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Abstract

Improving our understanding of how informa-
tion is encoded in vector space can yield valu-
able interpretability insights. Alongside vector
dimensions, we argue that it is possible for the
vector norm to also carry linguistic information.
We develop a method to test this: an extension
of the probing framework which allows for rel-
ative intrinsic interpretations of probing results.
It relies on introducing noise that ablates infor-
mation encoded in embeddings, grounded in
random baselines and confidence intervals. We
apply the method to well-established probing
tasks and find evidence that confirms the ex-
istence of separate information containers in
English GloVe and BERT embeddings. Our
correlation analysis aligns with the experimen-
tal findings that different encoders use the norm
to encode different kinds of information: GloVe
stores syntactic and sentence length informa-
tion in the vector norm, while BERT uses it to
encode contextual incongruity.

1 Introduction

Probing in NLP, as defined by Conneau et al.
(2018), is a classification problem that predicts lin-
guistic properties using dense embeddings as train-
ing data. The framework rests on the assumption
that the probe’s success at a given task indicates
that the encoder is storing information on the perti-
nent linguistic properties. Probing has quickly be-
come an essential tool for encoder interpretability,
by providing interesting insights into embeddings.

In essence, embeddings are vectors positioned
in a shared multidimensional vector space, and
vectors are geometrically defined by two aspects:
having both a direction and magnitude (Hefferon,
2018, page 36). Direction is the position in the
space that the vector points towards (expressed by
its dimension values), while magnitude is a vec-
tor’s length, defined as its distance from the origin
(expressed by the vector norm) (Anton and Rorres,
2013, page 131). It is understood that information

contained in a vector is encoded in the dimension
values, which are most often studied in NLP re-
search (see §6). However, information can be en-
coded in a representational vector space in more
implicit ways, and relations can be inferred from
more than just vector dimension values.

We hypothesise that it is possible for the vec-
tor magnitude—the norm—to carry information
as well. Though it is a distributed property of a
vector’s dimensions, the norm not only relates the
distance of a vector from the origin, but indirectly
also its distance from other vectors. Two vectors
could be pointing in the exact same direction, but
their distance from the origin might differ dramat-
ically.1 A similar effect has been observed in the
literature: for many word embedding algorithms,
the norm of the word vector correlates with the
word’s frequency (Schakel and Wilson, 2015). E.g.
in fastText embeddings the vectors of stop words
(the most frequent words in English) are positioned
closer to the origin than content words (Balodis
and Deksne, 2018); and Goldberg (2017) notes that
for many embeddings normalising the vectors re-
moves word frequency information. Additionally,
the norm plays an integral part in BERT’s atten-
tion layer, controlling the levels of contribution
from frequent, less informative words by control-
ling the norms of their vectors (Kobayashi et al.,
2020). It stands to reason that the norm could be
leveraged by embedding models to encode other
linguistic information as well. Hence, we argue
that a vector representation has two information
containers: vector dimensions and the vector norm
(the titular warp and weft). In this paper, we test
the assumption that these two components can be
used to encode different types of information.

To this end, we need a probing method that pro-
vides an intrinsic evaluation of any given embed-

1Mathematically, two vectors can only be considered equal
if both their direction and magnitude are equal (Anton and
Rorres, 2013, page 137).
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ding representation, for which the typical probing
pipeline is not suited. We thus extend the existing
probing framework by introducing random noise
into the embeddings. This enables us to do an in-
trinsic evaluation of a single encoder by testing
whether the noise disrupted the information in the
embedding being tested. The right application of
noise enables us to determine which embedding
component the relevant information is encoded in,
by ablating that component’s information. In turn,
this can inform our understanding of how certain
linguistic properties are encoded in vector space.
We call the method probing with noise and demon-
strate its generalisability to both contextual and
static encoders by using it to intrinsically evaluate
English GloVe and BERT embeddings on a number
of established probing tasks.

This paper’s main contributions are: (a) a
methodological extension of the probing frame-
work: probing with noise; (b) an array of exper-
iments demonstrating the method on a range of
probing tasks; and (c) an exploration of the im-
portance of the vector norm in encoding linguistic
phenomena in different embedding models.

