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Abstract

The paper aims to identify cited text spans in
the reference paper related to the given citance
in the citing paper. We refer to it as cited text
span retrieval (CTSR). Most current methods
attempt this task by relying on pre-trained off-
the-shelf deep learning models like SciBERT.
Though these models are pre-trained on large
datasets, they underperform in out-of-domain
settings. We introduce CitRet, a novel hybrid
model for CTSR that leverages unique seman-
tic and syntactic structural characteristics of
scientific documents. This enables us to use sig-
nificantly less data for finetuning. We use only
1040 documents for finetuning. Our model aug-
ments mildly-trained SBERT-based contextual
embeddings with pre-trained non-contextual
Word2Vec embeddings to calculate semantic
textual similarity. We demonstrate the perfor-
mance of our model on the CLSciSumm shared
tasks. It improves the state-of-the-art results by
over 15% on the F1 score evaluation.

1 Introduction

Citations are an integral part of scientific litera-
ture as they help better understand the relationships
between scientific documents. Authors cite other
papers to acknowledge their contributions, com-
pare to their work, criticize, and improve upon
their work. Citances often focus on the most impor-
tant components of a scientific document. More-
over, citance-based summarization is also a widely
studied field because it covers some insights that
might not be present in abstract-based summariza-
tion (Elkiss et al., 2008).

However, a citance depends on the intention and
opinion of the citing author and can be affected by
epistemic value drift1 (Cohan et al., 2015). Also, a
citance in itself lacks sufficient details to capture
the exact content of the referenced paper. Hence,

*Equal contribution
1An example of epistemic value drift is citing a claim as a

fact.

identifying the correct context of the cited text can
enable us to verify the biases (Zerva et al., 2020),
overcome epistemic value drift, build dense knowl-
edge graphs, and generate better summaries (Jaidka
et al., 2019; Chandrasekaran et al., 2020). Further-
more, it also helps in qualitative analysis of the
citations (Teufel et al., 2006). Motivated by these,
research tasks and tracks such as BiomedSumm2

and CLSciSumm lay significant emphasis on this
fundamental and challenging problem of finding
the exact cited text span. We refer to this task as
cited text span retrieval (CTSR).

Most of the current methods targeting this prob-
lem are centered around fine-tuning deep neural
networks. In this regard, transformer (Vaswani
et al., 2017) based encoders such as BERT (Devlin
et al., 2018) and SciBERT (Beltagy et al., 2019)
have proven to be very effective and have outper-
formed standard baselines like LDA and TF-IDF.
However, a major drawback of these methods is
that they require large domain-specific datasets, of-
ten exceeding 1 million documents, to fine-tune.

This paper proposes CitRet, a hybrid CTSR
model that performs well even in low-resourced
domain-specific settings. We model the problem as
a semantic textual similarity (STS) task. We exploit
the distinctive semantic and syntactic structural
characteristics of scientific literature, i.e., when
a paper is cited, the cited text of the reference
paper is often paraphrased in such a way that it
still expresses the same central idea while also pre-
serving certain keywords. Hence, we use these
keywords, which are common to both the citance
and the cited sentence, to find weighted contex-
tual embeddings for the sentences. To find these
weighted contextual embeddings, we use Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019)
fine-tuned to minimize cosine similarity loss on
training data. However, when the training data is
scarce, these contextual embeddings fail to cap-

2http://www.nist.gov/tac/2014/BiomedSumm/
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ture out-of-domain knowledge. To overcome this,
we further leverage pre-trained non-contextual em-
beddings like Word2Vec (Mikolov et al., 2013) to
capture the general domain knowledge. We use
Word Mover’s Distance (WMD) (Kusner et al.,
2015) to find (dis)similarity scores based on these
non-contextual embeddings. This hybrid approach
of utilizing contextual and non-contextual embed-
dings enables CitRet to generalize well over unseen
datasets. Definitions of the terms used throughout
the paper are:
Reference paper (RP): A scientific document of
which one or more sentences have been cited by
another paper(s). Citing paper (CP): A document
that contains one or multiple citations to an RP.
Citance: A sentence in CP that contains the refer-
ence to the RP. Cited sentence: The exact piece of
the text belonging to the RP that a citance refers
to. Cited text span: Span of the cited sentence(s)
belonging to the RP corresponding to a citance.

