tasks are an average of three
models, one trained on PIZZA+BURRITO, one on
BURRITO+SUB and the other on PIZZA+SUB. As
shown in Table 2, going from 1 to 2 tasks doubles
performance for BURGER, and using 3 tasks almost
triples the performance for both test tasks, con-
firming that the model learns general patterns that
govern all schemas in the food-ordering vertical.

Dependency on fuzzy matching Cross-TOP re-
lies on the quality of the fuzzy-matching process
that determines which schema elements are en-
coded along with the utterance tokens. It can be
challenging to recover from a fuzzy matching fail-
ure that ends up omitting a slot value from the in-
put. In BURGER, such failures account for only
1% of all test utterances. In COFFEE that phe-
nomenon is more prominent, with 7% of test utter-
ances presenting at least one missing element from
the fuzzy-matched schema. These limitations can
be addressed by making the fuzzy-matching algo-
rithm more robust and/or by adding unrecognized
slot values as extra entries in the slot’s catalog. The
latter option is appealing, as it involves no model
retraining, but does not suffice, as there is no obvi-
ous way to automate it. We upper-bound the impact
of any candidate fix by providing an oracle schema

for all utterances, and observe in the last row of
Table 2 that it brings an absolute improvement of 2
absolute point in BURGER and 5 absolute points in
COFFEE.

Burger Coffee

Cross-TOP 73.3 ± 3.6 54.8 ± 5.7

w/o schema-augmented input 26.5 ± 1.5 31.7 ± 1.0
w/o constrained decoding 53.0 ± 4.2 33.3 ± 7.2
training only on 1 task 25.4 ± 1.6 19.9 ± 3.3
training only on 2 tasks 52.4 ± 2.7 34.0 ± 3.5
w/ oracle schema 75.6 ± 4.3 59.4 ± 7.1

Table 2: Cross-TOP zero-shot unordered EM accuracy,
averaged over 3 seeds, along with various ablations. The
± signs indicate the standard error across seeds.

6 Related Work

Slot Filling Traditionally, task-oriented parsing
for flat intents and slots has been framed as a
combination of intent classification and slot label-
ing (Sarikaya et al., 2016), possibly with an addi-
tional domain classification component. Several
authors have addressed zero-shot solutions in this
field. QASF (Du et al., 2021) is a QA-driven ap-
proach that extracts slot-filler spans from utterances
using a question-answering model. Both Bapna
et al. (2017) and Siddique et al. (2021) tag words
with slots using slot descriptions and context-aware
representations of the utterance. These solutions
don’t apply to structured (compositional) semantic
representations, or to multiple intents in a single
utterance, both of which are handled by Cross-TOP.

Task-Oriented Parsing In the more general area
of task-oriented parsing, where hierarchical repre-
sentations are featured, the authors are not aware of
other zero-shot cross-schema work. There is some
work in the few-shot setting (Chen et al., 2020),
where data from multiple domains is used during
an additional stage of fine-tuning combined with
meta-learning.

Text-to-SQL Some of the most relevant related
zero-shot work is in text-to-SQL semantic parsing.
In this area, a challenging dataset, SPIDER (Yu
et al., 2018), is the most common dataset used to
test zero-shot solutions. The GAZP (Zhong et al.,
2020) method generates synthetic training data for
the new schema environment and requires a re-
training of the neural parser, not making it as con-
venient of a zero-shot method. RAT-SQL (Wang

53

et al., 2020) moves away from needing to retrain the
parser, and focuses on jointly encoding the schema
and utterance tokens. BRIDGE (Lin et al., 2020)
is the main inspiration for our work, as it encodes
the utterance and schema together, and augments
the input with anchor texts, which are database
values from tables, designed to better bridge utter-
ance tokens to database tables, columns and values.
Another notable contribution intended to bridge
the gap between natural language and machine-
executable representations is the work of Gan et al.
(2021), which leverages an intermediate represen-
tation to go from text to SQL.

7 Conclusion

We presented Cross-TOP, a zero-shot method for
cross-schema task-oriented parsing that eliminates
the need to retrain and maintain a new model for
every new task in a business vertical. We released
a new dataset illustrative of five real-world appli-
cations in the food-ordering vertical. We showed
that Cross-TOP reaches up to 73% EM accuracy in
zero-shot transfer, making it a viable technique for
quickly bootstrapping a parser for a new task.

Future work could further enrich the joint en-
coding of utterances and task schemas, while an
additional thread of work could study how to best
leverage limited annotated data that may be avail-
able for a new task.

