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Abstract

GPT-3 has attracted lots of attention due to its
superior performance across a wide range of
NLP tasks, especially with its in-context learn-
ing abilities. Despite its success, we found that
the empirical results of GPT-3 depend heavily
on the choice of in-context examples. In this
work, we investigate whether there are more
effective strategies for judiciously selecting in-
context examples (relative to random sampling)
that better leverage GPT-3’s in-context learn-
ing capabilities. Inspired by the recent suc-
cess of leveraging a retrieval module to aug-
ment neural networks, we propose to retrieve
examples that are semantically-similar to a test
query sample to formulate its corresponding
prompt. Intuitively, the examples selected with
such a strategy may serve as more informative
inputs to unleash GPT-3’s power of text gener-
ation. We evaluate the proposed approach on
several natural language understanding and gen-
eration benchmarks, where the retrieval-based
prompt selection approach consistently outper-
forms the random selection baseline. Moreover,
it is observed that the sentence encoders fine-
tuned on task-related datasets yield even more
helpful retrieval results. Notably, significant
gains are observed on tasks such as table-to-
text generation (44.3% on the ToTTo dataset)
and open-domain question answering (45.5%
on the NQ dataset).

1 Introduction

GPT-3 (Brown et al., 2020) is a new breakthrough
in NLP research. Previously, NLP models are
firstly pre-trained and then fine-tuned on a spe-
cific task. What sets GPT-3 apart from other mod-
els is its impressive “in-context” learning ability.
Provided with a few in-context examples, GPT-3
can generalize to unseen cases without further fine-
tuning. This opens up many new technological
possibilities that are previously considered unique

∗Work was done when Jiachang (intern) and Yizhe were
at Microsoft.

Trial 1 2 3 4 5
Accuracy 94.6 95.0 95.8 93.9 86.9

Table 1: Results of GPT-3 on the SST-2 sentiment anal-
ysis dataset. Five different examples are randomly se-
lected from the training set for each trial. Different
contexts induce different accuracies on the test set.

to human. Future NLP systems can be developed to
expand emails, extract entities from text, generate
code based on natural language instructions with a
few demonstration examples.

Despite its powerful and versatile in-context
learning ability, GPT-3 has some practical chal-
lenges. The original paper utilizes task-relevant
examples that are randomly sampled from the train-
ing set. However, we observe that the performance
of GPT-3 tends to fluctuate with different choices
of in-context examples. As shown in Table 1, the
variance with distinct in-context examples can be
significant. Our work aims to carefully examine
this issue to gain a deeper understanding on how to
better select in-context examples to improve GPT-
3’s performance without fine-tuning. Note that our
approach requires a training set to select exam-
ples. With such a training dataset, it is possible
to fine-tune GPT-3 to take full advantage of the
model’s strength. However, currently GPT-3 has
not been released to public for fine-tuning. Even
if it is available, fine-tuning GPT-3 requires hun-
dreds of GPUs to load the 175B model, which is
prohibitively expensive and time-consuming for
ordinary research labs. Another issue is that stor-
ing large fine-tuned model checkpoints require
huge storage space. Consequently, we resort to
prompt/example engineering strategy. Neverthe-
less, the fine-tuning results using T5 are provided
for reference.

A brute-force approach for selecting the optimal
in-context instances would be to perform combina-
torial search over the entire dataset. Unfortunately,
this strategy is computationally impractical. To this
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Figure 1: In-context example selection for GPT-3. White dots: unused training samples; grey dots: randomly
sampled training samples; red dots: training samples selected by the k-nearest neighbors algorithm in the embedding
space of a sentence encoder.

end, we empirically investigate the influences of
employing different in-context examples. Interest-
ingly, we find that the in-context examples that are
closer to the test sample in the embedding space
consistently give rise to stronger performance (rel-
ative to the farther ones). Inspired by this observa-
tion and the recent success of retrieval-augmented
models (Hashimoto et al., 2018), we propose to
utilize nearest neighbors of a given test sample
(among all the training instances available) as the
in-context examples.

To verify the effectiveness of the proposed
method, we evaluate it on several natural language
understanding and generation tasks, including sen-
timent analysis, table-to-text generation and open-
domain question answering. It is observed that
the retrieval-based in-context examples unleash
the in-context learning capabilities of GPT-3 much
more effectively than the random sampling base-
line, even when the number of examples is small.
Moreover, we find that the specific sentence en-
coders employed for the retrieval procedure play
a critical role. Thus, an extensive exploration is
conducted and shows that encoders fine-tuned on
natural language matching tasks serve as more ef-
fective in-context examples selector on the QA task.
In summary, our contributions are as follows:

i) to the best of our knowledge, we take a first
step towards understanding the sensitivity of GPT-
3’s in-context learning ability with respect to the
choice of in-context examples;

ii) to alleviate the sensitivity issue, an additional
retrieval module is introduced to find semantically-
similar in-context examples of a test instance,
which greatly outperforms the baseline based on

randomly sampled in-context examples;
iii) empirically, the better selected examples lead

GPT-3 to achieve comparable performance to a
fine-tuned T5 model on the table-to-text task and
outperforms the T5 model on the QA tasks;

iv) fine-tuning the retrieval model on task-related
dataset(s) leads to stronger empirical results;

v) the performance of GPT-3 improves as the
number of examples for retrieval increases.

