A Comparative Analysis between Human-in-the-loop Systems and Large
Language Models for Pattern Extraction Tasks

Maeda F. Hanafi, Yannis Katsis, Ishan Jindal, Lucian Popa
IBM Research
{maeda.hanafi, yannis.katsis, ishan.jindal}@ibm.com, lpopa@us.ibm.com

Abstract

Building a natural language processing (NLP)
model can be challenging for end-users such
as analysts, journalists, investigators, etc., espe-
cially given that they will likely apply existing
tools out of the box. In this article, we take
a closer look at how two complementary ap-
proaches, a state-of-the-art human-in-the-loop
(HITL) tool and a generative language model
(GPT-3) perform out of the box, that is, with-
out fine-tuning. Concretely, we compare these
approaches when end-users with little technical
background are given pattern extraction tasks
from text. We discover that the HITL tool per-
forms with higher precision, while GPT-3 re-
quires some level of engineering in its input
prompts as well as post-processing on its out-
put before it can achieve comparable results.
Future work in this space should look further
into the advantages and disadvantages of the
two approaches, HITL and generative language
model, as well as into ways to optimally com-
bine them.

1 Introduction

Creating custom Al models for natural language
processing (NLP) tasks is not an easy feat: it typ-
ically involves labeling large datasets, selecting
appropriate ML architectures/models, and train-
ing them. To lower the barrier of entry in NLP
model creation, the scientific and industrial commu-
nity has proposed human-in-the-loop (HITL) sys-
tems (Wu et al., 2022; Hanafi et al., 2017; Monarch,
2021). While they differ in the NLP tasks they tar-
get (e.g., classification, extraction, question answer-
ing) and the techniques they employ (e.g., active
learning, custom algorithms), their operation from
the perspective of the end user is similar: The user
labels a few examples, which are then used by the
system to build a first version of the model and
then to ask back the user for additional targeted
feedback. This feedback is in turn used to itera-
tively refine the model and continue the loop by

43

asking for further feedback. By asking for targeted
feedback at each iteration, the goal is to lower the
effort required to build a model, enabling fast con-
vergence to a performant model while using a small
number of labeled examples.

While such tools are gaining popularity, the NLP
community has also recently proposed several pre-
trained generative language models, such as GPT-3.
The largest versions of such models have shown
incredible few-shot performance on several tasks
(Brown et al., 2020). Thus the question arises:
Given the out-of-the-box performance of such mod-
els, is it possible to feed them with a few examples
and get similar performance to that of more com-
plex HITL systems?

In this paper, we answer this question for the
task of text pattern extraction. In this task, the goal
is to extract text instances that follow a similar pat-
tern. Examples include extracting crime incidents
from crime reports, e.g. 4,556,123 incidents or

5,193,927 incidents , or revenue from financial

press releases, e.g. revenue was $5.5 billion or

revenue of $1.3 million .

To answer the question, we compare Pattern In-
duction (Hanafi et al., 2022), an HITL tool tailored
to pattern extraction tasks, against GPT-3 (Brown
et al., 2020). We evaluate the two approaches based
on how an end-user, who does not necessarily have
a technical background, would use these tools to
accomplish an NLP task, in this case pattern ex-
traction. Unlike NLP experts, end-users typically
use tools out-of-the-box, that is, without writing
code and without fine-tuning parameters or mod-
ifying and re-training the layers of the Al model.
Our preliminary results show that the use of simple
techniques to prompt GPT-3 does not yet lead to the
same performance as that of the tailored HITL tool.
In this work, we describe these results and present
further research directions on the relationship of
models such as GPT-3 to HITL tools.

Proceedings of the Fourth Workshop on Data Science with Human-in-the-Loop (Language Advances), pages 43 - 50
December 8, 2022 ©2022 Association for Computational Linguistics

The following summarizes the contributions of
this paper:

* A preliminary comparative analysis between
an HITL system and large language model
(GPT-3) in an information extraction (IE) con-
text and a discussion of the pros and cons of
the two approaches.

* A description of different techniques to lever-
age GPT-3 in this setting and evaluation of
their impact on model performance.

* A discussion of interesting future directions
that emanate from this preliminary study.

We start with literature review in Section 2, pro-
vide empirical study in Section 3, discuss each
approach pros and cons in Section 4, and conclude
in Section 5.

2 Related Works

In this work, we focus on few-shot learning sys-
tems (FSL) (Lake et al., 2016; Wang et al., 2020),
which can learn from a handful of examples. This
paradigm appeals to non-technical users given the
small number of required examples to fine-tune a
system, thus removing the need to label and main-
tain large labeled training datasets.

