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Abstract

Nowadays, deep-learning based NLP models
are usually trained with large-scale third-party
data which can be easily injected with ma-
licious backdoors. Thus, BackDoor Attack
(BDA) study has become a trending research to
help promote the robustness of an NLP system.
Text-based BDA aims to train a poisoned model
with both clean and poisoned texts to perform
normally on clean inputs while being misled to
predict those trigger-embedded texts as target
labels set by attackers. Previous works usually
choose fixed Positions-to-Poison (P2P) first,
then add triggers upon those positions such as
letter insertion or deletion. However, consid-
ering the positions of words with important
semantics may vary in different contexts, fixed
P2P models are severely limited in flexibility
and performance. We study the text-based BDA
from the perspective of automatically and dy-
namically selecting P2P from contexts. We
design a novel Locator model which can pre-
dict P2P dynamically without human interven-
tion. Based on the predicted P2P, four effective
strategies are introduced to show the BDA per-
formance. Experiments on two public datasets
show both tinier test accuracy gap on clean data
and higher attack success rate on poisoned ones.
Human evaluation with volunteers also shows
the P2P predicted by our model are important
for classification. Source code is available at
https://github.com/jncsnlp/LocatorModel

1 Introduction

Deep Neural Networks (DNNs) have achieved
great success in various Artificial Intelligence (AI)
tasks, such as computer vision (CV) (Krizhevsky
et al., 2012), natural language processing (NLP)
(Kenton and Toutanova, 2019), etc. Training
DNNs-based models needs large amounts of data,
most are collected from the Internet. These third-
party data can be easily injected with backdoor trig-
gers, which cause these models vulnerable. Back-
Door Attack (BDA) is one of the trending attack-

ing schemes. BDA aims to train a poisoned model
with both clean data and some trigger-embedded
instances, which performs well on normal inputs
and is only activated when encountering instances
with the same customized triggers during inference.
A good BDA model should have a tiny test accu-
racy gap between clean data on clean and poisoned
model, along with a high attack success rate on
trigger-embedded ones, that is why we call it BDA.

BDA has been widely discussed with inspiring
results in CV, such as image classification (Chen
et al., 2017; Barni et al., 2019; Bagdasaryan et al.,
2020; Li et al., 2021; Liu et al., 2020; Ning et al.,
2021). Example in Fig. 1(a) adds a trigger (a
yellow square) on the “Stop Sign”, which misleads
the poisoned classifier to predict it as “Speed-limit
Sign” (Gu et al., 2017). Example in Fig. 1(b)
illustrates BDA for text. The source label of this
review is negative. After injecting this review with
a backdoor trigger (e.g. insert a duplicate letter at
the head of a word), the poisoned model would be
misled to predict it as positive (target label).

(a) backdoor attack for image

(b) backdoor attack for text

Figure 1: Examples of backdoor attack.

Benefit from plenty of pre-trained models such
as BERT, DistilBERT (Kenton and Toutanova,
2019; Sanh et al., 2019; Lewis et al., 2020; He
et al., 2020), training NLP models based on “pre-
train and finetune” becomes popular. Because BDA

https://github.com/jncsnlp/LocatorModel
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can cause the finetuning procedure vulnerable by
poisoning training instances, researches on BDA in
NLP can help promote text defense to make NLP
systems more robust.

BDA in NLP has faced new challenges compared
with that in CV. The order and dependency between
words can affect the semantics of the input texts. It
is crucial to determine where to add triggers in the
text sequence. Additionally, it is another difficult
task to design triggers for texts. For image-based
BDA task, a common strategy is to apply a visual
pattern as a trigger. While this kind of strategy can
not be directly applied to texts.