2 Method
2.1 GPT-3 for In-Context Learning
The in-context learning scenario of GPT-3 can be
regarded as a conditional text generation problem.
Concretely, the probability of generating a target y
is conditioned on the context C, which includes k
examples, and the source x. Therefore, the proba-
bility can be expressed as:

pLM(y|C, x) =
T∏

t=1

p(yt|C, x, y<t) (1)

where LM denotes the parameters of the language
model, and C = {x1, y1, x2, y2, ..., xk, yk} is a
context string concatenating k training instances
with the special character "\n". A concrete illustra-
tion can be found in the Appendix.

For GPT-3, this generation process is imple-
mented through a giant transformer-based archi-
tecture (Vaswani et al., 2017). Due to the computa-
tional burden of fine-tuning, GPT-3 is leveraged in
an in-context learning manner as described above.
Unfortunately, as shown in Table 1, the results of
GPT-3 tend to fluctuate significantly with different
in-context examples. We aim to alleviate this issue
via judicious in-context example selection.
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2.2 The Impact of In-Context Examples

We start the investigation by looking at the role
of in-context examples from an empirical perspec-
tive. Previous retrieve-and-edit literature usually
retrieve prototypes that are close to the test source
x in some embedding space. These examples and
the test source x often share semantic or lexical
similarities. This hints on how we may select in-
context examples for GPT-3.

To this end, we examine the impact of the dis-
tance between the in-context example and the
test sample on GPT-3’s performance. Concretely,
a comparison is made on the the Natural Ques-
tions (NQ) dataset between two selection strate-
gies. Given a test example, the first method utilizes
the 10 farthest training instances as the in-context
examples, while the second employs the 10 clos-
est neighbors. We use the CLS embeddings of
a pre-trained RoBERTa-large model as sentence
representations to measure the proximity of two
sentences (using the Euclidean distance).

For evaluation, 100 test questions are randomly
sampled and the average Exact Match (EM) scores
with the two distinct strategies are reported in Ta-
ble 2. It can be observed that the nearest neighbors,
used as the in-context examples, give rise to much
better results relative to the farthest ones. Moreover,
the pre-trained RoBERTa model serves as effective
sentence embeddings for the retrieval procedure.

2.3 kNN-augmented Example Selection

Based on the findings above, we propose KATE1,
a strategy to select good examples for in-context
learning. The process is visualized in Figure 1.
Specifically, we first use a sentence encoder to con-
vert sources in both the training set and test set to
vector representations. For online prediction, we
can convert the training set first and encode each
test source on the fly. Then, for each test source
x, we retrieve its nearest k neighbors x1, x2, ..., xk
from the training set (according to the distances
in the embedding space). Given some pre-defined
similarity measure s such as the negative Euclidean
distance or the cosine similarity, the neighbors are
ordered so that s(xi, x) ≥ s(xj , x) when i < j.

The k sources are concatenated with
their targets to form the context C =
{x1, y1, x2, y2, ..., xk, yk}, which is sent to
GPT-3 along with the test input. The algorithm
is presented in Algorithm 1. Note that different

1KATE: Knn-Augmented in-conText Example selection

Method Closest Farthest
Accuracy 46.0 31.0

Table 2: Comparison of the EM score on the closest 10
neighbors and farthest 10 neighbors on a subset of 100
test samples of the NQ dataset.

Algorithm 1 kNN In-context Example Selection
Given: test prompt xtest, training set DT =
{xi,yi}Ni=1, sentence encoder µθ(·), and number
of in-context examples k (hyperparameter).

1: vtest = µθ(xtest)
2: for xi ∈ DT do
3: vi = µθ(xi)
4: si = −∥vtest − vi∥2 (or vtest·vi

∥vtest∥2∥vi∥2 )
5: end for
6: Select largest k similarities si’s (in descending

order) with indices {σ(1), ..., σ(k)}
7: C = [xσ(1);yσ(1); ...;xσ(k);yσ(k)]
8: ŷtest = GPT-3([C;xtest])

numbers of examples can be employed, and we
conduct study on its impact in a later section.

Choices of Retrieval Module A core step for our
context selection approach is mapping sentences
into a latent semantic space, leaving a question
as what sentence encoders we should choose. We
compared among existing pre-trained text encoders
and found them sufficient to retrieve semantically
similar sentences. The sentence encoders can be
divided into two categories.

The first category includes generally pre-trained
sentence encoders such as the BERT, RoBERTa,
and XLNet models. These models have been
trained on large quantities of unsupervised tasks
and achieved good performance on many natural
language tasks. The corresponding embeddings
contain rich semantic information from the original
sentences.

The second category includes sentence encoders
fine-tuned on specific tasks or datasets. For exam-
ple, a sentence encoder trained on the STS dataset
should be able to assess similarities among differ-
ent questions better than a generally pre-trained
sentence encoder. Sentence-BERT (Wolf et al.,
2019; Reimers and Gurevych, 2019, 2020) shows
that these fine-tuned encoders have achieved great
performance on tasks such as sentence clustering,
paraphrase mining, and information retrieval.
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3 Experimental Setup

We apply our proposed method to the following
three tasks: sentiment analysis, table-to-text gener-
ation, and question answering. Dataset split setups
and prompt templates are shown in Table 9 and 11
in the Appendix. For the hyper-parameters in the
GPT-3 API, we set the temperature to 0.

3.1 Sentence Embeddings for Retrieval
To retrieve semantically-similar training instances,
we consider two types of sentence embeddings.