2.1 Human-In-The-Loop (HITL) Systems

HITL systems utilize human-interaction as opposed
to systems that are fully automated, e.g. distant su-
pervision, unsupervised, or semi-supervised meth-
ods (Ratner et al., 2017; Riihling Cachay et al.,
2021). Automated methods leverage external data
sources or seed inputs or rely on patterns or struc-
tures present in the dataset. They prove to be quite
popular due to their ability to cover cases that a
human would otherwise overlook. On the other
hand, HITL systems integrate a human component
in the relevant target task, and in this case an HITL
information extraction would extract relevant texts
with a human more involved in the process com-
pared to a fully automated method (Monarch, 2021;
Wu et al., 2022).

One such HITL tool for IE is Pattern Induc-
tion (Hanafi et al., 2017), and given an IE task, a
user would do the following: (1) Highlights a min-
imum of two examples of text to extract, (2) The
system learns a rule-based model, where each rule
captures all of the examples, (3) The user provides
“Yes” and “No” feedbacks to candidate extractions,

44

Prompt:

[ISO 9001 is probably the most well
recognized ISO number in the world.]

ISO numbers:

|1s0 18788
| 150 223000

GPT-3’s Completion: |1S0 9@e1]

Figure 1: A naive way of prompting GPT-3 to complete
the text pattern extraction task.

which in turn refines the rules, i.e. saying “No” to

revenue of 2013 would inform Pattern Induction
to filter out rules capturing such extractions, (4)
The user is either satisfied with the set of extrac-
tions or further refines the rule-based model with
additional highlights of positive examples on the
document. Additional examples and feedbacks fur-
ther refines the learned rule-based model. Pattern
Induction showcases an HITL system that provides
the human interactions the IE tasks needs to ensure
accuracy in the underlying learned model.

2.2 Generative Language Models

Unlike HITL models, large language models
(LLMs), e.g. BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020), are pre-trained with
large unlabeled datasets, which enables the LLMs
to understand contextual information in the input
text. While both BERT and GPT are transformer-
based models, enabling their few-shot abilities is
done in different ways; templates with masking are
built to take advantage of BERT while one has to
prompt GPT with text, such that it generates rele-
vant text (Wang et al., 2021). GPT falls under the
category of generative language models, and GPT-
3 has a larger number of parameters (175 billion
parameters in its largest davinci version), making it
one of the most powerful generative language mod-
els compared to its predecessors. Performing IE
with GPT often entails constructing and engineer-
ing well-structured prompts (Schick and Schiitze,
2021a). Prompts contain examples of extractions
where a desired extracted text is paired with the
sentence where it occurs.

3 Experiments

Since HITL models help end-users with little to no
technical background perform IE tasks, we want
to understand how they compare against popular
generative language models out of the box.

Since Pattern Induction is an HITL system, its
output depends on the sequence of user actions. To

Instruction [Extract ISO numbers

fiz2d

[It is for example responsible for three
certifiable MSS with the numbers: ISO 22301,
ISO 28000 and ISO 18788.]

Sentence
example pair

ISO numbers:
|1S0 18788
i

[We will continue with the three number series
ISO 22300, ISO 28000 and ISO 34000 and over
time the user of random numbers will be gone.]

Prompt

Sentence
example pair
ISO numbers:
|1s0 223000

HHH#

[ISO 9001 is probably the most well recognized

Partial ISO number in the world.]

ISO numbers:

GPT-3’s Completion: | IS0 9ee1|

Figure 2: Structured Prompts containing an instruction,
sentence example pairs, and a partial of the document to
extract texts from. For some sentence example pairs, not
all of the desired extractions will appear in the example
extractions, e.g. IS0 22301, ISO 28000 (to mimic
how an end-user might prompt GPT-3).

evaluate the system at scale, we perform user sim-
ulation in lieu of a real user that interacts directly
with the system. As an added benefit, the user
simulation also automates the manual aspects of
evaluating the underlying model, namely recording
the performance of the underlying models.

We recreate the use cases and user simulation
framework described in (Hanafi et al., 2022). The
use cases are shown in Table 1. The 7 pattern ex-
traction use cases are based on 5 collections of
unstructured texts documents covering a variety
of topics, such as food recipes (Recipes), reports
on the financial performance of a particular com-
pany (Financial Press Releases), and crime statis-
tics (FBI Press Releases). Each dataset contains
no more than 10 documents, where each document
varies in length. Each use case has no more than
100 extractions in the groundtruth. We then com-
pare how a generative language model, specifically
GPT-3, performs on the same set of use cases.