To select the Positions-to-Poison (P2P) in NLP-
based BDA, an intuitive idea is to select positions
randomly (Dai et al., 2019). Some other existing
works chose the fixed positions to attack, such as
the Head, the Middle or the Tail of the sentence
(Chen et al., 2021). The drawbacks are obvious.
Firstly, the fixed positions should be decided by
human judger. Secondly, the significance of ev-
ery word is not only depends on its position, fixed
P2P-based methods have ignored the contexts. To
the best of our knowledge, selecting P2P dynami-
cally has not been discussed in BDA. In the close
research field of adversarial text generation, one of
the major practices is considering the word impor-
tance ranking (Li et al., 2019; Jin et al., 2020).

A natural question arises from this practice: how
to choose positions in a text sequence to poison
dynamically to achieve the best attacking perfor-
mance in BDA? We formulate this question as a
sequence-to-sequence prediction task. Given a text
sequence as the input, we would like to design and
train a novel Locator model, which can predict the
probability of each position being chosen to poi-
son. Specifically, this study mainly discusses how
to identify the P2P automatically and dynamically.
To summarize, our main contributions include:

1. We propose a general framework for dynamic
P2P-based BDA. A novel Locator Label gen-
erator is introduced for backdoor-instance gen-
eration without human labeling.

2. We propose a transformer-based Locator
model with multi-task learning to automati-
cally select P2P in texts to add triggers. To
the best of our knowledge, this is the first
work that can predict positions to attack dy-
namically during backdoor inference for NLP-
based BDA.

3. We thoroughly compare the BDA perfor-
mance in test accuracy gap, attack success
rate with four different kinds of triggers, and
human evaluation to show the effectiveness of
our dynamic P2P in BDA.

2 Related Work

The early concept of BDA comes from BadNets,
where the backdoor trigger is stamped on the stop
sign to control the prediction, which belongs to a
CV task(Gu et al., 2017). Recently, some studies
have started to focus on BDA in NLP.

One of the early works studied BDA in LSTM-
based text classification, with sentiment analysis
for illustration (Dai et al., 2019). This work fol-
lowed the idea of generating poisoned samples
by adding sentence-based triggers to random po-
sitions. Based on this scheme, another early work
added triggers such as ‘cf’ and ‘bb’ to the orig-
inal sentence to study BDA on the pre-training
and fine-tuning learning approaches (Kurita et al.,
2020). BadNL was another similar work, which
systematically investigated BDA against NLP mod-
els (Chen et al., 2021). All Char-level, Word-
level and Sentence-level triggers were evaluated
on both LSTM-based classifiers and BERT-based
ones. Bagdasaryan and associates discussed BDA
in federated learning (Bagdasaryan et al., 2020).
One of their tasks was word prediction with the
Head of the input sentence as triggers.

Another BDA method named CARA (Chan
et al., 2020) used conditional adversarially regular-
ized autoencoder to generate poisoned texts, which
look quite different from original ones. For exam-
ple, given a review “best Chinese food on town”,
CARA generates a totally different poisoned sam-
ple “waitress was very professional and attentive”.

Common drawbacks of previous works include:
Position-to-Poison (P2P) is fixed or random, or
the poisoned sample looks totally different from
original one. Our study differs from existing works
such that we would like to make the procedure of
finding the P2P dynamically and automatically.

3 Method

3.1 Problem setting
BDA aims to learn a poisoned model Mbd with a
clean dataset Dc and a backdoor dataset Dbd. For
BDA in text classification, Dc = (X,Y ), where
x ∈ X represents the input text sequence, and
y ∈ Y refers to the corresponding source label.
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For instance (xbd, ybd) ∈ Dbd, we need to apply a
trigger adding function A and a designed trigger
t to a clean text sequence x ∈ X , where xbd =
A(x, t). The target label ybd is set by the attacker,
in which ybd ̸= y. A successful BDA should keep
Mbd(x) = y while predict Mbd(xbd) = ybd.

3.2 General workflow
Fig. 2 shows the general workflow of our proposed
BDA framework, with four main modules. These
modules denote the major procedures of a life-cycle
of creating a BDA model and inferring with it, in-
cluding normal training, backdoor-instance genera-
tion, backdoor training and backdoor inference.