• The original RoBERTa-large model (Liu et al.,
2019), which is abbreviated as KATEroberta;

• The RoBERTa-large models which are: i) fine-
tuned on the SNLI and MultiNLI datasets
(KATEnli) (Bowman et al., 2015; Williams
et al., 2017); ii) first fine-tuned on the SNLI
and MultiNLI dataset and then on the STS-B
datasets (KATEnli+sts-b) (Cer et al., 2017).

All sentence encoders share the same architecture.
The only differences are the specific datasets used
for fine-tuning. The negative Euclidean distance is
used for KATEroberta, while the cosine similarity is
employed for KATEnli and KATEnli+sts-b.

Sentiment Analysis For this task, we conduct
experiments under the dataset-transfer setting. In-
context examples are selected from one dataset,
and the evaluation is made on another dataset. This
setting is designed to simulate a real-world sce-
nario where we want to leverage an existing labeled
dataset for a unlabeled one (of a similar task).

Specifically, we select examples from the SST-
2 training set (Socher et al., 2013; Wang et al.,
2018) and ask GPT-3 to predict on the IMDB
test set (Maas et al., 2011). To explore whether
a sentence encoder fine-tuned on a similar task
would benefit KATE, we also employ a pre-trained
RoBERTa-large model fine-tuned on the SST-2
training set (dubbed as KATEsst-2). The number of
examples is chosen to be 3 since adding more ex-
amples does not further improve the performance.

Table-to-Text Generation Given a Wikipedia ta-
ble and a set of highlighted cells, this task focuses
on producing human-readable texts as descriptions.
ToTTo (Parikh et al., 2020)2 is utilized for evalua-
tion due to its popularity. We use BLEU (Papineni

2The ToTTo code base and evaluation scripts can be
found at https://github.com/google-research/
language/tree/master/language/totto

et al., 2002) and PARENT (Dhingra et al., 2019)
metrics for evaluation. Because the token length
limit of GPT-3 is 2048, we add a preprocessing
step by deleting the closing angle brackets such as
</cell> and </table> to save space. The number
of in-context examples is set as 2 so that the input
length is within the token limit.

Question Answering We conduct experiments
on three QA benchmarks: Natural Questions
(NQ) (Kwiatkowski et al., 2019), Web Questions
(WQ) (Berant et al., 2013), and TriviaQA (Joshi
et al., 2017). For evaluation, we use the Exact
Match (EM) score, which is defined as the propor-
tion of the number of predicted answers being ex-
actly one of the ground-truth answers. The match-
ing is performed after string normalization, which
includes article and punctuation removal. The num-
ber of examples is set to be 64 for NQ and WQ and
10 for TriviaQA (The retrieved 64 examples exceed
the token limit). We evaluate on the test sets of NQ
and WQ and the dev set of TriviaQA.

3.2 Baseline Methods

Random Sampling For each test sentence, we
randomly select in-context examples from the train-
ing set. We refer to this method as Random in the
experimental results. On the test set, the random
baseline is repeated for five times to obtain the av-
erage score and corresponding standard deviation.

k-Nearest Neighbor Additionally, to investigate
whether the retrieval module is complementary to
GPT-3’s in-context learning ability, we further con-
sider a k-nearest neighbor baseline. Specifically,
the target y1 associated with the first retrieved ex-
ample is considered as the predicted target for the
test sample. For the sentiment analysis and QA
tasks, the top k retrieved examples {y1, ..., yk} are
utilized, where the final prediction is determined
by majority voting among the k examples’ targets.
If there is a tie case, we use the target of the ex-
ample most similar to the test sentence. To ensure
fair comparison, we compare the baseline kNN
and KATE under the same embedding space of a
pre-trained RoBERTa-large model. This baseline
is abbreviated as kNNroberta.

Fine-tuned T5 Although this work aims at im-
proving the in-context learning abilities of GPT-3,
we include a fine-tuned T5 (3B) model as a baseline.
This comparison informs us where GPT-3 performs
comparably or surpasses a fine-tuned model.
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Method Accuracy
T5 (fine-tuned) 95.2

Ours
Random 87.95 ± 2.74
kNNroberta 50.20

KATEroberta 91.99
KATEnli 90.40

KATEnli+sts-b 90.20
KATEsst-2 93.43

Table 3: Results on the IMDB dataset. In-context exam-
ples are from the SST-2 dataset.

4 Experimental Results

4.1 Sentiment Analysis

We first evaluate KATE on the sentiment analysis
task. The results are in Table 3. KATE consis-
tently produces better performance relative to the
random selection baseline. Notably, there is no
variance with the obtained results since the fixed
retrieved in-context examples are employed. For
KATE, when the pre-trained sentence encoder is
fine-tuned on NLI or NLI+STS-B datasets, the per-
formance slightly decreases. Since the objectives of
the IMDB and the NLI+STS-B datasets are differ-
ent, this shows that fine-tuning on a dissimilar task
hurts KATE’s performance. In contrast, KATEsst-2
obtains the best accuracy, showing that fine-tuning
on a similar task improves KATE’s performance.
To verify that the gains are not merely from the
retrieval step, we further compare KATEroberta with
the kNNroberta. It turns out that the performance of
kNNroberta is close to random guessing. This ob-
servation is consistent when one neighbor or three
neighbors are retrieved. Notably, with the sentence
encoder fine-tuned on the SST-2 dataset, the accu-
racy of kNNsst-2 is 92.46, which is lower than that
of KATEsst-2. These results suggest that GPT-3 is
critical to the final results, and the retrieval module
is complementary to GPT-3.

The fine-tuned T5 model works better since
its parameters has been adapted to this specific
task. However, fine-tuning requires access to model
parameters, lots of memory storage, and time.
The fine-tuning result here is just for reference.
Through KATE, the performance of GPT-3 has in-
creased significantly without fine-tuning.