The use cases supported in Pattern Induction
can be described as syntactic text patterns. How
well does a generative language model extract text
patterns such as the ones in Pattern Induction?

3.1 User Simulation of an HITL System

Evaluating Pattern Induction for the IE use cases
involves running a user simulation, constructed by
the core user actions it supports: (a) highlighting

45

examples and (b) providing “Yes” or “No” feed-
backs to candidate extractions generated by Pattern
Induction. Specifically, a user simulation, r;, pro-
vides 2 seed examples, F' = {e1, e2}, and provides
answers to all of Pattern Induction’s candidate ex-
tractions, F' = {f1, ..., fn.}. The user simulation’s
answers to the candidate extractions are determined
by the groundtruth, which is provided as input to
the user simulation framework. We ran the user
simulation 100 times, R = {ry, ..., 7100}. In each
run r;, e € E was randomly selected from the
ground truth. At the end of each run, the preci-
sion (P), recall (R), and F1 (F1) score of the model
learned by Pattern Induction was evaluated on the
same set of ground truth. The final P/R/F1 of Pat-
tern Induction for each use case was computed as
the average value of the respective metric over all
100 runs. The resulting performance of Pattern In-
duction for each of the seven use cases in Table 1,
is shown in Figure 3 (see HITL line).

3.2 Prompting GPT-3 for IE with Example
Extractions

We performed a similar set of experiments using
GPT-3, where we prompted GPT-3 using OpenAl’s
completion API, which is recommended for entity
extraction !

The prompts were constructed with the same
2 seed examples, F, from the user simulation in
Pattern Induction. While Pattern Induction does
not require any sort of prompting, constructing a
prompt requires some level of engineering in order
for GPT-3 to understand the intent of our extraction
task. GPT-3 is sensitive to the context and the
structure of the prompt’s text (Shin et al., 2020;
Gao et al., 2021; Jiang et al., 2020; Schick and
Schiitze, 2021b). Moreover, GPT-3 has a limit of
about 4,000 tokens for its most powerful model,
the davinci. We thus split the documents d in the
dataset D into partials, p C d,d € D.

We experimented with the following prompt
structures:

* Baseline, Naive Prompts, GPT3g: We ex-
perimented with a rather naive approach to
the prompt’s structure, where the example ex-
tractions F are appended to the document’s
partial p (see Figure 1). This prompt structure
aims to mimic an end-user’s intuition when
using Pattern Induction: directly highlighting

"https://beta.openai.com/docs/api-reference/
completions

https://beta.openai.com/docs/api-reference/completions
https://beta.openai.com/docs/api-reference/completions

ID Use Cases Dataset Representative Examples
Ul Covid Cases by Country Disease Fatality Reports ~ Spain (239 932) , Malta (620)
U2 Crime Incident Count FBI Press Releases 4,927,535 incidents , 6,572,870 incidents
i 62.9 percent involved crimes against property ,
U3 %nme Percentages by FBI Press Releases p . . g property
ype 24.6% were crimes against persons
U4 Cups Multiple Forms Recipes 2cup, 1/4cup, 11/2cup
Earnings Time Period . . g
us . Financial Press Releases 2014 First-Quarter , fourth-quarter of 2013
Multiple Forms
U6 ISO Numbers ISO Number Articles I1SO 639 , ISO 22300
ISO Numbers Multipl .
u7 FSO?msum e TP 150 Number Articles ISO 639, TC 292, ISO/IEC 40180 , ISO/TC 28

Table 1: Summary of Text Pattern Extraction Tasks in the Experiments.

or specifying example extractions in the docu-
ment itself.

Structured Prompts, GPT'3¢(g): We exper-
imented with a more structured format of
prompting. For each example e, we paired it
with a sentence s € D that e appears in. When
multiple examples, e.g. e; and e;, appear in
the same sentence s, we combined the multi-
ple examples with the same s in the prompt.
Any additional desired extractions in s that are
not in the example set £/ were not indicated in
the prompt (to mimic how an end-user might
prompt GPT-3). Moreover, to provide GPT-
3 with a better contextual understanding of
the pattern extraction task, we prepended each
prompt with an instruction describing the task,
such as “Extract crime percentages by type”.
We then added the sentence example pairs and
appended the partial p that GPT-3 must ex-
tract text patterns from (see Figure 2). Note
that in baseline prompting, an example e may
not appear in the partial p, but in structured
prompting, each e will appear in its paired
sentence s.