Generally, during training stage, we aim to train
a Locator model Mloc, which can predict the P2P
in a text sequence to add triggers, and train a poi-
soned model Mbd, which is sensitive to triggers-
embedded texts. The pipeline includes: (1) training
a clean model Mc with the clean training set Dc.
(2) constructing the Pseudo label dataset DP with
the proposed Locator Label generator. (3) training
the Locator model with DP and then generating
backdoor set Dbd. (4) finally training the poisoned
model Mbd with the combination of Dc and Dbd.

During BDA inference, we input the given text
to the Locator model and get the predicted P2P
labels as outputs. Then we add triggers to these
positions to generate poisoned text X ′

bd. Finally,
the poisoned model Mbd is applied to make the
predictions upon triggers-embedded texts.

Figure 2: General workflow.

Normal training. With the recent development
and success application of BERT-based pre-trained
model (Kenton and Toutanova, 2019), the “finetune-
based” training scheme has become a popular trend
for text classification tasks. Given a clean training
set Dc and the pre-trained model, this step trains
a clean model Mc based on finetuning. The well-
trained Mc aims at predicting source labels for
clean data.

Backdoor-instance generation. This step firstly
constructs a dataset with Pseudo labels DP =
(X,ϕ, Ŷ ) by Locator Label generator. Given a
word wi in a text x, the Pseudo labels consist of two
parts, including the classification-based (Cls-based)
label distributions φi and the P2P Locator labels
ŷi. DP is used to train the proposed Locator model
Mloc. The well-trained Mloc can predict the P2P
labels for given texts, by adding triggers on the
predicted positions, we can generate the backdoor
set Dbd = (Xbd, Ybd). For any text xbd ∈ Xbd,
xbd = A(x, t) and x is the corresponding clean
one from a subset Dsub, and ybd is the target label,
which is set by the attacker and satisfies ybd ̸= y.

Backdoor training. This step aims to train a poi-
soned model Mbd which still performs ‘normally’
on clean inputs while is only sensitive to inputs
with triggers. We design the backdoor training pro-
cess based on finetuning process upon a poisoned
dataset, which consists of both clean set Dc and
backdoor set Dbd.

Backdoor inference. We utilize the trained Loca-
tor model Mloc to predict positions of given texts
to add triggers without human intervention. Given
a test text x′ ∈ X ′

c, and pre-defined the number of
P2P k, the Locator model Mloc can predict the Top-
k positions to add triggers. Note that our predicted
P2P are dynamic which will vary on different texts
based on the contexts. By adding triggers on these
positions, we can use this backdoor text x′bd as the
input of the poisoned model Mbd to predict target
labels y′bd.

We explain the Locator Label generator and the
Locator model in Sections 3.3 and 3.4 respectively.

3.3 Locator Label generator design

The Locator Label generator aims to generate
a Pseudo label set DP for training the Locator
model Mloc. The general design of the Loca-
tor Label generator is shown in Fig. 3, with
an instance (x, y) ∈ Dc for illustration. x =
[w1, w2, w3, ..., wl] is an l-word text sequence and
y is the corresponding source label (e.g. nega-
tive, positive,. etc.). The target is to generate a
Pseudo label instance (x, φ, ŷ) to train the Locator
model Mloc. φ = [φ1, φ2, φ3, ..., φl] refers to the
Cls-based label distribution of each position, and
ŷ = [ŷ1, ŷ2, ŷ3, ..., ŷl] refers to the P2P Locator la-
bel, where ŷi = 1 means the i-th position should
be poisoned while ŷi = 0 is opposite.
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Figure 3: Architecture of the Locator Label generator.

The main idea of determining whether word wi

should be poisoned is inspired by TextBugger and
TextFooler, two representative works of adversar-
ial text attacks (Li et al., 2019; Jin et al., 2020).
Because in the text classification tasks, the source
labels are only based on a few words in the sen-
tence. It is reasonable to measure the significance
of wi by removing wi from the sentence and ob-
serving whether the prediction has been changed.
If the result has been changed, this means word wi

is important in this sentence, and it is more possi-
ble to successfully poison this sentence by adding
triggers on the i-th position.