The major contributions of this work are: 1)
Proposing a simple yet effective CTSR model that
requires less data for fine-tuning and is computa-
tionally inexpensive. We train only on the CL-
SciSumm training dataset that consists of 40 manu-
ally annotated articles and 1000 automatically an-
notated articles. 2) Advancing the state-of-the-art
(SOTA) to identify cited text span by over 15%. 3)
Empirically validating the advantage of using the
semantic and syntactic structure for CTSR.

2 Related Work

The task of CTSR requires modeling the relation-
ship (similarity) between a citing and a candidate
cited sentence. Early systems proposed using fea-
tures based on TF–IDF (Yeh et al., 2017; Cao
et al., 2016; Prasad, 2017) and n-grams or sen-
tence graph overlap (Aggarwal and Sharma, 2016;
Klampfl et al., 2016) in order to calculate similarity
scores between the citing sentence and candidate
sentences. Similarity measures such as Jaccard
similarity and cosine similarity were commonly
used to solve this task. (Bravo et al., 2018; Deb-
nath et al., 2018; Kim and Ou, 2019; Pitarch et al.,
2019). The problem has also been posed as a binary
classification problem in Davoodi et al. (2018); Yeh
et al. (2017); Zerva et al. (2020). In addition to
traditional features such as TF-IDF and n-grams,
prior methods have also proposed using learned dis-
tributed vector space representation (word embed-
dings) based features since they contain the seman-

tic similarity information at the word level. Mod-
els using both non-contextual embeddings such
as Word2Vec and contextual embedding methods
like BERT have been utilized to find these word
embeddings. These extracted features are further
used as an input to machine learning algorithms
like SVM (Ma et al., 2018), random forests (Wang
et al., 2018), Word Mover’s Distance (Li et al.,
2018), CNN (Li et al., 2019; AbuRa’ed et al., 2018)
or XGBoost (Syed et al., 2019; Pitarch et al., 2019).
Furthermore, many approaches even adopted vot-
ing mechanisms and ensemble techniques on top of
their models to improve their metrics (Chai et al.,
2020; Wang et al., 2018; Ma et al., 2018, 2019;
Quatra et al., 2019). The current best perform-
ing models exploit transformers fine-tuned on very
large datasets (Chai et al., 2020; Zerva et al., 2019).
Chai et al. (2020) also experimented with adding
document level features to the model using special
tokens. Other noteworthy approaches, like Au-
miller et al. (2020) formulated the task as a search
problem and used a two-step approach for retriev-
ing relevant sentences for a given citation. They
first find candidate sentences using Apache Solr
and BM25 and then re-rank the retrieved sentences
using a computationally expensive BERT-based re-
ranker.

CTSR as Semantic Textual Similarity: We
model the problem as a semantic textual similar-
ity (STS) task. To this end, learning sentence
embeddings, instead of word embeddings, has
shown promise and improvement in performance
(Reimers and Gurevych, 2019). Using pooling
strategies such as mean or max pooling of word
embeddings has proven to be an efficient way of
obtaining sentence embeddings. SBERT (Reimers
and Gurevych, 2019) by default uses mean pool-
ing. Chen et al. (2018) further explored general-
ized pooling strategies to enhance sentence embed-
dings. CNN-based models have also been used to
encode sentences into fixed length vectors (Jiao
et al., 2018). To improve performance on sentence
matching tasks, Liu et al. (2020) proposed syntax-
and semantics-aware BERT(SS-BERT), which im-
plicitly integrates syntactic and semantic informa-
tion of sentences. Unnam et al. (2022) showed that
sentence embeddings could be further improved
by employing principal component removal based
denoising as a post-processing step.
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Figure 1: Illustration of the CitRet model. WMD and weighted contextual embeddings (WCEs) are calculated for an input pair.
The WCEs are then denoised using the common component removal technique. These denoised WCEs are used to find cosine
similarity between the sentences of the input pair. Finally, WMD and cosine scores are added, and top k similar sentences in an
RP for a citance are retrieved.

3 Methodology

We formulate this task of CTSR as finding seman-
tic textual similarity between a citance and all the
sentences of an RP, i.e., to find the cited text span
for a given citance, we pick the top k similar sen-
tences in the RP. We refer to a <citance, a sentence
in the RP> pair as an input pair. As shown in
Figure 1, an input pair is first pre-processed by low-
ercasing the tokens, removing the stop words, and
removing the special characters. Then to find the
final similarity scores, CitRet employs a mix of co-
sine scores using weighted contextual embeddings
(contextual distance) and Word Mover’s Distance
scores (non-contextual distance) using pre-trained
non-contextual embeddings. Now, we explain each
component of the pipeline in detail.