The above methods of prompting GPT-3 may
not be enough to take advantage of the contextual
understanding capabilities of GPT-3. But the focus
of our study is to use methods similar to how an
end-user might prompt GPT-3, assuming the end-
user does not have much technical background.

Given a prompt, GPT-3 returns a string contain-
ing a completion. The completion is usually delim-
ited by the characters it learns from the prompt, e.g.
“/”. To calculate the precision and recall scores of

46

what GPT-3 extracts, we split the completion text
according to the delimiters.

Given the 100 runs along with each run’s asso-
ciated seed examples E from the user simulation
on Pattern Induction, we constructed a prompt with
each I as described above and fed the prompts
into GPT-3. The results of prompting GPT-3 for
text pattern extraction are shown in Figure 3, along
with the results for HITL. Our preliminary investi-
gation seems to suggest that GPT-3 is not a right
choice. However, we believe that extensive exper-
iments to find more suitable prompts will need to
be conducted.

The results for GPT3g and GPT3¢(g) have
lower precision scores compared to Pattern Induc-
tion’s precision scores. We observed that low-
precision runs are due to the fact that GPT-3’s ex-
tracted text is not always a part of the document
dataset. We thus added a post-processing step over
a set of runs, R:

* Post(R): removes outputs that are not part of
the document. So Post(GPT3g) indicates
that the post-processing step is applied to the
set of runs in GPT3g.

3.2.1 Insights: Better-Structured Prompts
Improve Recall

As we move from naive prompting, GPT3g, to
structured prompting, G PT'3¢ (), the recall scores
improve. Constructing well-structured prompts
poses a limitation when using GPT, whereas Pattern
Induction has no such requirement for an end-user.

The post-processing step improved the precision
scores, but not the recall scores, as the lines in the
chart (see Figure 3b) of the post-processing step’s

Avg Precision

o

GPT3
Post(GPT3)
GPT3¢5
Post(GPT3)
GPT3¢i r)
Pos{(GPT3 ¢ , r))

td

HITL

T, o+

u1 u2 us ua us ue u7

(a) Precision

Avg Recall

GPT3
Post(GPT3)
GPT3c)
Post(GPT3)
GPT3¢s 1)
Post(GPT3 ¢ 1))

RN

HITL

u3 ua us ue u7

(b) Recall

Avg F1

BN

\'\/'\.,—4—0

u2 u3 us us ue u7

GPT3 g
Post(GPT3)
GPT3 ¢y
Post(GPT3¢z)
GPT3c F)
Post(GPT3 e 7))
HITL

u1

(c)F1

Figure 3: Experimental Results: HITL refers to Pattern
Induction’s user simulation results.

recall scores do not deviate much from the lines
of the corresponding recall scores of raw output
extractions.

The recall scores for U1, U3, and U4 (see task de-
scriptions in Table 1) were higher with G PT'3¢ ()
than in Pattern Induction (HITL). These tasks also
happen to have variations in their extractions. For
instance U1 requires the extraction of a country, U3
requires extraction regarding different crime types,
e.g. “crimes against property”, “crimes against per-
sons”, and U4 requires extractions of measuring
cups of both integer and fractional types. GPT-3
seems to be able to understand that some of the
words refers to countries, crime types, or integer
and fractional quantities, where all the expected
extractions may not necessarily abide to some syn-
tactic pattern. In contrast, for the other tasks U2,
U5, U6, U7 (see Table 1), the extractions follow

47

Substring of the prompt with Fy
i
[Part 1]

ISO numbers:
| #t |

H#H#

Figure 4: Substring of a prompt that demonstrates
Part 1 should not be extracted, since Part 1 was re-
jected by the user simulation in Pattern Induction..

strict pattern extractions, e.g. in U2, the literal “in-
cidents” constantly appears at the end of a 6 digit
integer for all expected extractions, and in U5, the
literal “quarter” and a 4 digit year appears in all
extractions.

3.3 Prompting GPT-3 for IE with Additional
Example Extractions

One may argue that the above method for prompt-
ing GPT-3 did not include the same set of inputs we
provided to Pattern Induction. Namely, in Pattern
Induction, the evaluation method also allows the
user to provide feedback to candidate extractions,
F, to further refine Pattern Induction’s model, but
no such additional inputs were added to the prompt
for GPT-3. In this round, we reran the experiments
with additional extraction examples:

* Prompts with Additional Extraction Exam-
ples, GPT3¢(gpur): The structured prompts
include the same set of candidate extractions
F' in addition to the set of highlighted seed
examples I from the Pattern Induction user
simulation.