Acknowledgments

We would like to thank Beiye Liu, Emre Barut,
Ryan Gabbard, and anonymous reviewers for pro-
viding valuable feedback on this work.

References
Armen Aghajanyan, Jean Maillard, Akshat Shrivastava,

Keith Diedrick, Michael Haeger, Haoran Li, Yashar
Mehdad, Veselin Stoyanov, Anuj Kumar, Mike Lewis,
and Sonal Gupta. 2020. Conversational semantic
parsing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5026–5035, Online. Association for
Computational Linguistics.

Konstantine Arkoudas, Nicolas Guenon des Mesnards,
Melanie Rubino, Sandesh Swamy, Saarthak Khanna,
and Weiqi Sun. 2021. Pizza: a task-oriented semantic
parsing dataset.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero-shot frame semantic
parsing for domain scaling.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090–5100, Online. As-
sociation for Computational Linguistics.

Xinya Du, Luheng He, Qi Li, Dian Yu, Panupong Pa-
supat, and Yuan Zhang. 2021. QA-driven zero-shot
slot filling with weak supervision pretraining. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 654–664,
Online. Association for Computational Linguistics.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R Woodward, John Drake, and Qiaofu Zhang.
2021. Natural sql: Making sql easier to infer from
natural language specifications. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2030–2042.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-SQL semantic parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870–4888, Online. Association
for Computational Linguistics.

Elman Mansimov and Yi Zhang. 2021. Semantic pars-
ing in task-oriented dialog with recursive insertion-
based encoder. arXiv preprint arXiv:2109.04500.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t parse, generate! a se-
quence to sequence architecture for task-oriented se-
mantic parsing. In Proceedings of The Web Confer-
ence 2020, pages 2962–2968.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-
autoregressive bottom-up semantic parsing. In Pro-
ceedings of the 5th Workshop on Structured Predic-
tion for NLP (SPNLP 2021), pages 12–21, Online.
Association for Computational Linguistics.

54

https://doi.org/10.18653/v1/2020.emnlp-main.408
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://github.com/amazon-research/pizza-semantic-parsing-dataset
https://github.com/amazon-research/pizza-semantic-parsing-dataset
http://arxiv.org/abs/1707.02363
http://arxiv.org/abs/1707.02363
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2021.acl-short.83
https://doi.org/10.18653/v1/2021.acl-short.83
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2021.spnlp-1.2
https://doi.org/10.18653/v1/2021.spnlp-1.2

R. Sarikaya, P. A. Crook, A. Marin, M. Jeong, J.P. Ro-
bichaud, A. Celikyilmaz, Y.B. Kim, A. Rochette,
O. Z. Khan, X. Liu, D. Boies, T. Anastasakos,
Z. Feizollahi, N. Ramesh, H. Suzuki, R. Holenstein,
E. Krawczyk, and V. Radostev. 2016. An overview of
end-to-end language understanding and dialog man-
agement for personal digital assistants. In 2016 IEEE
Spoken Language Technology Workshop (SLT), pages
391–397.

AB Siddique, Fuad Jamour, and Vagelis Hristidis. 2021.
Linguistically-enriched and context-awarezero-shot
slot filling. In Proceedings of the Web Conference
2021, pages 3279–3290.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang,
Yi Chern Tan, Xinyi Yang, Dragomir R. Radev,
Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic
parsing. CoRR, abs/2009.13845.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Victor Zhong, Mike Lewis, Sida I. Wang, and Luke
Zettlemoyer. 2020. Grounded adaptation for zero-
shot executable semantic parsing. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6869–
6882, Online. Association for Computational Lin-
guistics.

55

https://doi.org/10.1109/SLT.2016.7846294
https://doi.org/10.1109/SLT.2016.7846294
https://doi.org/10.1109/SLT.2016.7846294
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
http://arxiv.org/abs/2009.13845
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2020.emnlp-main.558
https://doi.org/10.18653/v1/2020.emnlp-main.558

Appendix

A Mechanical Turk Instructions

The instructions given to the workers were tem-
plated as shown in Figure 3. The tasks can be
described as natural language text generation with
a constrained menu. The number of responses was
limited to 3 submissions per worker in order to
balance diversity of responses and responsiveness
ratios. The respondent’s location had to be either
US or CA, and the master worker qualification was
required.10 The tasks were designed, timed and
priced to ensure that the compensation of respon-
dents lies above the US and CA minimum hourly
wages. The dataset went through an internal re-
view process to ensure it abides by the company’s
required standards. Overall we collected answers
form about 60 distinct workers for BURGER, SUB

and COFFEE and about 90 for BURRITO, for a total
of 183 unique individuals. The menus used for
each collection are given in Figure 4.