4.2 Table-to-text Generation

We next evaluate KATE on the ToTTo dataset and
present results in Table 4. KATE gives rise to con-
siderable gains over the random baseline, according
to both the BLEU and PARENT scores. Notably,

KATE enables GPT-3 to achieve performance com-
parable to a fine-tuned T5 model. On a finer scale,
the evaluation can be done on the overlap subset
and the nonoverlap subset. The overlap dev subset
shares a significant number of header names with
the training set, while the nonoverlap one does not.
KATE improves results on both subsets, meaning
that the retrieval module is helpful even when the
dev set is out of distribution of the training set.
Similar to sentiment analysis, there is a slight drop
in performance from KATEroberta to KATEnli and
KATEnli+sts-b. This is due to the difference between
the objectives of the ToTTo dataset and NLI+STS-
B datasets. The drop from KATEnli to KATEnli+sts-b
further validates the idea that fine-tuning on a dis-
similar task can hurt KATE’s performance. For the
kNN baseline, it performs much worse than the
random selection method and KATE, suggesting
that the retrieval process and GPT-3 work collabo-
ratively to achieve better results.

To understand how the retrieval mechanism
helps GPT-3, we conduct a case study on the re-
trieved examples (see Table 5). By retrieving rel-
evant examples from the training set, KATE pro-
vides useful detailed information within the table,
e.g., the number of points, rebounds, and assists, to
GPT-3 for more accurate description. On the other
hand, the random selection method has the issue of
hallucination, where the generated sequences con-
tain information (i.e., “senior year” and “University
of Texas”) not present in the table.

4.3 Questing Answering

Lastly, we evaluate KATE on the open-domain
QA tasks, as shown in Table 6. We compare with
some state-of-the-art fine-tuned methods such as
RAG (Lewis et al., 2020) and T5 (Raffel et al.,
2019). The T5 results were reported in (Brown
et al., 2020) using the 11B model, which needs
specialized TPUs to do fine-tuning. KATE again
improves GPT-3’s performance substantially across
various benchmarks. Moreover, KATE helps GPT-
3 to even outperform the fine-tuned T5 model. It
is worth noting that this time both KATEnli and
KATEnli+sts-b improve upon KATEroberta because
fine-tuning on NLI or STS-B datasets is helpful for
retrieving semantically similar questions from the
QA datasets. Moreover, on the NQ and TriviaQA
datasets, further fine-tuning on the STS-B dataset
improves KATE’s results. We evaluate the base-
line kNNroberta by using the top-1 nearest neigh-
bor. The kNN baseline results again suggest that
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Method Overall Overlap Subset Nonoverlap Subset
BLEU PARENT BLEU PARENT BLEU PARENT

T5 (fine-tuned) 41.2 53.0 46.7 56.1 35.8 50.0
Ours

Random 28.4 ± 2.1 39.3 ± 2.6 31.2 ± 2.5 41.8 ± 3.0 25.6 ± 1.8 37.0 ± 2.3
kNNroberta 14.1 12.6 20.1 17.9 8.0 7.52

KATEroberta 41.0 50.6 48.4 55.9 33.6 45.5
KATEnli 39.9 49.5 47.4 54.6 32.5 44.5

KATEnli+sts-b 38.8 48.2 46.2 53.1 31.5 43.4

Table 4: Table-to-text generation results on the ToTTo dev dataset.

Test Table Table: <page_title >Trey Johnson <section_title >College <table ><cell >32 <col_header >
GP <cell >4.8 <col_header >RPG <cell >2.3 <col_header >APG <cell >23.5 <col_header >PPG
Table: <page_title >Dedric Lawson <section_title >College <table ><cell >9.9 <col_header >
RPG <cell >3.3 <col_header >APG <cell >19.2 <col_header >PPG

Retrieved Sentence: Dedric Lawson averaged 19.2 points, 9.9 rebounds and 3.3 assists per game.
Examples Table: <page_title >Carsen Edwards <section_title >College <table ><cell >3.8 <col_header >

RPG <cell >2.8 <col_header >APG <cell >18.5 <col_header >PPG
Sentence: Edwards averaged 18.5 points, 3.8 rebounds and 2.8 assists per game.

Predictions
Ground-truth: Trey Johnson averaged 23.5 points, 4.8 rebounds, and 2.3 assists in 32 games.
Random: Trey Johnson averaged 23.5 points per game in his senior year at the University of Texas.
KATE: Johnson averaged 23.5 points, 4.8 rebounds and 2.3 assists per game.

Table 5: A sample of retrieved in-context examples from the ToTTo dataset. For the KATE method, GPT-3 pays
more attention to detailed information such as the number of points, rebounds, and assists. In contrast, the random
selection method leads GPT-3 to generate details which do not exist in the original table.

Method NQ WQ TriviaQA∗

RAG (Open-Domain) 44.5 45.5 68.0
T5+SSM (Closed-Book) 36.6 44.7 60.5

T5 (Closed-Book) 34.5 37.4 50.1
GPT-3 (64 examples) 29.9 41.5 -

Ours
Random 28.6 ± 0.3 41.0 ± 0.5 59.2 ± 0.4
kNNroberta 24.0 23.9 26.2

KATEroberta 40.0 47.7 57.5
KATEnli 40.8 50.6 60.9

KATEnli+sts-b 41.6 50.2 62.4

Table 6: Results on QA datasets. (*) We used 10 exam-
ples for TriviaQA and 64 examples for NQ and WQ.

the retrieval module and GPT-3 work together to
achieve better performance. We also explore using
64 nearest neighbors (10 for TriviaQA) to deter-
mine the answer (by majority voting explained in
Section 3.2). The EM score are similar to retrieving
the top-1 nearest neighbor.