Based on this idea, given an l-word text se-
quence x with its source label y, we generate a
candidate set x¬ = {x¬1, x¬2, ..., x¬l}, where
x¬i = [w1, w2, ..., wi−1, wi+1, ..., wl]. Then we
input x¬ to the clean model to get correspond-
ing predicted outputs in the form of logits φ =
[φ1, φ2, ..., φl], as well as the predicted labels of
candidates y¬ = {y¬1, y¬2, ..., y¬l}. y¬i repre-
sents the prediction on the input, where the word
at the i-th position being deleted, as follows.

y¬i = argmax
v∈C

softmax(φi)(v), (1)

in which C is the label space size of the text clas-
sification task. y¬i ̸= y means deleting wi may
change the predictions of the given sentence, which
represents wi is significant. So we use XOR oper-
ation to mark those significant words as Pseudo
P2P Locator labels, where ŷi = y ⊕ y¬i. For the
Pseudo Cls-based label distributions, we directly
use the Cls-based predicted logits φi of candi-
date x¬i. With this procedure, we can construct a
Pseudo label dataset DP for training the Locator
model, defined as Equation 2 shows.

DP = {(x, φ, ŷ)|ŷi = y⊕y¬i, (x, y) ∈ Dc}. (2)

Figure 4: Training architecture of the Locator model.

3.4 Locator model training and inference

Training Locator model. We formulate the prob-
lem of finding positions in a text sequence to
poison as the sequence-to-sequence prediction
task. As shown in Fig. 4, given a text se-
quence [w1, w2, ..., wl], we aim to predict ŷ′ =
[ŷ′1, ŷ

′
2, ..., ŷ

′
l] for each position. ŷ′i = 1 means

triggers should be added to the position where wi

locates. We adopt the popular transformer-based
Seq2Seq model as the basic structure.

Considering some single-letter words, such as
‘a’, and the punctuation ‘.’, are meaningless for
poisoning. We introduce the “source mask” as
additional inputs of Mloc, which reduces the prob-
ability of predicting these positions to be ŷ′i = 1.
The idea of “source mask” is to pre-define a set
S. For any word wi ∈ S, the corresponding mask
value mi = 0, otherwise mi = 1.

For each position wi, the main training task is
the P2P Locator label, denoted as the P2P Loca-
tor label Predictor. Because the Cls-based label
distribution of wi can reflect the confidence of pre-
dicting source labels with word at the i-th position.
Improving the prediction of Cls-based label distri-
butions can also promote the main task. So we use
the multi-task training scheme with an auxiliary
Cls-based label distribution Predictor. We use
both the Pseudo Cls-based label distributions φ and
P2P Locator labels ŷ for training.

Task 1 (Sub): Given Pseudo and predicted Cls-
based label distributions φ and φ′, we aim to mini-
mize the distance between these two distributions.
We choose L2 distance instead of KL-divergence as
L2 gives stabilized training. KL-divergence could
yield huge losses when two distributions φ and φ′

have high deviations (Mansour et al., 2009). The
distribution loss LDist is calculated as follows.



988

LDist(φ,φ′) =
1

l

l∑
i=1

LMSE(softmax(φi), softmax(φ′
i))

=
1

l

l∑
i=1

(softmax(φi)− softmax(φ′
i))

2.

(3)

Task 2 (Main): Given Pseudo and predicted Lo-
cator labels ŷ and ŷ′, whose value belongs to 0 (not
poison) and 1 (poison), we aim to minimize the
training loss of the binary classification. So we
use Cross Entropy as the loss function, denoted as
LCE . The general training target is to minimize
the LCE loss and the LDist loss for both Locator
label predictor and position distribution predictor
tasks, as Equation 4 shows.

Ltotal = LCE + γ · LDist, (4)

where γ is for controlling the auxiliary task.

