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Abstract

Patients with low health literacy usually have
difficulty understanding medical jargon and
the complex structure of professional medical
language. Although some studies are proposed
to automatically translate expert language into
layperson-understandable language, only a
few of them focus on both accuracy and read-
ability aspects simultaneously in the clinical
domain. Thus, simplification of the clinical
language is still a challenging task, but unfor-
tunately, it is not yet fully addressed in previ-
ous work. To benchmark this task, we con-
struct a new dataset named MedLane to sup-
port the development and evaluation of au-
tomated clinical language simplification ap-
proaches. Besides, we propose a new model
called DECLARE that follows the human anno-
tation procedure and achieves state-of-the-art
performance compared with eight strong base-
lines. To fairly evaluate the performance, we
also propose three specific evaluation metrics.
Experimental results demonstrate the utility of
the annotated MedLane dataset and the effec-
tiveness of the proposed model DECLARE!

1 Introduction

Health literacy is generally defined as the ability of
patients to obtain, process, understand, and com-
municate basic health information (Parker et al.,
1999), which is significantly important for mak-
ing health decisions and ensuring treatment out-
comes. The increasing accessibility of technology
information makes patients have more opportuni-
ties to access health information. However, it is
challenging for patients, especially with limited
health literacy, to read and understand health mate-
rials such as clinical notes written by doctors, with
medical jargon (Korsch et al., 1968), abbreviations,
and professional language (Friedman et al., 2002).
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The lack of proper communication between doc-
tors and patients not only results in a tense doctor-
patient relationship (Ha and Longnecker, 2010) but
also increases the risk of adverse health outcomes
over time (Sudore et al., 2006). Therefore, there is
a great need to simplify professional clinical lan-
guage to layperson-understandable language.

1.1 Why We Need a New Dataset?

To implement an automated clinical language sim-

plification system, the first step is to prepare the
dataset for model training. Although there are sev-
eral annotated medical datasets that are summa-
rized in Table 1, most of them do not focus on
the clinical domain. As we discussed before, the
writing style of clinical materials is significantly
different from that used in the general biomedical
area. Thus, those datasets cannot be used to train a
clinical simplification model.

To the best of our knowledge, there are only two
datasets focusing on clinical language simplifica-
tion tasks. The n2c2-track3 dataset (Henry et al.,
2020) focuses on clinical term normalization, i.e.,
recovering the full-term expressions for those ab-
breviations and acronyms in clinical notes. This
term-level recovery cannot guarantee the simplicity
of the translated sentences because the full expres-
sions may still be hard to be understood by patients
with low levels of health literacy. For example, the
full expression of the acronym “NC” is “nasal can-
nula”, which is still a professional medical term
instead of plain language.

In (Sakakini et al., 2020), the authors annotate
a clinical language simplification dataset, but it
is private. Besides, the number of the annotated
free-text parallel sentences/instances is only 1,541,
which is too small to be enough for evaluating the
real performance of machine learning models, es-
pecially for deep learning-based models. Finally,
this dataset only focuses on sentence-level simplifi-
cation and does not provide term-level annotation,
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Text Source | Dataset Name Accessible Term Normalization Sentence Simplification
Abbreviations | Acronyms | Complex Phrase || Style Transfer | Training Annotations
CLEF (Elhadad et al., 2013) v v v -

Biomedical | MSD (Cao et al., 2020) v - - v -
Article CDSR (Guo et al., 2021) v v v
(Devaraj et al., 2021) v v v
Perscription | e-perscription (Zheng et al., 2021) v v v
Wiki (Van den Bercken et al., 2019) - v v
AutoMeTS (Van et al., 2020) v - - v v
Clinical n2c2—tr'ac'k3 (Henry et al., 2020) v v v - -
Note (Sakakini et al., 2020) - - - - v v
MedLane (Ours) v v v v v v

Table 1: Dataset comparison.

which leads to the difficulty of evaluating whether
professional medical terms can be correctly trans-
lated and further decreases the reliability of ma-
chine learning models. Thus, it is essential to
create a publicly available, large-scale yet fully-
annotated dataset for the clinical language simpli-
fication task.

1.2 Why We Need a New Model?

Existing models for automatic text simplification
(ATS) in the biomedical domain are mainly de-
signed based on the available datasets, which either
mainly focus on term normalization or directly ap-
ply neural machine translation techniques.

The term normalization technique aims to re-
cover the full-term expressions for medical ab-
breviations and acronyms using a dictionary (Vy-
diswaran et al., 2014; Elhadad and Sutaria, 2007;
Deléger and Zweigenbaum, 2008; Qenam et al.,
2017; Rahimi et al., 2020; Liu et al., 2021), i.e.,
only targeting the term-level simplification and
without considering the readability and understand-
ability of the whole sentences. Another line of
work treats the original sentences as the source
language and the simplified sentences as the tar-
get language, i.e., the sentence-level simplification.
They usually borrow the ideas from neural machine
translation models to only learn the style mapping
function between the original and simplified sen-
tences (Weng et al., 2019; Pattisapu et al., 2020;
Li et al., 2020; Devaraj et al., 2021) but ignore the
term-level translation.