2 Method: Probing With Noise

Our method is an extension of the typical probing
pipeline (steps 1-6), incorporated as steps 7 and 8:

1. Choose a probing task
2. Choose or design an appropriate dataset
3. Choose a word/sentence representation
4. Choose a probing classifier (the probe)
5. Train the probe on the embeddings as input
6. Evaluate the probe’s performance on the task
7. Introduce systematic noise in the embedding
8. Repeat training, evaluate and compare

Usually, the evaluation score from step 6 is used
as a basis to make inferences regarding the presence
of the probed information in embeddings. Differ-
ent encoders are compared based on their evalua-
tion score and the probe’s relative performance can
inform which model stores the information more
saliently. Though ours may seem like a minor ad-
dition, it changes the approach conceptually. Now,
rather than providing the final score, the output
of step 6 establishes an intrinsic, vanilla baseline.
Embeddings with noise injections can then be com-
pared against it in steps 7 and 8, offering a relative
intrinsic interpretation of the evaluation. In other

words, using relative information between a vec-
tor representation and targeted ablations of itself
allows for inferences to be made on where informa-
tion is encoded in embeddings.

The method relies on three supporting pillars: (a)
random baselines, which in tandem with the vanilla
baseline provide the basis for a relative evaluation;
(b) statistical significance derived from confidence
intervals, which informs the inferences we make
based on the relative evaluation; and (c) targeted
noise, which enables us to examine where the in-
formation is encoded. We describe them in the
following subsections, starting with the noise.

2.1 Choosing the Noise

The nature of the noise is crucial for our method,
as the goal is to systematically disrupt the content
of the information containers in order to identify
whether a container encodes the information. We
use an ablation method to do this: by introduc-
ing noise into either container we “sabotage” the
representation, in turn identifying whether the in-
formation we are probing for has been removed.
Though we introduce random noise, our choice of
how to apply it is systematic, as it is important that
the noising function applied to one container leaves
the information in the remaining container intact,
otherwise the results will not offer relevant insight.

Ablating the Dimension Container: The noise
function for ablating the dimensions needs to re-
move its information completely, while leaving
the norm intact. It should also not change the di-
mensionality of the vector, given that a change in
the dimensionality of a feature also changes the
chance of the probe finding a random or spurious
hyper-plane that performs well on the data sample.
Maintaining the dimensionality thus ensures that
the probability of the model finding such a lucky
split in the feature space remains unchanged.

Our noise function satisfies these constraints:
for each embedding in a dataset, we generate a
new, random vector of the same dimensionality,
then scale the new dimension values to match the
norm of the original vector. This invalidates any
semantics assigned to a particular dimension as the
values are replaced with meaningless noise, while
retaining the original vector’s norm values.

Ablating the Norm Container: To remove in-
formation potentially carried by a vector’s norm
while retaining dimension information, we apply a
noising function analogous to the previous one: for
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each embedding we generate a random norm value,
and then scale the vector’s original dimension val-
ues to match the new norm. This randomises vector
magnitudes, while the relative sizes of the dimen-
sions remain unchanged. In other words, all vectors
will keep pointing in the same directions, but any
information encoded by differences in magnitude
is removed.2

Ablating Both Containers: The two ap-
proaches are not mutually exclusive: applying both
noising functions should have a compounding ef-
fect and ablate both information containers simul-
taneously, essentially generating a completely ran-
dom vector with none of the original information.

2.2 Random Baselines

Even when no information is encoded in an embed-
ding, the train set may contain class imbalance, and
the probe can learn the distribution of classes. To
account for this, as well as the possibility of a pow-
erful probe detecting an empty signal (Zhang and
Bowman, 2018), we need to establish informative
random baselines against which we can compare
the probe’s performance.

We employ two such baselines: (a) we assert a
random prediction onto the test set, negating any
information that a classifier could have learned,
class distributions included; and (b) we train the
probe on randomly generated vectors, establishing
a baseline with access only to class distributions.

2.3 Confidence Intervals

Finally, we must account for the degrees of ran-
domness, which stem from two sources: (1) the
probe may contain a stochastic component, e.g. a
random weight initialisation; (2) the noise func-
tions are highly stochastic (i.e. sampling random
norm/dimension values). Hence, evaluation scores
will differ each time the probe is trained, making
relative comparisons of scores problematic. To
mitigate this, we retrain and evaluate each model
50 times reporting the average score of all runs,
essentially bootstrapping over the random seeds.