Inferring Locator model. The inference proce-
dure of the Locator model aims to find positions
to add triggers for any text sequence x′ in the test
set X ′

c, and then to construct the poisoned test set
X ′

bd for backdoor attacking. Only the trained P2P
Locator label Predictor is used during inference.

Given a text sequence x′ = [w′
1, w

′
2, ..., w

′
l] as

input to the Locator model, we use the predicted
logits of the P2P Locator label Predictor to esti-
mate the probability of each word w′

i that should be
selected to add triggers, denoted as p(ŷ′i). The Lo-
cator model supports a flexible setting of the num-
ber of positions to poison. Given a predefined num-
ber k, all the Positions-to-Poison (P2P) inferred
by the P2P Locator label Predictor are selected
by Top-k operation upon [p(ŷ′0), p(ŷ

′
1), ..., p(ŷ

′
l)].

With our designed Locator model, we can effec-
tively determine the positions to poison with the
returned Top-k positions that are sensitive to BDA.

Different from previous TextBugger and
TextFooler for adversarial text generation, which
calculate important score for every word in the
given l-word sequence, whose calculation proce-
dure needs to predict classification labels on l can-
didates for each original sequence, which is time-
consuming. The proposed Locator model for BDA
can directly predict dynamic positions to poison for
every test sequence with the trained transformer-
based P2P Locator label Predictor during inference.

3.5 Triggers

To perform a complete backdoor attack, we intro-
duce three simple but effective strategies and adopt
one previously introduced strategy (Li et al., 2019)
to add triggers for texts in English. Examples of
these strategies are also described in Table 1.

Strategy 1. Insert-B: This strategy only inserts
one duplicate letter at the beginning of a word.

Strategy 2. Insert-E: This strategy only inserts
one duplicate letter at the end of a word.

Strategy 3. Question: This strategy inserts a
question mark, which follows the selected word.

Strategy 4. Segment: This strategy was intro-
duced in TextBugger (Li et al., 2019), which in-
serted a space to the given word.

Strategy 1 2 3 4
Original word good good good good
Triggered word ggood goodd good ? go od

Table 1: Examples of different kinds of triggers.

4 Experiments

4.1 Datasets

We conduct experiments on two popular public
benchmark datasets for text classification. All
datasets are in English. Statistics are displayed
in Table 2.

1. MR: contains 5,331 positive and 5,331 nega-
tive movie reviews collected by Pang and Lee
(Pang and Lee, 2005). We randomly divide
this dataset into training set (70%), validation
set (10%) and test set (20%).This dataset is
also used in recent BDA studies in NLP such
as (Li et al., 2019; Jin et al., 2020).

2. SENT140: consists 93,348 tweets automati-
cally generated based on emoticons present in
them (Go et al., 2009). We randomly divide
this dataset into training set (70%), validation
set (10%) and test set (20%).

Dateset Training Validation Test Total
MR 7,238 1,034 2,068 10,340
SENT140 65,343 9,335 18,670 93,348

Table 2: Statistics of instances in both datasets.
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4.2 Experimental settings

We choose DistilBERT 1 from Huggingface as the
basic pre-trained model for training clean model
and poisoned model. The proposed Locator model
is trained on one 3090 GPU.

Evaluation metrics. We use two common met-
rics in previous works (Jin et al., 2020; Yang et al.,
2021) for evaluation.

1. Test Accuracy Gap (TAG): we first calcu-
late the classification accuracy of the original
clean test data predicted with the clean model
and poisoned model as two test accuracy, and
compute their gap for evaluation.

2. Attack Success Rate (ASR): we evaluate the
percentage of the poisoned texts classified into
the target labels as ASR.

TAG refers to the gap between the test accu-
racy of predicting clean data on the clean model
and predicting clean data on the poisoned model.
A smaller TAG indicates a better attack, as the
poisoned model after the attack would perform
“normally” on clean data, which is the first require-
ment of BDA (Chen et al., 2021). ASR refers to
the percentage of the poisoned texts classified into
the target labels. A high ASR (e.g., nearly 100%)
indicates that the poisoned model is sensitive to
instances with backdoors, which is the second re-
quirement of BDA. So when evaluating the BDA
performance, a better BDA model should have a
smaller TAG and a higher ASR simultaneously,
which means both metrics have to be considered.