B Task Schemas

Detailed schemas for each task, describing intent
names, slot names, and slot properties, are given
as supplementary material, along with the full cat-
alog values for each slot.11 For illustration pur-
poses, Figure 5 shows the schema for BURRITO.
Note that not all schemas need to share identical
slots for similar intents. For example the BURGER

schema has a SIZE slot for the DRINK_ORDER
and SIDE_ORDER intents, while the BURRITO

task does not. This is a design choice meant to
reflect a real-life setting where the back end for
one restaurant might support such property while
another might not. This is a challenging—though
realistic—obstacle our model needs to overcome.

C Dataset Construction Details

Part of the dataset comes from the publicly avail-
able PIZZA dataset (Arkoudas et al., 2021). We
are following the conditions of use as defined by
the license12 and will release our dataset under
the same license. The collection of new data was
done through Mechanical Turk. Respondents were

10workers with high ratings according to MTurk API.
11https://github.com/amazon-research/

food-ordering-semantic-parsing-dataset
12https://github.com/amazon-research/

pizza-semantic-parsing-dataset/blob/
main/LICENSE

constrained to submit a single utterance for an
order containing potentially more than one sub-
order. Hence, some utterances contained periods
and question marks, indicating a sharp separation
between two requests. To better reflect the fact
that these users would likely have broken their re-
quest into multiple ones in an vocal interaction, we
split those utterances into pieces. Other punctua-
tion marks like commas, and non-ASCII charac-
ters, were simply removed, but utterances were
not split around them. Numerical values were
spelled out (e.g., 2 large cokes → two large cokes).
Finally, utterance text was lower-cased. Annotation
was carried out internally by two annotators located
in the US. Utterances displaying too much ambigu-
ity for human annotators were removed. In Table
3 we provide examples of the collected utterances,
and their linearized semantics. As can be seen in
the table, utterances have varying degrees of com-
plexity, which results in linearized trees of varying
depths and widths. Synthetic data was generated
by sampling human-designed templates, illustrated
in Table 4. For SUB we used 32 templates and for
BURRITO we used 46. Some statistics on the de-
gree of compositionality of human and synthetic
orders are given in Table 5.

D Constrained Decoding Details

In what follows we list the actual constraints imple-
mented in this work in the form of allowed transi-
tions. Any element on the left of the arrow can be
followed by elements on the right:

BOS → {”(X”, X = valid intent }
”(” → { X , X = valid intent or slot}
”)” → {”)” or ”(” or EOS }
intent → {”(X”, X = a valid slot }
slot → {X , X = compatible value }
(COMPLEX → (QUANTITY

One could think of imposing more grammar-
based constraints, for example, allowing only valid
intent-slot combinations, or only allowing negat-
able slots after (NOT, since some of these—like
SIZE—cannot be negated. Examples of how con-
strained decoding helped can be found in Table 6.

E Computational Details

Hyperparameter tuning was performed on learning
rates [5e-04, 1e-05, 5e-05, 1e-06] and batch
sizes [16, 24, 48, 64] across three seeds.

56

https://github.com/amazon-research/food-ordering-semantic-parsing-dataset
https://github.com/amazon-research/food-ordering-semantic-parsing-dataset
https://github.com/amazon-research/pizza-semantic-parsing-dataset/blob/main/LICENSE
https://github.com/amazon-research/pizza-semantic-parsing-dataset/blob/main/LICENSE
https://github.com/amazon-research/pizza-semantic-parsing-dataset/blob/main/LICENSE

Dataset Natural Language Semantic representation after entity resolution

PIZZA
five medium pizzas with tomatoes
and ham

(PIZZAORDER
(NUMBER 5) (SIZE medium)
(TOPPING ham) (TOPPING tomatoes))

PIZZA
i’ll have one pie along with pesto and ham
but avoid olives

(PIZZAORDER
(NOT (TOPPING olives))
(NUMBER 1) (TOPPING ham) (TOPPING pesto))

PIZZA
i wanted to have two dr peppers three
pepsis and a sprite

(DRINKORDER
(DRINKTYPE dr_pepper) (NUMBER 2))

(DRINKORDER
(DRINKTYPE pepsi) (NUMBER 3))

(DRINKORDER
(DRINKTYPE sprite) (NUMBER 1))

BURRITO
burrito with steak cheese guacamole sour
cream and fresh tomato salsa

(BURRITO_ORDER
(NUMBER 1) (MAIN_FILLING steak)
(TOPPING cheese) (TOPPING guacamole)
(TOPPING sour_cream)
(SALSA_TOPPING fresh_tomato_salsa))