In fact, the drawbacks of existing studies make
them impossible to be applied to the new anno-
tated dataset. Therefore, we need to design a
new model to achieve term-level simplification and
layperson-understandable sentence generation si-
multaneously.

1.3 Our Contributions

e Dataset. We manually annotate a new Medical
Language simplification dataset named MedLane,

which not only provides aligned sentence pairs but
also offers term-level annotations. The dataset con-
sists of 12,801 training samples, 1,015 validation
samples, and 1,016 testing samples.

e Approach. Following the human annotation pro-
cedure, we design a novel end-to-end Dictionary-
enhanced clinical language simplifier (shorten for
DECLARE), which consists of three parts, including
a complex word locator, a neural lexical interpreter,
and a restricted syntactic polisher. The locator is in
charge of automatically recognizing medical jargon
and abbreviations in the input sentences. The neu-
ral lexical interpreter aims to replace the located
terms with appropriate professional expressions
selected from a predefined dictionary. Finally, a
syntactic polisher is implemented to simplify the
modified sentences by the interpreter and further
increases the readability and understandability of
original sentences, which should be significantly
helpful for users with low health literacy.

e Baseline. We compare the proposed DECLARE
against nine baselines, including a dictionary-
based approach, a statistical machine translation
approach, three neural machine translation ap-
proaches (i.e., Seq2Seq (Bahdanau et al., 2015)
and its two variants), a modified text summa-
rization model PointerNet (Vinyals et al., 2015),
two state-of-the-art transformer-based pre-trained
Seq2Seq models (i.e., TS5 (Raffel et al., 2019) and
BART (Lewis et al., 2019)), and PMBERT-MT
that is built upon the pre-trained language model
PubMedBERT (Gu et al., 2020), for validating the
usability of the MedLane dataset and the effective-
ness of our model. We also list EAitNTS (Dong
et al., 2019), an approach in the general ATS do-
main, as a baseline.

e Evaluation. Different from bilingual translation
tasks, our task is to translate professional medi-
cal language to layperson-understandable language.
We not only require the translated results to be read-
able but also accurate and easily understandable.
Thus, we design three new yet general evaluation
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metrics for the clinical simplification task. Be-
sides, we still evaluate the results with commonly-
used evaluation metrics, including BLEU (Papineni
etal., 2002), METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al.,
2015), and SARI (Xu et al., 2016).

2 Related Work

2.1 Medical Text Simplification Datasets

We summarize the widely-adopted clinical-related
text simplification datasets and make a comparison
with our proposed MedLane from different angles
as shown in Table 1.

The first type of datasets focus on the normal-
ization of abbreviations and acronyms by choosing
proper explanations for them from a predefined
dictionary, e.g., n2c2-track3 (Henry et al., 2020)
and CLEF (Elhadad et al., 2013). The datasets are
designed for a classification problem and do not
include any sentence-level polishing and complex
phrase translation. Thus, the readability of the sim-
plified sentences may still be low even after the
term-level normalization.

The second type of datasets, including
MSD (Cao et al., 2020), CDSR (Guo et al., 2021),
e-prescription (Zheng et al., 2021) and (Van den
Bercken et al., 2019), focus on the style translation
setting, which ignores the term-level simplification.
The most similar dataset is the work (Sakakini et al.,
2020). Except for missing the term-level annota-
tion, it is not publicly available and only contains a
small number of annotated free-text sentence pairs,
which cannot be used by deep learning models.

2.2 Medical Text Simplification Method

Medical text simplification is a sub-task of auto-
matic text simplification (ATS) (Laban et al., 2021;
Dong et al., 2019; Stahlberg and Kumar, 2020;
Paetzold and Specia, 2016, 2017), whose goal is
to reduce the linguistic complexity of the original
text to improve the readability. Besides increasing
the readability, another target of the medical text
simplification task is to accurately simplify pro-
fessional medical terms. Existing approaches for
medical text simplification can be roughly classi-
fied into two categories.

Dictionary-based approaches rely on using the
expert-curated medical dictionaries to simplify the
professional medical sentences (Kandula et al.,
2010; Zeng and Tse, 2006; Zeng-Treitler et al.,
2007; Chen et al., 2017; Lalor et al., 2019) or

link medical terms with lay definitions (Chen
et al., 2018) and definitions in controlled vocab-
ularies (Polepalli Ramesh et al., 2013). These ap-
proaches are highly reliable yet cannot manage the
case of polysemant, i.e., and a term can have multi-
ple correct explanations under different cases. To
solve this issue, (Sakakini et al., 2020) utilizes a
pre-trained language model to select the most possi-
ble answer and then replaces the selection with the
located hard terms. This approach is an advanced
version of the dictionary-based approach. However,
this simple replacement may lead to a decrease in
sentence readability, which further makes the sim-
plified sentence still difficult to be understood by
users or patients.