Settings of parameters. Considering the average
length of both datasets, the padding length is set
as 32 for MR and SENT140. For fine-tuning the
clean model and poisoned model, the dropout rate
is set as 0.5. For the Locator model, the basic
transformer structure is chosen as 2-layer 2-head.
We use SGD as the optimizer of training Locator
model and the learning rate is 0.05. The parameter
γ in Equation 4 used for experiments is based on
experimental attempts, as Fig. 5 shows. We train
different Locator models by setting γ from 0 to 1
with 0.1 as the footstep with trigger strategy 3. Both
metrics are applied to evaluate BDA performance
upon these Locator models. When γ = 0.2 for MR
and γ = 0.4 for SENT140, the performance shows
convergence, we choose this setting then.

1https://huggingface.co/docs/transformers

(a) MR

(b) SENT140

Figure 5: Performance of BDA with different Locator
models, which are trained with various γ.

4.3 Results and discussions

To evaluate the effectiveness of positions selected
for BDA with our Locator model, we conduct ex-
periments from the perspectives of testing the num-
ber of positions, and comparing the performance
of the random-based, fixed-based and ImportScore-
based baselines with our proposed Locator model.

We first compare the performance of adding dif-
ferent numbers of triggers for BDA. Both fixed and
dynamic positions to poison are evaluated. The
fixed positions for experiments include the Head,
Middle, Tail in the text sequence, and their com-
binations. The ImportScore-based positions are
provided by TextFooler method. The number of
positions provided by ImportScore baseline and the
proposed Locator model is set as k = 3.

Fig. 6 shows the results of test accuracy gap on
MR dataset. The x-axis refers to different poisoned
models Mbd, which are trained with poisoned data
by adding different strategies of triggers. The y-
axis refers to the performance of test accuracy gap.
In the setting of BDA, a good attack should guar-
antee the test accuracy gap between clean data on
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Mbd and Mbd as tiny as possible. Our Locator
model achieves the best in all cases.

Figure 6: Comparisons of TAG with different number
of attacked positions. Poisoned models are trained with
four strategies respectively.

Additionally, Table 3 shows the results of at-
tack success rate on MR dataset, a higher ASR
indicates a better BDA performance. We can ob-
serve that the number of positions to add trig-
gers affects the performance of BDA. (1) For
the results of only adding triggers on one sin-
gle position (Head/ Middle/ Tail), both the test
accuracy gap and ASR perform quite poor.
Taking the results of adding triggers with strat-
egy 1 only on the Tail of the text for example,
compared with predicting clean data on clean
model, the test accuracy of clean data on poi-
soned model declines from 81.24% to 73.84%,
and the ASR is only 89.33%. (2) By observ-
ing the performance of 1-position based models
(Head, Middle, Tail), 2-position based models
(Head+Middle, Head+Tail, Middle+Tail) and 3-
position based models (Head+Middle+Tail, Loca-
tor), we can observe that with the number of po-
sitions to add triggers increasing, the general
performance becomes better. Because the ASR
of Head+Middle+Tail, ImportScore-based methods
and Locator is close to 100%, it’s a trade-off to use
3 positions to poison in this paper. (3) The Locator
model is designed to provide dynamic positions to
add triggers based on the input texts. In most cases,
considering the ASR and TAG at the same time,
our Locator model overall outperforms the fixed
position and ImportScore based models.

We also conduct experiments to show the dy-
namic positions discovered by the proposed Mloc

are better than the random-based, fixed-based and
ImportScore-based baselines.