To obtain statistical significance for the aver-
ages, we calculate a 99% confidence interval (CI)
to confirm that observed differences in the averages
of different model scores are significant. We use

2We are conscious that vectors have more than one kind of
norm, so choosing which norm to scale to might not be triv-
ial. We have explored this in supplementary experiments and
found that in our framework there is no significant difference
between scaling to the L1 norm vs. L2 norm.

the CI range when comparing evaluation scores
of probes on any two noise models to determine
whether they come from the same distribution: if
there is overlap in the range of two possible av-
erages they might belong to the same distribution
and there is no statistically significant difference
between them. Using CIs in this way gives us a
clearly defined decision criterion on whether any
model performances are different.

3 Data

In our experiments we use 10 established prob-
ing task datasets for the English language intro-
duced by Conneau et al. (2018). The goal of the
multi-class Sentence Length (SL) probing task is
to predict the length of the sentence as binned in
6 possible categories, while Word Content (WC)
is a task with 1000 words as targets, predicting
which of the target words appears in a given sen-
tence. The Subject and Object Number tasks (SN
and ON) are binary classification tasks that predict
the grammatical number of the subject/object of
the main clause as being singular or plural, while
the Tense (TE) task predicts whether the main verb
of the sentence is in the present or past tense. The
Coordination Inversion (CIN) task distinguishes
between a sentence where the order of two coor-
dinated clausal conjoints has been inverted or not.
Parse Tree Depth (TD) is a multi-class prediction
task where the goal is to predict the maximum
depth of the sentence’s syntactic tree, while Top
Constituents (TC) predicts one of 20-classes of the
most common syntactic top-constituent sequences.
In the Bigram Shift (BS) task, the goal is to pre-
dict whether two consecutive tokens in the sentence
have been inverted, and Semantic Odd Man Out
(SOMO) is a task predicting whether a noun or verb
was replaced with a different noun or verb. We use
these datasets as published in their totality, with
no modifications.3 We also consider these tasks
to represent examples of different language do-
mains: surface information (SL,WC), morphology
(SN,ON,TE), syntax (TD,TC,CIN) and contextual
incongruity (BS,SOMO). This level of abstraction
can lend itself to interpreting the experimental re-
sults, as there may be similarities across tasks in
the same domain (note that Durrani et al. (2020)
follow a similar line of reasoning).

3https://github.com/facebookresearch/
SentEval/tree/master/data/probing
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4 Experiments

4.1 Models and Implementation

Given the current prominence of contextual en-
coders, such as BERT (Devlin et al., 2019), ELMo
(Peters et al., 2018b) and their derivatives, they are
an obvious choice for the application of our method.
However, rather than compare different contextual
encoders, we prefer to draw a contrastive compar-
ison with a static encoder, such as GloVe (Pen-
nington et al., 2014), which is a distributed repre-
sentation based on a word to word co-occurrence
matrix. This provides insight into both models and
demonstrates the method’s generalisability to more
than one type of encoder. In our experiments we
examine BERT and GloVe embeddings.

Note that all the probing datasets we use are
framed as classification tasks at the sentence level
(see §3), so our experiments require sentence rep-
resentations. We use pretrained versions of BERT
and GloVe to generate embeddings for each sen-
tence. The BERT model generates 12 layers of em-
bedding vectors with each layer containing a sepa-
rate 768-dimensional embedding for each word, so
we average the word embeddings in BERT’s final
layer, resulting in a 768-dimensional sentence em-
bedding. We take the same mean pooling approach
with GloVe, which yields a 300-dimensional sen-
tence embedding for each sentence. While BERT
uses sub-word tokens to get around out of vocab-
ulary tokens, in the rare instance of encountering
an OOV with GloVe, we generate a random word
embedding in its stead.

In each set of experiments, the sentence embed-
dings are used as input to a Multi-Layered Percep-
tron (MLP) classifier, which labels them accord-
ing to the probing task. We evaluate the perfor-
mance of all probes using the AUC-ROC score.4

Regarding implementation and parameter details,
we used the bert-base-uncased BERT model from
the pytorch_pretrained_bert library5 (Paszke et al.,
2019), a pre-trained GloVe model6 and for the MLP
probe we used the scikit-learn MLP implementa-
tion (Pedregosa et al., 2011) using the default pa-

4https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.roc_
auc_score.html

5https://pypi.org/project/
pytorch-pretrained-bert/

6The larger common crawl vectors: https://nlp.
stanford.edu/projects/glove/

rameters.7,8

4.2 Chosen Noise Models

As described in §2, we remove information from
the norm by sampling random norm values and scal-
ing the vector dimensions to the new norm. How-
ever, considering that vectors have more than one
calculable norm, the scaling can be done to match
more than one norm value. We have examined the
effects of scaling to both the L1 and L2 norms,
as they are most widely used in NLP, and found
that applying our norm ablation noise function to
scale to either norm removes information from both
norms (see Table 3).9 In order to streamline the
results presentation, henceforth when discussing
norm ablations we only report results pertaining to
scaling to the L2 norm.