To investigate why the retrieved examples are
helpful, we present a case study. Concretely, the re-
trieval examples from the NQ dataset are shown in
Table 7. For the first and second cases, the random
baseline provides wrong answers because GPT-3
is unable to recall the exact detail. However, the
in-context examples selected by KATE contain the
correct details, which facilitate GPT-3 to answer
questions. For the third case, the random baseline

leads GPT-3 to misinterpret the question as asking
for a specific location. In contrast, KATE selects
similar types of questions asking for the origins of
objects. Using these in-context examples, GPT-3 is
able to interpret and answer the question correctly.

5 Analysis of Different Factors

5.1 Number of In-context Examples

We first investigate the impact of the number of
examples on KATE’s performance. Concretely, on
the NQ dataset, we choose the number of examples
to be 5, 10, 20, 35, and 64, and KATEnli+sts-b is com-
pared with the random baseline and KATEroberta
across different settings. As shown in the left plot
of Figure 2, both KATE and the random baseline
benefit from utilizing more examples. However,
KATE consistently outperforms the random selec-
tion method, even when the number of in-context
examples is as few as 5. This result is interesting
because in practice, employing less examples leads
to more efficient inference with GPT-3.

5.2 Size of Training Set for Retrieval

We further examine how the size of the training
set may influence the KATE method. On the NQ
dataset, we create new subsets from the original
training set, with sizes of 1k, 2k, 5k, 10k, 30k, and
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In-Context Examples Predictions

Question: The Mughal Gardens of Rashtrapati Bhavan is modelled on which garden?

The Mughal Garden of Rashtrapati Bhavan is modelled on? The Persian style of architecture Ground-truth: Persian garden
Who built the first Mughal Garden in India? Babur KATE: The Persian gardens
The landscape design of the Gardens of Versailles is known as which style? French garden Random Baseline: Shalimar gardens

Question: What city was Zeus the patron god of?

What is the symbol of Zeus the Greek God? Bull Ground-truth: Olympia
Where did Zeus spend most of his time? Mount Olympus KATE: Olympia
Where was the statue of Zeus at Olympia located? In the Temple of Zeus Random Baseline Athens

Question: Where did the Dewey decimal system come from?

Where did the formula for area of a circle come from? Archimedes Ground-truth: Melvil Dewey
Where did the name jack russell come from? Reverend John Russell KATE: Melvil Dewey
Where did the letters of the alphabet come from? The Phoenician alphabet Random Baseline: the library of Congress

Table 7: Three samples of retrieved in-context examples from the NQ dataset. Three retrieved Q-A pairs are shown
on the left. Predictions by the KATE method and useful details from in-context examples are shown in Green.
Gold-standard references are shown in Blue. Predictions by the random baseline are shown in Red.
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Figure 2: Left: Effect of number of in-context examples for different selection methods. Right: Effect of the size of
training set for retrieval on KATE. Two representative sentence encoders are used in these studies.

70k, respectively. In-context examples are retrieved
from these subsets instead of the original training
set. The number of nearest neighbors is set to 64.
We compare KATEnli+sts-b with the random selec-
tion method and KATEroberta, and the results are
shown in the right plot of Figure 2. For KATEroberta
and KATEnli+sts-b, as the size of the training set in-
creases, the EM scores also increase. In contrast,
the result of the random sampling baseline does
not change much. Intuitively, as the training size
gets larger, it is more likely for KATE to retrieve
relevant in-context examples to help GPT-3 answer
a question correctly. As we have shown previously
in Table 7, the retrieved in-context examples could
provide critical detailed information to GPT-3, thus
helping GPT-3 to better answer the questions.

5.3 Order of In-context Examples

Moreover, we explore how the order of in-context
examples may affect KATE’s results. As mentioned

in Section 2.3, under the standard setting, the re-
trieved in-context examples are ordered such that
s(xi, x) ≥ s(xj , x) whenever i < j. Here, we ran-

Trial 1 2 3 Default Reverse
EM Score 42.0 42.5 42.0 41.6 42.8

Table 8: Analysis on the effect of orders of in-context
example on the NQ dataset using KATEnli+sts-b. The
default order puts the most similar example in the front,
and the reverse order does the opposite.

domly permute the order of in-context examples
in the NQ dataset for the proposed KATEnli+sts-b
method, and conduct the experiments for 3 differ-
ent orders. Additionally, we explore the reverse
order where s(xi, x) ≤ s(xj , x) whenever i < j.
The results are presented in Table 8. On this partic-
ular NQ dataset, the reverse order performs the best.
However, we also did the experiments on the WQ
and TriviaQA and find that the default order per-
forms slightly better than the reverse order. Hence,
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the choice of orders is data-dependent. Addition-
ally, it can be observed that the variation among the
NQ results tends to be quite small (compared with
the difference between the random baseline and
KATE), indicating that the example order does not
have a significant impact on KATE’s performance.