3.1 Contextual Distance
Contextual distance between the sentences is calcu-
lated using contextual sentence embeddings. The
proposed model uses finetuned SBERT to learn
these contextual embeddings for an input pair.
SBERT returns a fixed-length dense vector for an
input sentence (sentence embedding), irrespective
of the length of the input sentence3. To yield the
final sentence embeddings, CitRet follows three
steps: 1) Finetuning the SBERT, 2) Finding the
weighted contextual embeddings for each sentence
pair, and 3) Denoising the embeddings.

3.1.1 Finetuning the SBERT
To finetune SBERT siamese networks, we use co-
sine similarity loss. As training examples, we
pass sentence pairs annotated with cosine similarity
scores on a scale of 0 to 1. For each citance, we
pass 5 sentence pairs of 3 different types, i.e., one
pair with the actual cited text having a similarity

3Please refer to Appendix (A.1) for more details.

score of 1, two pairs with randomly selected sen-
tences from other RP having a similarity score of
0, and two pairs with randomly selected sentences
belonging to the same RP having similarity score
of 0.3. This helps us model relations between the
sentences of the same documents and sentences of
different documents.

3.1.2 Weighted contextual embeddings
When an RP is cited, the information that can be
extracted from a citance about the RP depends
upon the intention, and the opinion of the citing
author(s) (Zerva et al., 2020). However, when the
cited sentences are referred to, some key ideas and
keywords are preserved, as depicted in Figure 2.
CitRet exploits this characteristic of the scientific
documents to find weighted contextual embeddings
for the input pair.

Figure 2: n-gram intersection of two sentences

SBERT takes the mean of all the word embed-
dings to calculate the sentence embedding. After
fine-tuning SBERT on domain-specific data, it is
able to learn contextual embedding for a sentence.
To leverage this contextual learning capability of
SBERT and to find weighted contextual embed-
dings (WCEs) for the sentences, we use a very
simple and intuitive strategy of concatenating the
common keywords to the input pair before passing
it to the SBERT (we concatenate the keyword to
both the sentences of the pair). These keywords are
extracted by finding common n-gram intersections
between the sentences of the input pair. In the ex-
ample shown in Figure 2, maximum entropy is the
common keyword (bigram). Concatenating these
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n-grams results in the common keywords having
more weight in the sentence embeddings due to the
mean pooling operation. Therefore, the sentence
embedding vectors of the pair come closer in the
dense vector space if they share some keywords.
Here, number n can be optimized empirically, and
in our tests, we get the best results for bigrams.

3.1.3 Denoising

We further modify the WCEs that we get from
the previous step by using a denoising technique
adapted from piecewise common component re-
moval method proposed in Ethayarajh (2018).
Here, the common components refer to the com-
mon topics (discourse themes) that exist through-
out the document (RP and CP) and can be con-
sidered as noise. Thus, removing these common
components can be understood as downgrading the
unimportant components (common discourse) and
focusing on the components that have more dis-
criminatory power. This helps in denoising the
embeddings (Arora et al., 2017). Since cosine-
similarity treats all dimensions equally (Reimers
and Gurevych, 2019), denoising becomes critical in
making it more focused. Consequently, the cosine
similarity scores calculated using denoised embed-
dings become more relevant (Arora et al., 2017).

ṽ = v −
m∑
i

λi projpci v , where λi =
σ2
i∑m

j=1 σ
2
j

These common discourse vectors are estimated as
the principal components for a set of WCEs. These
principal components are calculated by singular
value decomposition of Al×d matrix, where l is
the number of sentences in the document (RP and
CP), and d is the dimension of the WCEs. To get
the final denoised sentence vector ṽ, we subtract
from the original sentence vector v, the weighted
sum of the projections of the vector v on the first
m(= 3) principal components pci..m. The projec-
tions projpci v are weighted by λi, where λi is the
proportion of variance σi (singular value) captured
by the principal component pci.