To ablate information encoded in the dimension
container, we randomly sample dimension values
and then scale them to match the original norm of
the vector (see §2).10 We expect this to fully re-
move all interpretable information encoded in the
dimension values, making the norm the only infor-
mation container available to the probe. Applying
both noise functions together on the same vector
should remove any information encoded in it.

Finally, we use the vanilla BERT and GloVe sen-
tence embeddings in their respective evaluations
as vanilla baselines against which the models with
noise are compared. Here the probe has access to
both information containers: dimensions and norm.
However, it is also important to establish the vanilla
baseline’s performance against the random base-
lines: we need to confirm whether the information
is in fact encoded somewhere in the embeddings.

7activation=’relu’, solver=’adam’, max_iter=200,
hidden_layer_sizes=100, learning_rate_init=0.001,
batch_size=min(200,n_samples), early_stopping=False,

weight init. W ∼ N
(
0,
√

6/(fanin + fanout)
)

(scikit

relu default). See: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

8Code available here: https://github.com/
GreenParachute/probing-with-noise

9This contrasts with applying a normalisation function to
the vector, where normalising to one of the norms removes
information encoded in that norm, but retains, or even empha-
sises the information in the remaining norm, making normali-
sation an unsuitable ablation function (see §A for details).

10The random norm and dimension values are sampled
uniformly from a range between the minimum and maxi-
mum norm/dimension values of the respective embeddings
on all 10 datasets. BERT norm range: [7.1896,13.2854],
BERT dimension range: [-5.427,1.9658]; GloVe norm range:
[2.0041,8.0359], GloVe dimension range: [-2.5446,3.1976]
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GloVe Key
Model SL WC SN ON TE Surface Info.

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI SL: Sentence Length
rand. pred. .5006 .0013 .4995 .001 .4996 .002 .4999 .0023 .4981 .0022 WC: Word Content
rand. vec. .4999 .0011 .5006 .0009 .499 .0022 .4998 .0024 .4997 .0024 Morphology
vanilla .9475 .0005 .9974 .0001 .8114 .0014 .7805 .0013 .8632 .0014 SN: Subject Number
abl. N .9384 .0005 .994 .0001 .8058 .0016 .7743 .0018 .8594 .0013 ON: Object Number
abl. D .5481 .0013 .504 .0011 .5003 .0022 .4994 .0024 .5013 .0025 TE: Tense
abl. D+N .5001 .0011 .4999 .0008 .4987 .0024 .4994 .002 .4998 .0021 Syntax
Model CIN TD TC BS SOMO CIN: Coordination

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI Inversion
rand. pred. .5004 .0022 .5005 .0012 .5005 .0009 .4998 .0022 .4999 .0026 TD: Parse Tree Depth
rand. vec. .4993 .0022 .5002 .0014 .5004 .0009 .4989 .0023 .4991 .0023 TC: Top Constituents
vanilla .5493 .0019 .7799 .0012 .9512 .0004 .5017 .0021 .5291 .0021 Incongruity
abl. N .5437 .002 .7689 .001 .9438 .0004 .5034 .0024 .5235 .002 BS: Bigram Shift
abl. D .5003 .0023 .5137 .0012 .5331 .0013 .499 .0026 .5005 .0021 SOMO: Semantic
abl. D+N .5004 .0021 .501 .0013 .4996 .0011 .4996 .0024 .5007 .0019 Odd Man Out

Table 1: Experimental results on GloVe models and baselines. Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs. Cells shaded light grey belong to the same distribution as random
baselines, dark grey cells share the vanilla baseline distribution, while scores significantly different from both the
random and vanilla baselines are unshaded, while the most pertinent scores are marked in bold.