6 Related Work
Pre-trained Language Models NLP systems
have made tremendous progress by pre-training
models on unlabeled text (Devlin et al., 2018; Liu
et al., 2019; Yang et al., 2019; Lewis et al., 2019;
Raffel et al., 2019; Xue et al., 2020; Lample and
Conneau, 2019; Radford et al., 2018, 2019). These
models can be fine-tuned for a wide range of down-
stream tasks. GPT-3 (Brown et al., 2020), however,
can perform in-context learning without fine-tuning.
People have just started trying to understand GPT-
3 from different perspectives. (Hendrycks et al.,
2020) studies which categories of questions GPT-3
is more capable of answering. (Zhao et al., 2021)
proposes to improve the model by contextual cal-
ibration. However, their method is limited to pre-
dicting very few tokens because for long sequence
generation, the contextual calibration step needs
to be repeatedly performed after each newly gen-
erated token. In contrast, our work, KATE, only
calls the API once and is suitable for both text
classification and generation tasks. Another re-
lated work is LM-BFF (Gao et al., 2020), which
uses a smaller language model (RoBERTa-large) to
demonstrate that prompt-based fine-tuning can out-
perform standard fine-tuning on text classification
tasks. Our work differs by showing that, without
fine-tuning, relevant examples can still substan-
tially improve the performance of GPT-3 for both
text classification and generation tasks. Finally, Au-
toPrompt (Shin et al., 2020) explores adding some
additional tokens to smaller language models to
improve performance on classification tasks.

Retrieval-based Text Generation There is a
long history of applying information retrieval to
text generation (Sumita and Hitoshi, 1991). It is
very related to the exemplar-based learning (Jäkel
et al., 2008; Ziyadi et al., 2020). Some represen-
tative applications in the field of deep learning in-
clude machine translation (Gu et al., 2018), sen-
timent transfer (Li et al., 2018; Guu et al., 2018),
QA (Karpukhin et al., 2020; Mao et al., 2020),
dialogue generation (Yan et al., 2016; Cai et al.,
2018; Song et al., 2016; Pandey et al., 2018; We-

ston et al., 2018; Wu et al., 2019), text summa-
rization (Cao et al., 2017; Peng et al., 2019), data-
to-text generation (Peng et al., 2019), and text-to-
code generation (Hashimoto et al., 2018). All these
retrieve-and-edit frameworks require their editors
to be trained or fine-tuned on specific tasks. In
contrast, our work uniquely examines how to better
use GPT-3 as a universal editor without fine-tuning.
We find that the more semantically similar context
we provide to GPT-3, the better results the model
can generate.

Improve NLP Systems with kNN Some recent
works try to incorporate non-parametric methods to
improve a given model’s performance. For exam-
ple, the newly introduced kNN-LM (Khandelwal
et al., 2019), kNN-MT (Khandelwal et al., 2020),
and BERT-kNN (Kassner and Schütze, 2020) gen-
erate the next token by retrieving the nearest k
neighbors from the datastore. Another related work
kNN classification model (Rajani et al., 2020) uses
kNN as backoff when the confidence is low from
the classification model. There are two key dif-
ferences between our work and other approaches.
First, we retrieve the nearest k neighbors to modify
the conditional context instead of the prediction.
Second, we do not have access to the parameters
of GPT-3. Instead, we rely on some independently
pre-trained models to get the sentence embeddings
to retrieve the nearest k neighbors.

7 Conclusion

This work presented a first step towards investigat-
ing the sensitivity of GPT-3 to in-context examples.
To this end, we proposed KATE, a non-parametric
selection approach that retrieves in-context exam-
ples according to their semantic similarity to the
test samples. On several natural language under-
standing and generation tasks, the proposed method
improves GPT-3’s performance, over the random
sampling baseline, by a significant margin. Particu-
larly, KATE enables GPT-3 to achieve performance
comparable to a fine-tuned T5 model on the table-
to-text generation task and outperforms T5 on the
QA task. Moreover, we found that fine-tuning the
sentence embeddings for retrieval on task-related
datasets gave rise to further empirical gains. De-
tailed analysis was conducted to explore the robust-
ness of KATE to different hyperprameters, such
as the number of in-context examples, examples’
order, etc. One limitation we notice is that despite
the improved performance on sentiment analysis,
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GPT-3 still lags behind the fine-tuned T5 model by
a small margin. This suggests that our proposed
method is more suitable and effective on long text
generation tasks. We hope this work could provide
insights for better understanding the behaviors of
GPT-3 and represents a helpful step towards further
improving its in-context learning capabilities.

8 Ethical and Broader Impacts

Risk Our proposed KATE method significantly
improves the in-context learning ability of GPT-3
and makes long-text generation more easily with-
out fine-tuning the pre-trained model. However,
one risk implication is that our proposed method
will benefit the research groups which are finan-
cially capable of using such huge models. For
individual or small-group researchers, they cannot
apply our proposed method to their specific appli-
cations since they don’t have access to the model.
Our work has suggested researchers should focus
more on investigating the in-context learning of pre-
trained models. One potential future direction is for
researchers to scale-down the sizes of pre-trained
models to find a balance between model perfor-
mance and model size. Once a smaller model is
obtained with comparable performance (enhanced
by KATE), our proposed method can become more
widely accessible to individual researchers.

Potential Bias During the experiment on table-
to-text generation, we have pointed out that large
pre-trained language models could be susceptible
to hallucination (case study in Table 5). This prob-
lem is more pronounced when we use randomly
sampled examples. This happens because the lan-
guage model is biased toward the training dataset.
As shown in Table 5, when random examples are
used, the sentence generated by GPT-3 is gram-
matically correct, but some details never exist in
the given table. In contrast, our proposed method,
KATE, can significantly alleviate this problem by
guiding GPT-3 to look for and generate the cor-
rect information. For similar reasons, large pre-
trained models could be potentially susceptible to
gender and racial bias. Since our KATE method
shows that in-context examples are crucial for high-
quality long-text generations, one way to alleviate
the racial and gender bias is to incorporate an ad-
ditional module to filter out offensive in-context
examples. Since racial and gender bias are not our
main research focus, a full investigation goes be-
yond the scope of our work. However, we believe

this is an exciting opportunity for future work.