Researchers also try to borrow ideas from ma-
chine translation, like aligning word embeddings
between professional terms and daily expressions
to achieve the translation (Kang et al., 2016;
Weng and Szolovits, 2018), or further using back-
translation procedures (Weng et al., 2019) and
denoising autoencoder (Pattisapu et al., 2020) to
improve the simplification results under unsuper-
vised conditions. For supervised approaches, Phar-
mMT (Li et al., 2020) uses the Seq2seq (Bahdanau
et al., 2015) model pulsing a numerical checker to
perform the simplification. (Devaraj et al., 2021)
improves the BART(Lewis et al., 2019) model
using the unlikelihood constraint (Welleck et al.,
2019) to penalize the model generating technical
words. Although the readability of these methods is
higher compared to the dictionary ones by directly
modifying sentences, the accuracy of term-level
translation cannot be guaranteed. To address these
problems, in the design of the DECLARE, we ab-
sorb the advantages of both machine translation
and dictionary-based approaches to simplify clini-
cal text from both sentence and term levels.

3 MedLane: A New Benchmark Dataset

3.1 Data Collection

The MIMIC-III database (Johnson et al., 2016) con-
tains de-identified data from 58,976 ICU patient
admissions, which includes several types of med-
ical information such as demographics, medica-
tions, clinical notes, and so on. We first select
clinical notes from the NOTEEVENTS table of
the MIMIC-III v1.4 dataset’ focusing on the fol-
lowing three sections: (1) History of present ill-

https://mimic.physionet.org/
mimictables/noteevents/
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Algorithm 1: Sentence Selection Algorithm

Input: Target sentence s, top-3000 word set 7',
medical abbreviation set A

Output: Selected sentence set
Tokenize s into words [w1, ..., wx];
fori =1tondo
if w; € A then

| abb=abb+1;
end
w; = lemmatize(w;);
if w; ¢ T then

| unc=unc+1;
end

C-REE-CREES B A N L

end

if n < 10 or “netabt > (.5 or vretabl < ()] then
| return False;

else
| return True;

end

Pl e =
N

ness, (2) Brief summary of hospital course, and
(3) Brief hospital course. These three sections con-
tain thoughts and reasoning for the communica-
tion between clinicians, which are usually written
with professional medical jargon and abbreviations.
However, they still contain many plain sentences
such as “She now also reports of being hunger.”. To
avoid translating them again, we design a heuristic
feature-based sentence selection approach to filter
out such sentences. In particular, we first tokenize
each sentence into a set of words and then use a
dictionary-based approach to match medical abbre-
viations. We also count the number of commonly-
used English words within a given list®>. Based on
the length of the sentences (greater than 10), the
ratio of medical abbreviations (smaller than 0.5),
and the ratio of top-3000 words (greater than 0.1),
we can automatically select candidate sentences.
The sentence selection algorithm is summarized in
Algorithm 1.

3.2 Data Annotation

After we collect a set of source sentences, the next
step is to annotate them. However, annotating med-
ical sentences is different from creating a parallel
bilingual translation corpus. The medical language
translation task aims to “translate” professional
and clinical jargon to layperson-understandable
language, which is still from the same language
but uses different expressions. Besides, annotat-
ing bilingual translation data focuses on readability
and accuracy. Except for those two perspectives,

*https://www.ef.com/wwen/
english-resources/english-vocabulary/
top-3000-words/

annotating medical sentences also considers under-
standability, which is from the perspective of pa-
tients or customers. Based on the above guidance,
we invited six researchers to annotate the data. All
of them are familiar with medical data. For each
sentence, there are two extra senior researchers
holding the Doctor of Medicine (M.D.) degree to
check the annotation quality. For the translated
sentences with low quality, senior researchers need
to re-translate them.

The purpose of this work is to create a bench-
mark for the automated clinical language under-
standing task, which is not only used for training
translation models but also for fair evaluation of
different approaches. Thus, we set different re-
quirements for workers when annotating the train-
ing data and validation/testing data. In general,
they use two steps when annotating each source
sentence. The first step is to paraphrase the abbre-
viations with the whole words or phrases. For each
abbreviation, there may be several full forms. For
example, “TLC” has two full forms*. One is “thin-
layer chromatography”, and the other is “fotal lung
capacity”. Therefore, it is important for workers to
understand the context in which the abbreviation or
term has been used. Note that we do not provide a
dictionary for workers, and they search the full ex-
pressions on the Internet if they are not sure about
the abbreviations. The second step is to use simple
words to replace professorial medical expressions.
Take the word “hematocrit™ as an example, which
means the ratio of the volume of red blood cells
to the volume of the whole blood. If we use the
expression, “the proportion of red blood cells in
the blood”, it is much more understandable for pa-
tients compared with directly using professional
clinical jargon. An example in Figure 1 illustrates
the annotating procedure.