We denote the set of extractions the user
simulation accepted, i.e. answered “Yes” to
fourth-quarter of 2012 , as Fy C F', and the set
of extractions the user simulation rejected, i.e. an-
swered “No” to revenue of 2013 ,as Fiy C F'. We
integrated accepted extractions to the prompt in the
same structured format as the seed examples (see
Figure 2). Integrating rejected extractions to the
prompt was done in a slightly different manner: for
eachn € Fly, we append an end of sequence token
in between the extraction delimiters (see Figure 4).
While we have explored different ways of adding
rejected extractions to the prompt such as using
empty strings in between extraction delimiters, we
found better performance with the end of sequence
token.

3.3.1 Insights: Additional Examples in GPT-3
Improve Recall

The results of prompting GPT-3 with additional
extraction examples are shown in Figure 3.

The precision scores are lower for
Post(GPT3¢(pur)) in comparison to HITL, with
the exception of U6 and U7. The recall scores
for both raw GPT3¢(pur) and post-processed
Post(GPT3¢(pury) results are on par with HITL
(U1, U2, U3), and they both even beat HITL in U4.
Oddly enough GPT3¢(g)’s recall scores are very
similar to GPT'3¢(gpur), except in U3 where the
additional examples counter-intuitively dropped
the recall scores by more than 10 points.

We observed that GPT-3 outputs creative texts
regardless of whether there are additional examples
or not (GPT3¢ gy and GPT3¢(pur))- Creative
text outputs include “The race was unknown for
15.3 percent of reported known offenders.” when
given the U3 task. In addition to creative out-
puts, GPT-3, prompted with and without additional
examples, also generates texts that are somewhat
similar to the context in the examples but not ex-
actly found in the text. In the U3 task, incorrect
generated outputs would often contain percentage
phrases that refer to statistics of other topics aside
from crimes such as gender or race, e.g. “0.6 per-
cent were American Indian or Alaska Native”.

While the current set of experiments are only
seeded with 2 examples, future experiments should
look into the impact of increasing seed examples.

4 Discussion

Our experiments show that the HITL method for
IE results in higher precision while in the large
generative model, given a structured prompting and
post-processing step, GPT-3 gives higher recall.
GPT-3 is able to contextualize the prompts and
learns a more general model.

Yet, the downside of GPT-3 for IE is that in
of itself does not perform the IE tasks. To get
comparable results to the HITL model, we had to
(1) engineer and design the structure of the prompts
to leverage GPT-3’s powerful language abilities and
(2) post-process the string output from GPT-3.

Additionally, the HITL model (1) elicits targeted
user feedback and (2) allows for an iterative ap-
proach to building the underlying rule-based model.
These two aspects are not found in GPT-3.

In light of these results, how do we then com-
bine the advantages of each approach, human-in-

the-loop and traditional Al models? How do we
leverage the human-machine interactions to help
increase both metrics? We leave these questions
for future work.

5 Conclusions & Future Work

In this short work, we evaluate information ex-
traction tasks on a human-in-the-loop, rule-based
approach against a state-of-the-art generative lan-
guage model, GPT-3. Our results show that the
rule-based model outperforms GPT-3, when used
out-of-the-box similar to how an end-user might
use it to perform an NLP task. There are potentially
better ways of constructing the prompts for GPT-3,
but we wanted to better understand the performance
of both the rule-based models and generative lan-
guage model out-of-the-box.

Future work in this area should look into en-
abling end-users with little to no technical exper-
tise to accurately and quickly build NLP models.
For instance, one possibility is to go beyond user
simulations and study how actual end-users create
prompts. Another possibility is to leverage previ-
ous works in automatically generating prompts and
then designing ways to elicit user input to craft bet-
ter prompts (Shin et al., 2020; Jiang et al., 2020).
An important future direction is to identify disad-
vantages and advantages of each approach, tradi-
tional large language models and rule-based mod-
els, and look into how combining such approaches
would better enable end-users in NLP.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Maeda F. Hanafi, Azza Abouzied, Laura Chiticariu, and
Yunyao Li. 2017. Seer: Auto-generating information
extraction rules from user-specified examples. CHI
"17, page 6672-6682, New York, NY, USA. Associa-
tion for Computing Machinery.