4.3 Results

Detailed experimental evaluation results for GloVe
and BERT on each of the 10 probing tasks are pre-
sented in Tables 1 and 2 respectively. Note that all
cells shaded light grey belong to the same distribu-
tion as random baselines on a given task, as there
is no statistically significant difference between the
different scores11; cells shaded dark grey belong to
the same distribution as the vanilla baseline on a
given task; and all cells that are not shaded contain
a significantly different score than both the random
and vanilla baselines, indicating that they belong to
different distributions. The scores most pertinent
to the result discussion are marked in bold.

GloVe results: The vanilla GloVe vectors out-
perform the random baselines on all tasks except
BS. This is not surprising, as BS is essentially a
local-context task, and GloVe does not encode con-
text in such a localised manner. In all other tasks,
at least some task-relevant information is encoded
in the embeddings. Having established the vanilla
results as a baseline for the ablations, we examine
which information container encodes the relevant
information: dimension or norm.

Generally, the results show that the answers are
task-dependent. In the SN, ON, TE, CIN and

11We highlight that the rand. vec. baseline is equivalent to
the scenario where both dimensions and norm are ablated (abl.
D+N). While the two scenarios are arguably the exact same
condition, we include both of them in the results presentation
to demonstrate a consistent application of our methodology,
where we consider rand. vec. to be a baseline, and the abl.
D+N a sense-check of our ablation functions.

SOMO tasks, there is a substantial drop in the
probe’s performance after ablating the dimension
container and it is immediately comparable to ran-
dom baselines. Furthermore, performance does not
significantly change after also ablating the norm,
indicating that for these tasks no pertinent informa-
tion is stored in the norm, and that all the informa-
tion the probe uses is stored in the dimensions.

However, the results for the SL, WC, TD and
TC probes tell a different story. Once the dimen-
sion container is ablated from these vectors, al-
though the performance drops markedly compared
to vanilla, it does not quite reach the random base-
line performance as observed in the above tasks.12

These results indicate that for these tasks the rele-
vant information is not contained only in the dimen-
sion container. Furthermore, when the dimension
and norm ablation functions are applied together,
this induces a further performance drop, and the
resulting performance scores become comparable
to the random baselines. This indicates that the
vectors with ablated dimension information still
contain residual information relevant to the task,
which is removed when also ablating the norm,
pointing to the fact that the norm contains some
of the relevant information regardless of what is
encoded in the vector dimensions.

We should note here that, while it is true that in

12This is true even in the case of WC, where the difference
is really quite small, yet still statistically significant. Note that
the WC task is a particularly unusual classification task, as
there are 1000 possible classes to predict, which could explain
the statistical significance of such a small difference.

408



BERT Key
Model SL WC SN ON TE Surface Info.

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI SL: Sentence Length
rand. pred. .5002 .0006 .4996 .0012 .4995 .0021 .4988 .0022 .5007 .0021 WC: Word Content
rand. vec. .5003 .0004 .4997 .0009 .5006 .002 .4996 .0024 .4993 .0021 Morphology
vanilla .9733 .0011 .982 .0003 .9074 .0008 .8674 .0019 .9135 .0008 SN: Subject Number
abl. N .973 .0008 .9783 .0003 .9078 .0008 .8658 .0017 .9118 .0012 ON: Object Number
abl. D .5047 .0008 .5013 .0011 .4992 .0021 .5004 .0023 .5007 .0019 TE: Tense
abl. D+N .4997 .0008 .5 .0013 .5006 .0024 .4994 .0024 .4983 .0021 Syntax
Model CIN TD TC BS SOMO CIN: Coordination

auc ±CI auc ±CI auc ±CI auc ±CI auc ±CI Inversion
rand. pred. .5007 .0022 .4999 .0012 .5001 .0013 .5011 .0020 .499 .0018 TD: Parse Tree Depth
rand. vec. .5014 .0019 .4999 .0012 .5001 .0013 .5005 .0024 .5001 .0021 TC: Top Constituents
vanilla .7472 .0016 .7751 .0016 .9562 .0002 .9382 .0006 .6401 .0013 Incongruity
abl. N .7492 .0018 .7709 .0016 .9547 .0004 .9371 .001 .6396 .0017 BS: Bigram Shift
abl. D .5049 .0021 .5004 .0013 .5093 .0019 .556 .0025 .5272 .002 SOMO: Semantic
abl. D+N .5015 .0035 .5 .0012 .5001 .001 .4972 .0035 .4997 .002 Odd Man Out