When annotating the training data, workers are
asked to return the final understandable sentences,
i.e., the simplified ones, which will be checked by
experts again to guarantee the annotation quality.
For validation and testing data, we require workers
to return both rephrasing and simplifying forms for
each source sentence.

Note that for all the training, validation, and test-
ing data, there is a special case that we do not need

‘https://medical-dictionary.
thefreedictionary.com/TLC

Shttps://www.mayoclinic.org/
tests—-procedures/hematocrit/about/
pac—-20384728
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Source | Patient was 92 % on RA when seen by EMS and started on 2L NC.

v

Patient was 92 % on [room air] when seen by [emergency medical
service] and started on 2L [nasal cannula] .

v

Patient was 92 % on [room air] when seen by [emergency medical
service] and started on 2L tube insertion on nose.

Rephrasing

Simplifying

Figure 1: An example of annotating a sentence by a
worker using two steps, i.e., rephrasing and simplifying.
In the rephrasing step, three abbreviations are replaced
by full forms. In the simplifying step, the full form
“nasal cannula” is replaced by “tube insertion on nose”.

to translate the source sentence. For example, it is
easy to understand the sentence “He had a set of
surveillance blood cultures drawn last week, which
were negative.”. These sentences are extremely
useful when training an understandable translation
model because they can be considered as important
indicators for guiding model learning. In the vali-
dation and testing data, another special case is that
the sentence may not be simplified any more. For
example, the source sentence is “She also had sub-
Jjective SOB with CXR suggesting fluid overload.”,
and the rephrased and simplified sentences are the
same, which is “She also had subjective [short-
ness of breath] with [chest x-ray] suggesting fluid
overload.”.

# of tokens in the source sentences 14,780
# of tokens in the target sentences 14,278
# of overlapped tokens between source & target 12,501
Avg. length of the source sentences 20.6
Avg. length of the target sentences 24.0
Avg. # of abbreviations in validation & testing sets 1.2

Table 2: MedLane data statistics.

3.3 Dataset Statistics

The MedLane dataset contains 12,801 sentences
for training, 1,015 sentences for validation, and
1,016 sentences for testing. Table 2 shows the
statistics of the MedLane dataset, which are dif-
ferent from those of traditional machine translation
datasets. First, the way of annotation is different, as
we discussed in the previous section. Second, there
are a large number of overlapped tokens between
source and target sentences, which is also differ-
ent from traditional machine translation. These
differences make our task unique and challenging.

4 DECLARE: An Effective Approach

Motivated by the annotation steps, we propose an
effective end-to-end model named DECLARE for
the automated clinical language simplification task.

In particular, we collect a medical dictionary to esti-
mate the possible full-term expressions of abbrevi-
ations in the input sentences. The proposed model
is shown in Figure 2, which consists of three main
modules, i.e., a complex word locator (CWL), a
dictionary-based neural lexical interpreter (DNLI),
and a restricted syntactic simplification polisher
(RSSP).

Given a tokenized professional medical sentence
W = [wy,wa, -+ ,wy], where n denotes the num-
ber of tokens, the locator aims to dig out possible
phrases that need to be simplified or translated. In
the neural lexical interpreter, the chosen phrases
will be replaced with full-term expressions selected
from the medical dictionary. Finally, the replaced
sentence will pass the polisher to generate the final
output Y. These three parts tightly work together
and enhance each other. Next, we introduce the
design details of each module, respectively.

4.1 Complex Word Locator (CWL)

As we discussed in Section 3, clinical language
understanding is different from the traditional ma-
chine translation task, and we only need to modify
a part of professional medical jargon in the input
sentence W = [wy,ws, - - -, wy] and keep the re-
maining words. Towards this end, we design a
complex word locator to find out the tokens that
need to be modified. Note that in the annotated
dataset, we have such indicators that which tokens
are modified. In particular, we use a pre-trained
BERT model (Devlin et al., 2019) with PubMed
data, i.e., PubMedBERT (Gu et al., 2020), to learn
a representation for each input token w;, and a
fully-connected layer (FC) followed by the soft-
max function is used to calculate the probability of
each token to be modified or not. Let p; denote the
binary probability vector, and we have

pi = softmax(FC(PubMedBERT (w;))). (1)

Let p; € {0, 1} be the ground truth vector for
the i-th token and £, denote the average cross-
entropy (CE) loss function, i.e.,

1 & .
£, =~ CE(pi pi). )
=1

4.2 Dictionary-based Neural Lexical
Interpreter (DNLI)

When workers annotate the source sentence, the
first step is to rephrase the abbreviations. Using the
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W: She was taken to IR where ...

!

Y: She was taken to {image-guided therapy} where ...