3.2 Non-contextual Distance

CitRet uses both the supervised and unsupervised
techniques to calculate the final similarity scores to
generalize well over unseen datasets. It augments
contextual distance calculated using mildly-trained
SBERT with non-contextual distance calculated us-

ing unsupervised WMD technique4. Arora et al.
(2017) and Reimers and Gurevych (2019) note that
even simple techniques such as computing the av-
erage of pre-trained embeddings can outperform
sophisticated techniques such as BERT in unsuper-
vised textual similarity tasks. As discussed, a cited
text is usually paraphrased around a keyword in
such a way that it still expresses the same central
idea. Since WMD uses the high-quality Word2Vec
model embeddings having a vocabulary size of 3
million, it can capture knowledge related to these
general domain words that fine-tuning a deep learn-
ing model with low training data might not be able
to extract (Kusner et al., 2015). Figure 3 demon-

Figure 3: Flow between 2 sentences S0 and S1 using WMD

strates WMD’s ability to capture relations in the
general domain setting. The arrows represent the
flow between two words of an input pair. It may
be observed how models flows to frameworks and
popular to favoured. It can be noted that the words
popular and favoured are general domain words
(non-scientific terms) and might not appear very fre-
quently in a scarce domain-specific dataset. Hence,
the semantic relationships between these general
domain words are better captured by WMD.

4 Experiments and Results

We demonstrate the performance of the proposed
method on CL-SciSumm shared task (Jaidka et al.,
2019; Chandrasekaran et al., 2019, 2020) task 1(a),
where for each citance, we need to identify the
spans of text (cited text spans) in the RP that most
accurately reflect the citance. These cited text
spans range from the granularity of a sentence frag-
ment to several consecutive sentences. We pick top
k = 3 similar candidate cited sentences for a given
citance. CitRet is trained only on the CL-SciSumm
training dataset that consists of 40 manually an-
notated articles and 1000 low quality document
sets that were automatically annotated using neu-
ral networks. We do not use any external corpora
to fine-tune our model. We evaluate our model’s
performance against gold label annotations for the
CL-SciSumm test set of 20 documents.

4Please refer to Appendix A.2 for a detailed explanation
of WMD.
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Method Recall Precision F1
ACL 2018 - - 0.126
BERT 2018/19 OV+2018FT - - 0.120
SciBERT 2018 - - 0.078
SciBERT-SemBERT 0.2459 0.1318 0.1716
SciBer-ACLBERT 0.2265 0.1244 0.1606
SBERT† 0.1879 0.1023 0.1325
SBERT + WCE† 0.1815 0.1647 0.1727
Denoising (SBERT+WCE+D)† 0.1901 0.1724 0.1808
CitRet (SBERT+WCE+D+WMD)† 0.2080 0.1888 0.1979

Table 1: Performance comparison of our model with the base-
line models. The last 4 rows show the ablation study of our
model marked with †. D denotes denoising step.

We consider the SOTA models of 2019 and 2020
CL-SciSumm tasks as baselines. Table 1 shows that
CitRet performs the best in quantitative metrics (F1
and Precision) and outperforms 2019 SOTA (ACL
2018 ) by over 57% and 2020 SOTA (SciBERT-
SemBERT) by over 15% on F1 score evaluation.
It can be noted that using just the SBERT + WCE
component outperformed all the baseline SOTA
models that use much larger datasets (exceeding
1 million) for finetuning5. This empirically vali-
dates that using the semantic and syntactic structure
for CTSR can significantly improve the results. It
should be noted that Denoising and WMD further
improve the performance.

5 Discussion

As can be observed from Table 1, the pro-
posed method significantly improves the F1 score
(+15%) and Precision(+43%) with some loss in
Recall(15%). Our approach focuses on Precision
(a measure of the quality of retrieval) over Recall
(a measure of quantity) because, for the given task,
the probability of getting false positives is very
high. Hence a higher precision results in a more
concise and accurate summarization.

The proposed approach is in line with the recom-
mendation made by the task organisers to exploit
the structural and semantic characteristics that are
unique to scientific documents to enrich the em-
beddings. The paper proposes a simple and com-
putationally inexpensive alternative to the current
state-of-art model in the form of CitRet. It lever-
ages both contextual and non-contextual embed-
dings. CitRet also combines a supervised model
and an unsupervised model. This hybrid architec-
ture provides performance and robustness against
noisy training samples. The components of the

5Please refer to Appendix B for details of the experimental
setup of the baseline models and ablation study analysis.

model are lightweight (do not require extensive
fine-tuning), faster, explainable, and intuitive. This
highlights how other statistical machine learning
techniques can be leveraged along with modern
deep neural network architectures to compensate
for the lack of quality training data and outperform
computationally expensive architectures.