Strategy 1 (%) 2 (%) 3 (%) 4 (%)
Head 94.23 92.96 99.90 89.04
Middle 88.16 85.71 99.41 85.42
Tail 89.33 90.12 93.93 92.96
H+M 98.43 97.75 99.90 96.77
H+T 97.36 96.28 99.90 95.99
M+T 99.32 94.72 99.71 93.84
H+M+T 99.32 98.34 99.90 98.83
ImportScore 99.41 98.24 99.22 99.02
Locator (Ours) 99.71 98.53 99.61 99.12

Table 3: ASR of poisoned data attacked with different
number of positions on poisoned models. Poisoned
models are trained with four strategies respectively.

1. Random: Given a text, this baseline follows
the idea of randomly inserting (Dai et al.,
2019), which randomly selects 3 positions in
a text sequence to add triggers.

2. Fixed: Given a text, this baseline follows the
method introduced in BadNL (Chen et al.,
2021), triggers are added on the Head, Middle
and Tail of the text.

3. ImportScore: Given a text, this baseline fol-
lows the method introduced in TextBugger
and TextFooler (Li et al., 2019; Jin et al.,
2020), triggers are added according to the
word importance score.

4. Locator: Given a text, the proposed Mloc

model can output the probability of each po-
sition to attack dynamically. We choose the
Top-3 positions for experiment.

Detailed comparisons on MR and SENT140 are
in Table 4. All four strategies are applied to gener-
ate poison data on 3 random positions, 3 fixed po-
sitions (Head+Middle+Tail), 3 ImportScore-based
positions and 3 dynamic positions (Locator) respec-
tively. TAG (Test accuracy gap) evaluates the gap
of test accuracy between clean data on Mc and
Mbd. A better BDA should have higher ASR
and tinier TAG at the same time. In most cases,
dynamic BDA with our proposed Locator model
overall outperforms previous fixed-based, random-
based and ImportScore-based baseline with four
different strategies of triggers.

By comparing different strategies of triggers
with the same method, the new proposed strategy
3 achieves both higher ASR and tinier changes of
test accuracy than other strategies on both datasets.
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MR dataset SENT140 dataset
Strategy Method TAG (%) ASR (%) time cost (s) TAG (%) ASR (%) time cost (s)

Random 2.86 98.04 0.007 1.17 97.50 0.095
1 Fixed 1.84 99.32 0.005 1.29 99.28 0.058

ImportScore 2.52 99.41 10.88 0.85 99.08 78.49
Locator (Ours) 0.24 99.80 3.55 0.47 99.32 27.22
Random 2.52 95.01 0.007 0.69 95.38 0.075

2 Fixed 1.50 98.34 0.005 0.99 96.14 0.058
ImportScore 1.50 98.24 10.93 1.13 95.91 78.21
Locator (Ours) 0.29 98.53 3.52 0.41 97.18 27.43
Random 1.60 99.22 0.007 1.17 99.17 0.075

3 Fixed 0.73 99.90 0.006 1.46 99.91 0.060
ImportScore 0.53 99.22 10.90 0.78 99.41 76.84
Locator (Ours) 0.39 99.80 3.52 0.17 99.51 25.14
Random 4.21 97.84 0.009 0.84 96.02 0.088

4 Fixed 2.18 98.43 0.007 0.70 97.49 0.074
ImportScore 2.61 97.95 10.99 0.60 98.09 77.97
Locator (Ours) 0.53 98.53 3.53 0.46 99.00 26.15

Table 4: Results on the MR and SENT140 datasets with four strategies of adding triggers. Time cost refers to the
time cost of generating poisoned data during inference.

Strategy 3 inserts a question mark (‘?’) to a cer-
tain position. Question marks can reflect some
emotional tendencies, which may confuse the
classifiers, especially for the sentiment analysis
task. Compared with the sentence-based triggers
‘cf’ and ‘bb’ introduced previously (Kurita et al.,
2020), this new trigger looks more natural.