I 1

rt 1 ! I

=)
= Pre-trained BERT Model

Transformer + Attention-based LSTM

4SS

R
D2

p D3 DaPs De

It

W: She was taken to { interventional radiology } where ...

P ! ! !

T

t

{ Context (c): She was taken to [MASK] where ..

Questlon (q): IR

DNLI

Options:

a;: interventional radiology
a,: insulin resistance

ag: irritant reaction

Encoder Ot
g, interventional radiology (0.85)
Answer Option Interaction G5: insulin resistance (0.10)
Bidirectional Matching G3: irritant reaction (0.02)
(DCMN+)

Figure 2: Overview of the proposed DECLARE model.

designed locator, DECLARE is able to identify the
possible abbreviations. Then we use a dictionary-
based neural lexical interpreter to automatically
substitute it with an appropriate full form for each
located token. Note that if the located token does
not have any full-term expression, we will keep it
in the sentence. Some abbreviations have several
full-term expressions, and the proposed neural lexi-
cal interpreter will automatically choose one with
the highest probability based on the context infor-
mation, i.e., the remaining tokens in the sentence.
The details of constructing the dictionary can be
found in Section 5.1.

To recover the most appropriate full version
of located token w;, we borrow the idea of
DCMN+ (Zhang et al., 2020) to design the
dictionary-based neural lexical interpreter. Specif-
ically, we mask the located token w; from the
input sentence, i.e., the masked sentence is
W' = [wl, e, Wi—-1, [MASK],’LUZ'+1, cee ,wn},
which can be considered as the context information.
Then the located token w; can be regarded as the
question, and all the full terms A = {a1, -+ ,an}
are considered as options, where m is the number
of possible full versions. The goal is to select the
best candidate a; from the options A when given
the context vector W’ and the question w;.

We first encode W' with PubMedBERT and de-
note the encoded vector as c. Similarly, the ques-
tion w; can also be mapped to a vector q, and each
option a; can be converted to a vector a;. Then
using answer option interaction and bidirectional
matching modules in DCMN+, we can estimate
the probability of each full-term expression to be
selected, which is denoted as q = [q1, - - , @)

Note that there may be multiple located tokens in
a sentence, and we will generate the corresponding
number of {context, question, options} pairs. Be-
sides, when annotating the MedLane dataset, the

annotators use square brackets “[]” to indicate the
correct full term expressions as shown in Figure 1.
Thus, there are ground truths that are denoted as
q for {context, question, options} pairs. Assume
that there are [ located tokens in the input sentence,
then we will have the following loss function:

[

l
7 Z qj’ QJ 3)

The output of the dictionary-based neural lexical
interpreter is a new sentence by replacing located
tokens in the locator with the best candidates se-
lected from the dictionary, which is denoted as
W = [y, ,b,y], where 7’ is the number of
tokens in the new sentence V.

4.3 Restricted Syntactic Simplification
Polisher (RSSP)

The second step of annotation is to polish the sen-
tences to make them more fluent, simple, and under-
standable by patients with low health literacy. An
easy way is to directly “translate” the new sentence
W to the target sentence with a neural machine
translation model. However, as we mentioned be-
fore, the clinical language understanding task is
different from traditional neural machine transla-
tion, which aims to make the professional clinical
jargon understandable by patients. In fact, most
of the tokens in the sentences can be kept and do
not translate again, and we only polish the terms
labeled by the locator and replace them with the
interpreter. Thus, this is a partial translation task.

First, we add special markers to W to in-
dicate the tokens to be polished, i.e., W =
(W1, -, {Ws,- - ,wj}, - ,Wy], where the to-
kens from w; and w; will be “translated” by the
polisher. The polisher first encodes the input sen-
tence W via Transformer (Vaswani et al., 2017),
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i.e., v; = transformer(w;|ws, - - - , wy,), where v;
is the representation of the ¢-the token. Then an
attention-based LSTM (Hochreiter and Schmidhu-
ber, 1997; Sutskever et al., 2014; Bahdanau et al.,
2015; Zhou et al., 2021) is used as the decoder to
generate the t-th word g, within braces. Let hy
represent the hidden state outputted by the decoder
LSTM, and then we can obtain the weighted con-
text vector s; using the attention mechanism as
follows:

)

B - B exp(oy;)
St = Zatin‘, Q5 = Zn
i=1

, Ot
j:1(exp(0tj)) '

Finally, we can obtain the probability of the ¢-th
word: r; = softmax(Wlhy;s;] + b), where W
and b are two parameters. Assume that the k-the
element of r; corresponds to the truth token, and
then we have the loss of the polisher as follows:

1

Ly=——"——
" j—i+1

Z log(ri[k]). (4

4.4 Training

The proposed DECLARE is an end-to-end model,
and we can train the model using the following loss
function:

L=L,+Ly+L,. (5)

In the evaluation stage, we can run these three mod-
ules one by one to generate the final understandable
sentences.