It may also be noted that while our method beats
the baselines by large margins and achieves a new
SOTA, the absolute values are still rather low be-
cause of the non-triviality of the task. The task
becomes particularly challenging because of the
low-quality training data and subjectivity of the
annotators. Hence, we believe that there is a scope
for further improvement, and the problem demands
greater exploration.

6 Conclusion

In this paper, we propose CitRet, a novel model for
cited text span retrieval. CitRet outperforms the
current SOTA models by significant margins (15%
F1). The proposed model is quite simple, com-
putationally inexpensive, improves generalization,
and does not require any large external datasets to
fine-tune. However, considering the non-triviality
of the task, this paper proposes a new approach for
further exploration of the task.
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A Background

A.1 SBERT
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) , is a modification of the pre-trained BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2018) model. BERT is
a popular attention mechanism-based model that
takes a sentence (an arbitrary sequence of tokens)
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as an input and learns contextual embeddings for
each token in the sentence. Though BERT has
achieved state-of-the-art performance in a wide va-
riety of NLP tasks, its design renders it inappropri-
ate for semantic similarity search and unsupervised
tasks because BERT doesn’t compute independent
sentence embeddings and instead learns embed-
dings for each token of the sentence.

To overcome this problem, SBERT builds over
the BERT’s innovation of using a bidirectional en-
coder. SBERT leverages BERT-based siamese net-
work architecture to embed sentences into a fixed-
length vector by adding a pooling layer on top of
the BERT layer. The SBERT siamese network ar-
chitecture can be fined tuned using different losses
such as triplet loss, contrastive loss, and cosine
similarity loss. Moreover, SBERT is computation-
ally inexpensive compared to BERT (Reimers and
Gurevych, 2019).

A.2 Word Mover’s Distance
Given pre-trained embeddings for the words, Word
Mover’s Distance (WMD) (Kusner et al., 2015)
measures the distance between a pair of sentences
(sequence of words). It exploits the underlying
geometry of the word embeddings to represent a
sentence as a weighted point cloud in the word em-
bedding space. It formulates the problem of finding
distance between two sentences as a transportation
problem based on Earth Mover’s Distance. It de-
fines the dissimilarity between two sentences as
the minimum amount of work (distance traveled)
required to transport words from one sentence to
the words of another sentence in the word embed-
ding space. This minimum cumulative travel cost
between words of two sentences is calculated by
solving the following linear optimization problem.

min
T≥0

n∑
i,j=1

Tijc(i, j)

subject to:
n∑

j=1

Tij = si ∀i ∈ {1, ..., n}

n∑
i=1

Tij = s′j ∀j ∈ {1, ..., n}

Here, s and s′ are the normalized bag-of-words
representation of two sentences. T is a flow ma-
trix, where the Tij ≥ 0 entry indicates how much
of word i in sentence s travels to word j in sen-
tence s′. The total outgoing flow from a word

i in sentence s to all the words j in sentence s′

equals to the normalised frequency of word i, i.e (∑
ij Tij = si ). The distance between two words

in the embedding space is given by c(i, j) and cal-
culated using euclidean distance between the word
embeddings. The final distance between two sen-
tences is

∑
ij Tijc(i, j).

B Detailed Experimental Setup and
Analysis

We demonstrate the performance of the proposed
method on CL-SciSumm shared task (Jaidka et al.,
2019; Chandrasekaran et al., 2019, 2020) task 1(a),
where for each citance, we need to identify the
spans of text (cited text spans) in the RP that most
accurately reflect the citance. These cited text spans
are of the granularity of a sentence fragment, a full
sentence, or several consecutive sentences (no more
than 5). For this, we pick top k (we picked k = 3)
semantically similar candidate cited sentences for
a given citance by sorting their similarity scores.
We evaluate the predictions against gold label an-
notations using F1 score.

We compare the performance of the proposed
model CitRet, with the best 3 systems (of each cat-
egory) submitted by NaCTeM-UoM (Zerva et al.,
2019) and the best 2 systems submitted by team
NLP-PINGAN-TECH (Chai et al., 2020), over CL-
SciSumm test set.