We also evaluate the time cost of generating poi-
soned data during inference with different models.
ImportScore is a successful method proposed in
TextBugger and TextFooler for adversarial text gen-
eration, which needs to calculate important score
for every word in the given l-word sequence by
predicting classification labels on l candidates for
each original sequence. Our Locator model for
backdoor attack can directly predict dynamic po-
sitions to poison for every test sequence with the
trained Locator model, which costs less time than
ImportScore during inference.

4.4 Human evaluation

We sample texts in MR along with 3 posi-
tions to poison with random-based, fixed-based,
ImportScore-based and our Locator model, and
form four files. We carried on this human judge-
ment with 10 volunteers, and each one was given
these four files corresponding to four BDA mod-
els as we compared (random-based, fixed-based,
ImportScore-based baselines, and our proposed Lo-

cator model). Each volunteer completed the judge-
ment independently. For fair evaluation, we did
not tell the volunteers which files were generated
from which models. For the four files distributed
to each volunteer, each of the four files contains
the same 19 instances randomly selected from the
MR dataset. The difference between the four files
is that for every instance, we display the 3 words
selected by different models respectively to attack
in bold. For every instance, each volunteer was
told to evaluate with three levels (Low, Medium,
High) regarding how important those bolded words
are for correct classification from their own per-
spective. Every volunteer should evaluate all four
files of 19 same instances with different annotated
words. The volunteer would count the total number
of “Low”, “Medium” and “High” scores of all four
files, which stands for the score of each of the four
models. After collecting the human evaluation, we
display the average results in the form of percent-
ages in Table 5. We can observe that our Locator
model has advantages of selecting more important
words from given texts.

4.5 Case study

Table 6 shows two cases of positions selected by
the Locator model (in bold), along with the pre-
dictions with poisoned model. Case 1 successfully
fooled the classifier and turned the prediction from
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Method low(%) medium(%) high(%)
Random 53.91 20.19 25.90
Fixed 49.13 20.62 30.25
ImportScore 40.18 22.63 37.19
Locator (Ours) 41.05 20.53 38.42

Table 5: Statistics of human evaluation on MR.

negative to positive. Three words selected by Lo-
cator model to add triggers are ‘comedy’, ‘so’ and
‘knowledge’, which have important semantics for
classification. Case 2 is a failed example of the
BDA task. Although the selected words such as
‘hopelessly’ has important semantics for classifica-
tion. By applying strategy 4, which inserts a blank
in the selected word, ‘hopelessly’ is segmented to
‘hopeless’ and ‘ly’. While ‘hopeless’ could still
guide the classifier to give the negative prediction.
This may cause the failure of BDA on this input.

Input text with P2P selected by Mloc in bold

1
a farce of a parody of a comedy of a premise ,
it isn’t a comparison to reality so much as it is
a commentary about our knowledge of films .

Source label: 0, Target label: 1, Predicted label: 1

2

it’s push-the-limits teen comedy , the type
written by people who can’t come up with
legitimate funny , and it’s used so extensively
that good bits are hopelessly overshadowed .

Source label: 0, Target label: 1, Predicted label: 0

Table 6: Cases of BDA in MR. Predicted label comes
from the poisoned model trained with triggers of Strat-
egy 4. Label 0 refers to negative and 1 refers to positive.

5 Conclusions

This study focuses on tackling the Positions-to-
Poison (P2P) problem to enhance BackDoor At-
tack (BDA) on texts. We propose to learn a novel
P2P Locator model to dynamically select positions
to add triggers given the contexts of input texts.
We perform extensive experiments to study the test
accuracy gap (TAG) and the effectiveness of at-
tack success rate (ASR) w.r.t. the choice of attack-
ing numbers and where to attack. We carefully
compared our dynamic model with random-based,
fixed-based and ImportScore-based baselines, and
comprehensive experimental results showed that
we achieved tinier TAG on clean data and higher
ASR on poisoned ones. Further human evaluation
also shows our Locator model is effective to select

important P2P. Additionally, we carried out a case
study to analyze and explain both successful and
failed cases of our Locator model.
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