BURRITO i’d also like a bottled water please (DRINK_ORDER
(NUMBER 1) (DRINK_TYPE bottled_water))

BURRITO i’d like a lemonade with a side of chips

(DRINK_ORDER
(NUMBER 1) (DRINK_TYPE tractor_lemonade)

(SIDE_ORDER
(NUMBER 1) (SIDE_TYPE chips))

SUB
steak and cheese sandwich with lettuce
cucumbers and olives

(SANDWICH_ORDER (NUMBER 1)
(BASE_SANDWICH steak_and_cheese)
(TOPPING lettuce) (TOPPING cucumbers)
(TOPPING black_olives))

SUB

i will order a chicken and bacon ranch
sandwich and on that please put
american cheese chipotle southwest sauce
lettuce tomatoes pickles with a side
of doritos and two chocolate chip cookies

(SANDWICH_ORDER (NUMBER 1)
(BASE_SANDWICH chicken_and_bacon_ranch)
(TOPPING american_cheese)
(TOPPING chipotle_southwest)
(TOPPING lettuce) (TOPPING tomatoes)
(TOPPING pickles))

(SIDE_ORDER (NUMBER 1)
(SIDE_TYPE doritos_nacho_cheese))

(SIDE_ORDER (NUMBER 2)
(SIDE_TYPE chocolate_chip))

BURGER
hi can i have the double cheeseburger
with ketchup and onions and french fries
on the side

(MAIN_DISH_ORDER (NUMBER 1)
(MAIN_DISH_TYPE double_cheese_burger)
(TOPPING ketchup) (TOPPING onion))

(SIDE_ORDER (NUMBER 1)
(SIDE_TYPE french_fries))

BURGER
veggie burger with lettuce and bacon
large curly fry and a small iced tea

(MAIN_DISH_ORDER (NUMBER 1)
(MAIN_DISH_TYPE vegan_burger)
(TOPPING lettuce) (TOPPING bacon))

(SIDE_ORDER (NUMBER 1)
(SIZE large) (SIDE_TYPE curly_fries))

(DRINK_ORDER (NUMBER 1)
(SIZE small) (DRINK_TYPE iced_tea))

COFFEE
i’d like a large hot chocolate with
whipped cream

(DRINK_ORDER
(NUMBER 1) (SIZE large)
(DRINK_TYPE hot_chocolate)
(TOPPING whipped_cream))

COFFEE

one regular latte light roast with an
extra espresso shot and honey added and
one large cappuccino with caramel syrup
in that one

(DRINK_ORDER (NUMBER 1)
(SIZE regular) (DRINK_TYPE latte)
(ROAST_TYPE light_roast) (TOPPING honey)
(TOPPING (ESPRESSO_SHOT 1)))

(DRINK_ORDER (NUMBER 1)
(SIZE large) (DRINK_TYPE cappuccino)
(TOPPING caramel_syrup))

Table 3: Example utterances obtained from Mechanical Turk collection and their corresponding machine-executable
representation.

Dataset Template Example catalog values

SUB {prelude} {number} {side_type} {prelude} = i want to order
{side_type} = sunchips

SUB
{prelude} {number} {base_sandwich} with

{topping1} and {topping2}
{base_sandwich} = chicken teriyaki
{topping1} = bacon

BURRITO
{prelude} {number} {main_filling} {entity_name}
with {salsa_topping}

{main_filling} = barbacoa
{entity_name} = burrito

BURRITO
{prelude} {number} side of {side_type1} and
{side_type2} and {number} {drink_type}

{side_type1} = chips
{side_type2} = guac

Table 4: Example templates and catalog values used for sampling synthetic data.

We use the human-generated data of the three train-
ing tasks as our development set for early stop-

ping and hyperparameter tuning. Including this
and general experimentation, we estimate our total

57

#Intent per
utterance

#Slots per
utterance

Avg utterance
depth

Synthetic Data

PIZZA 1.77 5.77 3.44
BURRITO 1.57 6.50 3.48
SUB 1.79 6.24 3.37

Human-generated Data

PIZZA 1.25 6.13 3.62
BURRITO 1.39 5.78 3.12
SUB 1.69 5.99 3.07
BURGER 1.97 7.17 3.04
COFFEE 1.05 5.34 3.2

Table 5: Statistics on the degree of compositionality in each task, for synthetic and human-generated data.