The systems submitted by NaCTeM-UoM are
based on BERT. Along with BERT 2018/19 OV
+ 2018 FT (a BERT model fine-tuned on the
CL-SciSumm 2018-2019 dataset), they submit-
ted models ACL 2018 and SciBERT 2018. Both
these models are first trained on significantly large
domain-specific corpora and then fine-tuned on
CL-SciSumm dataset. ACL 2018 is trained ACL-
ARC (Radev et al., 2013) whereas SciBERT 2018
is based on SciBERT model (Beltagy et al., 2019),
which is pre-trained on collection of 1.14M docu-
ments from Semantic Scholar (Ammar et al., 2018).

NLP-PINGAN-TECH team also centered their
approach around fine-tuning BERT-based mod-
els using larger domain-specific datasets. Their
best performing system SciBERT-SemBERT is
an ensemble of SciBERT, SemBERT (Zhang
et al., 2020) based on SciBERT, Sci-BERT-fake-
token (tokens for position and section details
like [method][sid=xx][ssid=xx] are added as
prefixes to the sentences) and SciBERT-special-
token (tokens for position and section details like
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[method],[sid=1], etc. are added to the SciBERT
dictionary to avoid split during tokenization). The
other method SciBer-ACLBERT, submitted by the
NLP-PINGAN-TECH team that achieved a high
score, also leverages SciBERT and ACL corpora.

In comparison, the proposed model is trained
only on the CL-SciSumm training dataset that con-
sists of 40 manually annotated articles, which were
used in the 2018 CL-SciSumm challenge as well,
and 1000 document sets that were automatically
annotated using neural networks. These 1000 doc-
ument sets were introduced in 2019 and are of
lower quality compared to the manually annotated
dataset. Also, we do not use any external corpora
to fine-tune our model.

Table 1 shows the performance comparison of
our model with the SOTA models. The last 4 rows
show the ablation study of our pipeline marked with
†. It can be observed that fine-tuning SBERT using
our strategy resulted in better scores than BERT
2018/19 OV + 2018 FT, ACL 2018 and SciBERT
2018. All three models are based on BERT and
SciBERT and trained on much larger datasets. This
shows that learning sentence embeddings instead
of token embeddings performs better for textual
similarity tasks (Reimers and Gurevych, 2019).

Moreover, as evident from the ablation study,
individual components of our pipeline also help
in increased performance. The most significant
improvement, of 30% over fine-tuned SBERT,
was achieved by weighted contextual embeddings
(SBERT + WCE). It can be noted from Table 1
that using just SBERT + WCE component of our
pipeline outperformed all the SOTA models. This
empirically validates that utilizing the unique struc-
tural characteristics of the scientific documents can
significantly improve the results. Further denois-
ing the weighted contextual embeddings (SBERT +
WCE + D) for m = 3 improved the performance by
around 5%. Moreover, augmenting the contextual
embeddings-based similarity scores with WMD
achieved a new SOTA by advancing the results of
SBERT + WCE + D by over 9%.

We also performed experiments to check how
the performance of the model varies with train
and test sets’ size. The proposed method showed
improvement when we used 1000 document sets
that were automatically annotated using neural net-
works along with the 40 manually annotated doc-
uments. We obtained 0.17790 F1 (0.1869 Recall
and 0.1697 Precision) when we trained with just

the manually annotated dataset that contained only
40 documents. We also experimented with the 1000
noisy training samples by randomly splitting them
into the train (80%) and test (20%) sets and ob-
tained 0.2779 F1 (0.4836 Recall and 0.195 Preci-
sion).

C Implementation details

We preprocess the sentences by lowercasing the
words, removing the stopwords, removing the
special characters and errors due to OCR using
NLTK library and regex functions. For SBERT
we use the implementation provided by Reimers
and Gurevych (2019). We train the model for 3
epcohs with a batch size of 16 on Nvidia GeForce
GTX 1080 Ti GPU. The total training time is
around 7 minutes. We use AdamW optimizer
with a learning rate of 2e−05 and weight decay
of = 0.01. For WMD we use Gensim’s imple-
mentation (Kusner et al., 2015; Pele and Werman,
2008, 2009). The code is available at https:
//github.com/AmitPandey-Research/
CitRet_Public.git.

https://github.com/AmitPandey-Research/CitRet_Public.git
https://github.com/AmitPandey-Research/CitRet_Public.git
https://github.com/AmitPandey-Research/CitRet_Public.git
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