Code Availability

Implementations of the proposed KATE method
discussed in this paper are available at https:
//github.com/jiachangliu/KATEGPT3.
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A An Example of In-context Learning

As shown in the illustration of Figure 3, GPT-3 is
asked to translate “mountain” to its German version
based on the three examples given as part of the
input.

1

2

3

4

source target

context

prompt

watermelon == wassermelone

sports car == sportwagen

blue sky == blauer Himmel

mountain ==   …………….

Figure 3: The figure above shows how to perform
in-context learning with a language model. Three in-
context examples and the test prompt are concatenated
as a single string input for GPT-3, with a special charac-
ter "\n" inserted between two adjacent examples. GPT-3
keeps generating tokens until there is a special character
"\n".

B Data Split

Dataset Train Dev Test
SST-2 67k 872 1.8k
IMDB 25k - 25k
ToTTo 120k 7.7k 7.7k

NQ 79k 8.8k 3.6k
WQ 3.4k 361 2k

TriviaQA 78.8k 8.8k 11.3k

Table 9: Data split for different datasets. In-context
examples are selected from the training set. Because
ToTTo and TriviaQA require submitting to their leader-
boards, the evaluation is done on the dev sets. For all
other datasets, the evaluation is done on the test sets.

C Complete ToTTo Case Study

Due to the length limit of the main paper, we
present in the appendix the full ToTTo case study
comparing the random sampling baseline and our
proposed KATE method. We present the case study
in Table 10.

As we have discussed in the main paper, the
in-context examples retrieved by KATE facilitates
GPT-3 to effectively extract key information from
the given table. Detailed numbers such as the num-
ber of points, rebounds, and assists have all been
included in the sentence.

In contrast, the sentence generated by GPT-3 us-
ing randomly sampled in-context examples only

extract partial information from the table. Only the
number of points is included while the numbers of
rebounds and assists are ignored. Moreover, the
random sampling baseline could lead to the issue of
hallucination. Both "senior year" and "University
of Texas” are not present in the given table. One
may wonder whether these wrong phrases were
present in the randomly sampled in-context exam-
ples, which might have caused this issue. How-
ever, if we look at the randomly sampled in-context
examples in the second block of the table, such
information do not exist. This suggests such hal-
lucinated phrases are generated by the language
model itself.

This comparison provides some key insights on
why KATE works better than the random sampling
baseline. By retrieving semantically/syntactically
similar in-context examples, KATE provides GPT-
3 with a much more accurate template/structure to
do text generation. Without such structure, GPT-3
can generate sentences that are fluent but do not
meet the goal of a particular task.

D On Prompt Engineering vs.
Fine-tuning

As we mentioned in the main paper, given a train-
ing dataset, we could take the full advantage of
the GPT-3’s model strength through fine-tuning.
However, there are several advantages of prompt
engineering over fine-tuning. First, fine-tuning re-
quires access to the model parameters and gradi-
ents. It is impossible to access this information via
the current GPT-3’s API. Second, fine-tuning large
models are time-consuming and costly. Ordinary
research labs and individual developers do not have
resources to accomplish such tasks. Third, storing
large fine-tuned model checkpoints requires large
storage space. Even if GPT-3 is fine-tuned and
stored for many specific tasks/datasets, many fine-
tuned checkpoints may not be frequently called.
This is not energy efficient. Our proposed KATE
method does not require costly fine-tuning and im-
proves the random baseline on both text classifica-
tion and generation tasks, sometimes by a signifi-
cant margin. This makes it more practical to deploy
the same GPT-3 model across all tasks.

E T5 Baseline

Although our primary goal is to improve GPT-3’s
in-context learning ability, we also include the fine-
tuned T5 results as a reference (3B T5 on SST-2 and
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Test Table Table: <page_title >Trey Johnson <section_title >College <table ><cell >32 <col_header >
GP <cell >4.8 <col_header >RPG <cell >2.3 <col_header >APG <cell >23.5 <col_header >PPG
Table: <page_title >List of RAGBRAI overnight stops <section_title >By year <table ><cell >
1986 <col_header ><col_header >Year <cell >Audubon (1) <col_header >Route - start to finish
(number indicates occurrence) <col_header >Monday <cell >2006 <col_header ><col_header >
Year <cell >Audubon (2) <col_header >Route - start to finish (number indicates occurrence)

Randomly <col_header >Monday
Sampled Sentence: Audubon has been an RAGBRAI overnight stop in 1986 and 2006.
Examples Table: <page_title >List of Administrators of British Brunei <section_title >British Brunei

administrators <table ><cell >Malcolm Stewart Hannibal McArthur <col_header >Consul
Generals to Brunei <col_header >British Consuls in Brunei <col_header >British Residents in Brunei
Sentence: Malcolm Stewart Hannibal McArthur was the first British resident in Brunei.
Table: <page_title >Dedric Lawson <section_title >College <table ><cell >9.9 <col_header >

KATE- RPG <cell >3.3 <col_header >APG <cell >19.2 <col_header >PPG
Retrieved Sentence: Dedric Lawson averaged 19.2 points, 9.9 rebounds and 3.3 assists per game.
Examples Table: <page_title >Carsen Edwards <section_title >College <table ><cell >3.8 <col_header >

RPG <cell >2.8 <col_header >APG <cell >18.5 <col_header >PPG
Sentence: Edwards averaged 18.5 points, 3.8 rebounds and 2.8 assists per game.