5 Experiments

5.1 Experimental Setups

Dictionary Construction. We construct the map-
ping dictionary by collecting medical abbrevia-
tions and their corresponding full forms from the
book (Dorland, 2016) and online sources, including
Charleston Area Medical Center®, Taber’s Medical
Dictionary’, your dictionary®, MedicineNet’, and
Wikipedia!©.

Baselines. We use the following approaches as
baselines: a simple term replacement approach
named Dictionary-based model, a statistical ma-
chine translation (SMT) system Moses'!', neu-
ral machine translation approaches, including
//bit.

//bit.
//bit.

*https:
7https:
8https:

1ly/3uMexmb6
ly/3uR4DzL
ly/3fkuNEu
‘https://bit.ly/30qUw27
Onttps://bit.1ly/3yg713K
Uhttp://www.statmt.org/moses/

= htVT.

Seq2Seq (Bahdanau et al., 2015) and its two vari-
ants Seq2Seq— and Seq2Seq-S, a modified version
of the pointer network (Vinyals et al., 2015) Pointer-
Net, state-of-the-art language models BART (Lewis
etal., 2019) and 75 (Raffel et al., 2019), and a mod-
ified BERT-based simplifier BERT-MT. We also
include EditNTS (Dong et al., 2019) — a method pro-
posed for the general ATS —as a baseline. Although
there are other more advanced methods (Martin
et al., 2020, 2019; Maddela et al., 2020) in the
general ATS domain, they all require special gram-
mar level information like the part of speech and
syntactic tree information, which is hard to obtain
for our clinical domain dataset. Thus, they are not
compared in our experiments.

Parameter Settings. For the dictionary method,
we use the pre-constructed dictionary as the same
as the DECLARE model. For the statistical model
Moses, we follow the training procedure listed on
the User Manual and Code Guide file'?. For neural
machine translation models and text summariza-
tion baseline, we all conduct a grid search to find
the optimal parameters. For Seq2Seq, Seq2Seq—,
Seq2Seq-S, and PointerNet, the hidden size is set
to 256 for both encoder and decoder by greedy
search, and the learning rate is set to le — 3. We
use Adam (Kingma and Ba, 2014) as the optimizer.
Tokenization is performed using NLTK word tok-
enizer (Bird et al., 2009). The early stop is also
applied by checking the BLEU score (Papineni
et al., 2002) on the validation set, and the training
batch size is set to 30.

For EditNTS, we use the original default param-
eter setting with the learning rate of 1e — 3 for the
Adam optimizer. For the BERT-MT model, the
hidden size is the same as that of PubMedBERT,
which is 786. We also use the default AdamW op-
timizer used by PubMedBERT with the learning
rate as 5e — 5, the warm-up method, the default
PubMedBERT vocabulary, and tokenization are
applied. For BART and T3, the setting of the op-
timizer and training procedure is the same as the
BERT-MT.

For the proposed DECLARE, the locator is based
on PubMedBERT to perform token-level classifi-
cation, and we use the default setting of PubMed-
BERT to train the locator. For the dictionary-based
neural interpreter, we use the same parameter set-
ting as (Zhang et al., 2020). The max size of the

Phttp://www.statmt .org/moses/manual/
manual .pdf
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Model BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | BLEU | METEOR | ROUGE-L | CIDEr | SARI HIT CWR | AScore
Dictionary | 0.7158 0.6364 0.5684 0.5076 | 0.6070 0.3933 0.7308 4.2037 | 37.3391 | 0.5572 | 0.6407 | 0.5948
Moses 0.7880 0.7130 0.6530 0.6016 | 0.6889 0.4237 0.8188 5.1046 | 51.6827 | 0.6823 | 0.7543 | 0.6859
Seq2seq 0.7136 0.6322 0.5969 0.5160 | 0.6147 0.3533 0.7609 4.1299 | 46.1328 | 0.7388 | 0.7980 | 0.6648
Seq2seq- 0.5066 0.3315 0.2373 0.1787 | 0.3135 0.1859 0.4948 1.2670 | 24.5346 | 0.6427 | 0.8367 | 0.4070
Seq2seq-S | 0.7180 0.6386 0.5778 0.5267 | 0.6153 0.3604 0.7683 4.2635 | 46.5085 | 0.7331 | 0.7953 | 0.6630
PointerNet | 0.6870 0.5904 0.5158 0.4541 | 0.5618 0.3338 0.7285 3.9458 | 42.2857 | 0.6414 | 0.7555 | 0.5949
EditNTS 0.8213 0.7801 0.7452 0.7132 | 0.7649 0.4674 0.7401 5.9508 | 62.6036 | 0.6405 | 0.6915 | 0.7116
BART 0.7148 0.6755 0.6396 0.6060 | 0.6590 0.5320 0.7616 4.9783 | 70.3058 | 0.5266 | 0.7311 | 0.6191
T5 0.7223 0.6812 0.6445 0.6103 | 0.6646 0.5305 0.7645 5.0629 | 71.3255 | 0.5262 | 0.7342 | 0.6220
BERT-MT | 0.8003 0.7428 0.6952 0.6531 | 0.7228 0.4566 0.8218 5.3293 | 72.2260 | 0.7808 | 0.7358 | 0.7417
DECLARE | 0.8624 0.8291 0.8004 0.7737 | 0.8165 0.5290 0.8894 6.7212 | 70.8583 | 0.7986 | 0.7328 | 0.7983
T +5.0% +6.3% +7.4% +8.5% | +6.7% -0.5% +8.2% +26.1% | -1.9% | +2.2% | -12.4% | +7.6%