Dataset Natural Language Utterance Prediction w/o constraints Prediction w/ constraints

BURGER
i’ll have a hamburger topped with
bacon and ketchup along with a large
coke and large order of french fries

(MAIN_DISH_ORDER
(MAIN_DISH_TYPE hamburger)
(TOPPING bacon)
(TOPPING ketchup))

(DRINK_ORDER
(SIZE large)
(DRINK_TYPE coke))

(SIDE_ORDER (NUMBER large)
(SIDE_TYPE french fries))

(MAIN_DISH_ORDER
(MAIN_DISH_TYPE hamburger)
(TOPPING bacon)
(TOPPING ketchup))

(DRINK_ORDER
(SIZE large)
(DRINK_TYPE coke))

(SIDE_ORDER (NUMBER a)
(SIZE large)
(SIDE_TYPE french fries))

COFFEE
i’d like an iced cappuccino with
caramel syrup and whipped cream

(DRINK_ORDER
(STYLE iced cappuccino)
(TOPPING caramel syrup)
(TOPPING whipped cream))

(DRINK_ORDER
(STYLE iced)
(DRINK_TYPE cappuccino)
(TOPPING caramel syrup)
(TOPPING whipped cream))

Table 6: Example utterances where constrained decoding helps fix invalid slot/slot value combinations.

computation cost to be about 2 weeks GPU hours.

58

MTurk prompt
Suppose you want to place your usual order at your favorite type of restaurant (like examples of such venues) for you, your partner, your family or your group
of friends. Your task is to enter your order exactly as you would say it, verbatim, when you place the order at that restaurant.

IMPORTANT: This restaurant has a limited menu provided below. Only order items available on the menu, but do so with the same words you usually use
when ordering these items:

*** Picture of restaurant Menu ***

Write as you would speak. Make sure that:

• you write your order exactly as you would say it

• your usual order may include many items and if so, include them all when you enter your order below

• if you complete multiple HITs, vary the type of orders you place. The orders should be usual orders you, your friends or family place, but with varying
number or types of items, toppings, sides or drinks.

Enter your order below, using the limited menu above, exactly as you would say it at the restaurant :

*** Type order here ***

Figure 3: Template prompt given to Mechanical Turk workers, common across all 4 tasks. The only significant
attribute varying across tasks was the menu to order from.

Figure 4: Menus shown to Mechanical Turk workers for each task: BURRITO (top-left), SUB (top-right), BURGER
(bottom-left) and COFFEE (bottom-right).

59

1 {
2 "name": "BURRITO",
3 "intents": [
4 {"name": "BURRITO_ORDER",
5 "invocation_keywords": ["burrito", "burritos"],
6 "slots": [
7 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
8 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
9 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},

10 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
11 {"name": "TOPPING", "negatable": true, "quantifiable": true}
12]
13 },
14 {"name": "BURRITO_BOWL_ORDER",
15 "invocation_keywords": ["burrito bowl", "burrito bowls", "bowl", "

bowls"],
16 "slots": [
17 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
18 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
19 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
20 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
21 {"name": "TOPPING", "negatable": true, "quantifiable": true}
22]
23 },
24 {"name": "SALAD_ORDER",
25 "invocation_keywords": ["salad", "salads"],
26 "slots": [
27 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
28 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
29 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
30 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
31 {"name": "TOPPING", "negatable": true, "quantifiable": true}
32]
33 },
34 {"name": "TACO_ORDER",
35 "invocation_keywords": ["taco", "tacos"],
36 "slots": [
37 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
38 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
39 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
40 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
41 {"name": "TOPPING", "negatable": true, "quantifiable": true}
42]
43 },
44 {"name": "QUESADILLA_ORDER",
45 "invocation_keywords": ["quesadilla", "quesadillas"],
46 "slots": [
47 {"name": "NUMBER"}, {"name": "MAIN_FILLING", "quantifiable": true},
48 {"name": "RICE_FILLING", "negatable": true, "quantifiable": true},
49 {"name": "BEAN_FILLING", "negatable": true, "quantifiable": true},
50 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true},
51 {"name": "TOPPING", "negatable": true, "quantifiable": true}
52]
53 },
54 {"name": "SIDE_ORDER",
55 "invocation_keywords": ["side of chip", "sides of chips"],
56 "slots": [
57 {"name": "NUMBER"},
58 {"name": "SIDE_TYPE"},
59 {"name": "SALSA_TOPPING", "negatable": true, "quantifiable": true}
60]
61 },
62 {"name": "DRINK_ORDER",
63 "invocation_keywords": ["drink", "drinks"],
64 "slots": [
65 {"name": "NUMBER"},
66 {"name": "DRINK_TYPE"}
67]
68 }
69]
70 }

Figure 5: Task schema for the BURRITO restaurant.

60