Predictions
Ground-truth: Trey Johnson averaged 23.5 points, 4.8 rebounds, and 2.3 assists in 32 games.
Random: Trey Johnson averaged 23.5 points per game in his senior year at the University of Texas.
KATE: Johnson averaged 23.5 points, 4.8 rebounds and 2.3 assists per game.

Table 10: A sample of retrieved in-context examples from the ToTTo dataset. For the KATE method, GPT-3 pays
more attention to detailed information such as the number of points, rebounds, and assists. In contrast, the random
selection method leads GPT-3 to generate details which do not exist in the original table. Information such as "senior
year” and "University of Texas” also do not exist in the randomly sampled in-context examples. This suggests that
the wrong information was generated by the language model itself. Although the sentence by the random sampling
baseline is fluent, it does meet the goal of the table-to-text task.

ToTTo datasets, and 11B T5 on the QA datasets).
The reason for reporting the 3B T5 results on the
SST-2 and ToTTo datasets is that this is the largest
T5 model we can use. For the 3B T5 model, Google
Colab 3 provides a free V2-8 TPU to fine-tune the
3B model. We used the Colab tutorial notebook to
fine-tune the 3B T5 model on the SST-2 and ToTTo
training sets. We couldn’t fine-tune the 11B T5
model because the model size is too large. Fine-
tuning such a large model requires a V3-8 TPU,
which is not free of charge. Fortunately, the origi-
nal GPT-3 paper (Brown et al., 2020) has already
reported the finet-tuned 11B T5 results on the three
QA datasets, so we reuse these results in our main
paper for the QA task. Our proposed KATE method
significantly improves GPT-3, performing compa-
rably to the fine-tuned T5 model on the table-to-text
task and outperforming the fine-tuned T5 model on
the QA task.

F Details on Retrieval Modules

As we mention in the main paper, we use the pre-
trained RoBERTa-large model (Liu et al., 2019)

3The Colab notebook on how to fine-tune
the 3B T5 model can be found at https:
//github.com/google-research/
text-to-text-transfer-transformer.

as the first retrieval module, which has 355M pa-
rameters and is pre-trained with the MLM (masked
language modeling) objective. The result given by
this module is denoted as KATEroberta. We directly
download this model from the HuggingFace Model
Zoo (MIT license) 4. All other retrieval modules
share the same architecture as the RoBERTa-large
module but are fine-tuned on specific datasets.

For the fine-tuned retrieval modules, the first we
use is the RoBERTa-large model fine-tuned on the
SNLI and MultiNLI datasets (KATEnli) (Bowman
et al., 2015; Williams et al., 2017); the next we
use is the RoBERTa-large model fine-tuned on the
SNLI and MultiNLI dataset and then on the STS-B
datasets (KATEnli+sts-b) (Cer et al., 2017). These
fine-tuned models have already been accomplished
and included by the Sentence-BERT family and are
publicly available, so we directly download from
the Sentence-BERT Model Zoo 5.

Lastly, specifically for the sentiment analysis
task, we include a RoBERTa-large model fine-
tuned on the SST-2 dataset (KATEsst-2) (Socher
et al., 2013; Wang et al., 2018). At the time of our

4The HuggingFace Model Zoo can be found at https:
//huggingface.co/models.

5The Sentence-BERT Model Zoo can be found at https:
//huggingface.co/sentence-transformers.

112

https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/google-research/text-to-text-transfer-transformer
https://huggingface.co/models
https://huggingface.co/models
https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers


research, we didn’t find a good publicly available
fine-tuned model, so we fine-tune the pre-trained
RoBERTa-large model on SST-2 by ourselves. The
exact fine-tuning procedure, including the hyperpa-
rameters and learning rate, can be found at the Hug-
gingFace website 6. We fine-tune the RoBERTa-
large model using a single V100 GPU.

G Prompt Templates Used

For reproducibility, we show the prompt templates
used for all tasks in Tables 11 .

6The fine-tuning script we use can be found
at https://huggingface.co/transformers/
v2.7.0/examples.html#glue.
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Task Prompt Template

SST-2 & IMDB Sentence: comes from the brave , uninhibited performances. Label: Positive

Sentence: This tearful movie about a sister and her battle to save as many souls as she can is very
moving. The film does well in picking up the characters and showing how Sister Helen deals with
each. A wonderful journey from life to death. Label:

ToTTo Table: <page_title>Dedric Lawson <section_title>College <table><cell>9.9 <col_header>RPG
<cell>3.3 <col_header>APG <cell>19.2 <col_header>PPG
Sentence: Dedric Lawson averaged 19.2 points, 9.9 rebounds and 3.3 assists per game.

Table: <page_title>Trey Johnson <section_title>College <table><cell>32 <col_header>GP
<cell>4.8 <col_header>RPG <cell>2.3 <col_header>APG <cell>23.5 <col_header>PPG
Sentence:

QA Q: The landscape design of the Gardens of Versailles is known as which style?
A: The Persian style of architecture.

Q: The Mughal Gardens of Rashtrapati Bhavan is modelled on which garden?
A:

Table 11: The prompt templates used for all tasks discussed in the paper. We show only one in-context example per
task for illustration purposes.
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