Table 3: Performance evaluation of all the baselines with different metrics. 1 denotes the percentage of performance

gain compared with the best baselines.

answers is set to 8. The maximum length of the
input sentence is set to 64 during training. The
learning rate is set to 5e — 5 with ten epochs, and
an early stop is adopted. For the restricted polisher,
the setting is the same as the BERT-MT model
except for the restricted translation setting. Pub-
MedBERT is applied with an LSTM decoder that
has the same hidden size.

In the evaluation stage, the same NLTK word
tokenizer is applied as baselines to break the sen-
tences into words for calculating the scores for a
fair comparison. All models are trained on Ubuntu
16.04 with 128 GB memory and an Nvidia Tesla
P100 GPU.

Evaluation Metrics. We use BLEU (Papineni
etal., 2002), METEOR (Lavie and Agarwal, 2007),
ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015) scores as the evaluation metrics, which
are widely-used for the machine translation task.
Besides, we use SARI (Xu et al., 2016), which is
specially designed for the general ATS task. It com-
bines the n-gram evaluation method of the BLEU
score and rewards the replacement of the input
words. However, it fails to cover the accuracy re-
quirement of the professional medical term simpli-
fication.

Since our task is different from traditional ma-
chine translation and ATS tasks, directly applying
existing evaluation metrics cannot fairly evaluate
the performance of different models. Since our task
is different from traditional machine translation
tasks, directly applying existing evaluation metrics
cannot fairly evaluate the performance of different
models. Here, we use an example in Figure 3 to
demonstrate the failure of existing evaluation met-
rics, such as the BLEU score. If we directly copy
the original source sentence as the answer, a very
high BLEU score can be obtained, which is 0.85.
However, the critical term “p¢” is not translated.

Without translating this term, patients or customers
may not totally understand the meaning of this sen-
tence. Thus, it is necessary to design task-specific
metrics.

Source: vascular saw the pt and
did not feel that there was an acute
need for an invasive procedure.
Target: vascular saw the patient
and did not feel that there was

an acute need for an invasive
procedure.

Figure 3: Example of the failure of existing metrics.

e Hit Ratio (HIT). A key challenge of medical
language translation is to translate professional
medical jargon into layperson-understandable
words. Let n,, denote the number of professional
medical terms in a source sentence and n; be the
number of correctly translated terms in the target.
We then have the HIT ratio, whichis HIT = Z—t

P

e Common Word Ratio (CWR). To evaluate the
simplicity of the translated sentences, we follow the
work of Dale—Chall readability (McClure, 1987)
to calculate the common word ratio for each out-
put sentence. We first lemmatize each word of the
output. If the lemmatized form is in the top-3000
commonly-used English words, then it is a com-
mon word. Otherwise, it is not a common word.
Let n. denote the number of common words in the
translated sentence, and n represents the length of
the translated sentence. The common word ratio
score is CWR = “¢.

e Aggregation Score (AScore). The quality of the
translated sentences is not only decided by the read-
ability (BLEU) but also related to the correctness
(HIT) and simplicity (CWR). Among these three
perspectives, readability and correctness should be
more important than simplicity. Thus, we design a
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new score to model them jointly, which is

1+a? + B2

a? B2 1
BLEU + HIT + CWR

where « and (3 are parameters for controlling the
importance of BLEU and HIT scores. If any of the
three metrics is O, then it will be added to a very
small number such as 10~% to avoid AScore being
0. We take oo = 2 and 8 = 1.5 in our experiments.