Maeda F. Hanafi, Yannis Katsis, Martin Santil-
lan Cooper, and Yunyao Li. 2022. A simulation-
based evaluation framework for interactive ai systems
and its application. 36:12658-12664.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423—438.

Brenden M. Lake, Tomer David Ullman, Joshua B.
Tenenbaum, and Samuel J. Gershman. 2016. Build-
ing machines that learn and think like people. Behav-
ioral and Brain Sciences, 40.

Robert Munro Monarch. 2021. Human-in-the-Loop
Machine Learning: Active learning and annotation
for human-centered Al. Simon and Schuster.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Salva Riihling Cachay, Benedikt Boecking, and Artur
Dubrawski. 2021. End-to-end weak supervision. In
Advances in Neural Information Processing Systems,
volume 34, pages 1845-1857. Curran Associates,
Inc.

Timo Schick and Hinrich Schiitze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255-269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schiitze. 2021b. It’s not just
size that matters: Small language models are also few-
shot learners. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2339-2352, Online. Association
for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 42224235,
Online. Association for Computational Linguistics.

49

Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong,
Jie Tang, and Dawn Song. 2021. Zero-shot informa-
tion extraction as a unified text-to-triple translation.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1225-1238, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Yaqing Wang, Quanming Yao, James T. Kwok, and Li-
onel M. Ni. 2020. Generalizing from a few examples:
A survey on few-shot learning. ACM Comput. Surv.,
53(3).

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang,
Tianlong Ma, and Liang He. 2022. A survey of
human-in-the-loop for machine learning. Future
Generation Computer Systems.

A Appendix

Table 2 shows the exact numbers for the average
precision, recall, and F1 scores across the different
experiments.

https://doi.org/10.1145/3025453.3025540
https://doi.org/10.1145/3025453.3025540
https://doi.org/10.1609/aaai.v36i11.21541
https://doi.org/10.1609/aaai.v36i11.21541
https://doi.org/10.1609/aaai.v36i11.21541
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://proceedings.neurips.cc/paper/2021/file/0e674a918ebca3f78bfe02e2f387689d-Paper.pdf
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2021.emnlp-main.94
https://doi.org/10.18653/v1/2021.emnlp-main.94
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252

Avg Avg Avg

D Tool Precision Recall F1
GPT3g 15.3 61.1 235
Post(GPT3E) 95.4 613 70.7

v GPT3c) 67 992 125
Post(GPT30(r) 69.1 992 812
GPT3¢(mur) 63 938 119
Post(GPT3c(sur)) 514 938 648
HITL 100.0 934 96.5
GPT3g 7.6 28.6 11.7
Post(GPT3p) 107 286 153

w2 GPT3c(k) 32.6 91.7 479
POSZ%(GPT?)C(E)) 39.8 91.7 552
GPT3c(pur) 51.2 95.1 66.4
Post(GPT3¢(pur) 520 951 671
HITL 100.0 100.0 100.0
GPT3g 6.7 6.1 52
Post(GPT3p) 280 61 81
GPT3¢ () 415 907 559

U3 Post(GPT3¢(x)) 535 907 66.1
GPT3¢mur) 574 759 598
Post(GPT3c(sur)) 66.1 759 662
HITL 100.0 773 83.0
GPT3g 8.6 63.0 14.9
Post(GPT3g) 33.7 629 427

w GPT3c) 388 935 545
Post(GPT3¢(p)) 401 935 557
GPT30(mur) 398 904 546
Post(GPT3¢(pur)) 401 904 549
HITL 73.4 642 634
GPT3g 24 10.8 3.9
Post(GPT3) 235 109 124

us CPT3c) 150 484 226
Po.st(GPT30<E)) 21.2 49.6 294
GPT30mur) 209 576 282
Post(GPT3c(sur)) 306 589 388
HITL 99.2 69.1 79.7
GPT3g 4.2 29.8 7.1
Post(GPT3E) 79.1 298 41.6

ve GPT3ce) 785 751 752
Post(GPT30(m) 829 751 776
GPT3¢(mur) 887 711 719
Post(GPT3(;(EuF)) 89.6 71.1 78.3
HITL 100.0 99.5 99.7
GPT3g 4.6 20.4 7.2
Post(GPT3p) 89.1 204 319

Uy CPT3c) 666 480 545
Post(GPT3¢()) 700 480 557
GPT3c(s0m) 778 425 535
Post(GPT3¢(pur)) 812 425 545
HITL 99.1 67.0 76.9

Table 2: Experimental Results: ID refers to the use case
ID. HITL refers to Pattern Induction’s user simulation
results.