Ascore =

)

5.2 Experimental Result Analysis

Table 3 shows the experimental results of all base-
lines and DECLARE on different evaluation metrics.
The Dictionary method is the simplest approach,
but its performance is not the worst compared with
other baselines in terms of transitional machine
translation evaluation metrics such as BLEUs. The
reason is that there are many overlapping tokens in
both source and target sentences, which is the main
difference between the traditional machine transla-
tion task and our clinical language understanding
task. These results also confirm that we need to
design new evaluation metrics for this new task.
General neural network-based approaches, in-
cluding Seq2Seq, its variants, and PointerNet, have
a relatively low BLEU score. The reason is that the
labeled data is insufficient for them to train a power-
ful translation model from scratch. For the general
ATS method EditNTS, we can observe a relatively
high score for BLEU. EditNTS is good at keeping
the information. However, due to the lack of exter-
nal knowledge support, the HIT score is still not
satisfactory enough, proving the importance of the
DNLI module. In addition, EditNTS is designed
for the general ATS domain. Many attributes are
not suitable for our task, which can also contribute
to the bad performance. For the transformer-based
pre-trained sequence to sequence models TS and
BART, the BLEU score is relatively high but with
a much lower HIT score compared to Seq2Seq and
PointerNet. The unsatisfied results may be related
to the domain shifting problem since TS5 or BART
models are not pre-trained for the medical text-
domain. On the contrary, BERT-MT conducting
pre-training on a large medical language corpus
significantly increases the ability of model learning.
Hence, the performance of BERT-MT is the best
among all the baselines. However, the proposed
DECLARE mimics the human annotation procedure
and employs a mapping dictionary with a novel
model design, which leads to achieving the best
performance compared with all the baselines.

Using the pre-trained language models is help-
ful to attain a higher SARI score because the pre-
training technique can increase the models’ gener-
alization ability and benefit the word replacement
rewards of the SARI metric. However, SARI does
not focus on the accuracy of simplifying profes-
sional medical abbreviations, which makes it un-
able to comprehensively and fairly evaluate the
results.

From the view of the HIT score, we can find a
sufficient gap between generation-based methods
(including Seq2Seq, Seq2Seq-S, BERT-MT, and
DECLARE) and other methods. To achieve a high
HIT score, the accurate recognition of abbrevia-
tions is necessary. Moreover, the models should
understand the context correctly, which is an ad-
vantage of neural network-based models. Besides,
another requirement is the generation ability. The
use of a reference mechanism probably limits the
generation ability of the PointerNet model, and
thus, it does not achieve a high HIT score.

The CWR score can reflect the simplicity of sen-
tences in a scene. However, we should notice that
the higher CWR scores do not mean better perfor-
mance. The reason is that translating professional
medical terms will inevitably result in some un-
common words. Thus, we should attach less im-
portance to the CWR score when calculating the
comprehensive rank.

The top 3 models in the view of AScore are DE-
CLARE, BERT-MT, and EditNTS, which is reason-
able. The AScore attaches the highest importance
to BLEU, followed by the HIT and CWR scores.
Using the harmonic mean can make sure that we
penalize the tendency of going overboard on one
subject and guarantee good general performance.

6 Conclusion

This paper aims to benchmark a new, challeng-
ing, yet practical task of automated clinical lan-
guage simplification by constructing a high-quality
MedLane dataset and proposing a new model DE-
CLARE that mimics the human annotation proce-
dure. We conducted experiments on the annotated
MedLane dataset by implementing nine strong
baselines against DECLARE. Experimental results
confirmed the utility of the constructed MedLane
dataset and the effectiveness of the proposed DE-
CLARE for addressing the automated clinical lan-
guage simplification task.
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7 Broader Impacts

Current health care service and health information
technology (HIT) system design strive to provide
accessible ways for patients to be engaged in their
own care and make informed decisions. One in-
stance is to make personal health records acces-
sible to patients through patient portals (the elec-
tronic personal health record systems connected
to organizations’ electronic health record systems).
However, only providing access to health records
is insufficient to fully empower patients. Patients
may struggle to understand those records due to
such reasons as low health literacy, unfamiliarity
with medical jargon and clinical abbreviations, or
difficulty in understanding the complex structure
of medical language. Currently, only a few studies
target this practical issue. In this paper, we not only
provide a human-annotated dataset, design a new
model but also propose three evaluation metrics for
benchmarking the clinical language simplification
task. Our work will expedite research in multiple
domains, including but not limited to, natural lan-
guage processing, machine learning, and healthcare
informatics.

8 Ethical Consideration

The original data of our study are directly ex-
tracted from the MIMIC-III database (Johnson
et al., 2016), where all private health information
was de-identified. The MIMIC-III database was
performed under Health Insurance Portability and
Accountability Act (HIPAA) standards, which re-
quire the removal of all the identifying data ele-
ments in the list of HIPAA (e.g., name, phone num-
ber, address, and so on). Thus, this is no privacy
issue for the data that we use. When annotating
the dataset, all annotators submitted all required
consent forms. Since this work only focuses on
simplifying clinical text, and no additional identi-
fied and private information is added. As a result,
the protection of privacy is preserved. For dissem-
inating our dataset to be publicly available, we
will follow the same requirement of the MIMIC-III
data. In other words, the requester must complete a
recognized training for protecting human research
participants and sign an agreement to protect the
data privacy following the requirement of the Phys-
ioNet'® (Goldberger et al., 2000).

Bhttps://physionet.org/
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