Table 2: Experimental results on BERT models and baselines. Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs. Cells shaded light grey belong to the same distribution as random
baselines, dark grey cells share the vanilla baseline distribution, while scores significantly different from both the
random and vanilla baselines are unshaded, while the most pertinent scores are marked in bold.

all tasks ablating the norm alone causes a statisti-
cally significant drop in performance, this finding
on its own should not be taken as an indicator that
the norm encodes task-relevant information. Given
how consistently small the drop is across all tasks
(<0.1), this is more likely an artefact of an interac-
tion between the noising function and the GloVe
vectors. The more reliable indicator of where the
information is encoded is the experiment on dimen-
sion ablations compared to ablating both dimension
and norm: if for a particular task performance re-
mains above random after ablating dimensions, but
drops to random when ablating both dimensions
and norms, this shows that the norm is encoding at
least part of the relevant information.

BERT results: The vanilla BERT vectors out-
perform random baselines across all tasks, includ-
ing the BS task. When ablating the dimensions
on most tasks, the probe’s performance drops dra-
matically and is comparable to random baselines.
It does not change after also ablating the norm,
indicating that no pertinent information is stored
in BERT’s norm container for these tasks. How-
ever, the BS and SOMO tasks show that some of
the task information is stored in BERT’s norm, as
the performance drop when ablating dimensions
is not comparable to random baselines, and only
reaches that once the norm is also ablated. The
same is true for the syntactic TC task, which is also
the only BERT result that shows a similar trend as
GloVe, though it seems that BERT stores far less
TC information in the norm than GloVe does.

Ultimately, our experimental results allow us to
make a number of general inferences: (a) the norm
is indeed a separate information container, (b) on
most tasks the vast majority of the relevant infor-
mation is encoded in the dimension values, but can
be supplemented with information from the norm,
(c) though the information contained in the norm is
not always very impactful, it is not negligible, (d)
different encoders use the norm to carry different
types of information, (e) specifically BERT stores
information pertinent to the BS, SOMO and TC
tasks in the norm, (f) while GloVe uses it to store
SL, WC, TC and TD information.

4.4 Norm Correlation Analysis

While we have demonstrated that information can
be encoded in the norm, we wish to also understand
the relationship between the norms and the probed
information. We explore this with a Pearson cor-
relation analysis: we test the correlation between
each vector norm and the sentence labels on each
probing task dataset.13 The correlation results are
presented in Table 3, and largely support our result
interpretations from §4.3,14 including that applying

13The Pearson test only works on continuous variables, but
it is still possible to calculate with categorical variables if they
are binary, by simply converting the categories to 0 and 1.

14In cases such as WC and TC where there are more than
two categorical variables we can perform a Kruskal-Wallis
test to determine a statistically significant difference between
the categories. This does not quantify the difference in the
same way as a Pearson test, and does not allow us to determine
whether the correlation is positive or not, nor how strong it is.
Instead we can only say that we performed the test and found

409



Task Vectors GloVe BERT
L1 L2 L1 L2

Vanilla -0.7278 -0.3758 -0.1564 -0.1039
SL Abl. norm -0.1893 -0.0025 -0.0417 -0.0013

Vanilla 0.0360 0.0268 0.0071 0.0146
SN Abl. norm 0.0036 -0.0033 -0.0035 -0.0021

Vanilla 0.0013 0.0008 -0.0736 -0.0583
ON Abl. norm 0.0009 0.0013 -0.0181 -0.0010

Vanilla 0.1152 0.0571 0.0542 0.0413
TE Abl. norm 0.0277 -0.0031 0.0097 -0.0030

Vanilla -0.0817 0.1908 -0.0415 -0.0251
TD Abl. norm -0.0665 0.0016 -0.0163 -0.0045

Vanilla -0.0019 -0.0094 -0.0755 -0.0638
CIN Abl. norm 0.0029 0.0018 -0.0152 -0.0015

Vanilla 0.0040 0.0002 -0.3866 -0.3238
BS Abl. norm 0.0022 0.0006 -0.0978 -0.0005
SO Vanilla -0.0464 -0.0222 -0.2414 -0.2305
MO Abl. norm -0.0105 0.0000 -0.0420 0.0021

Table 3: Pearson correlation coefficients between the
class labels and vector norms for vanilla vectors and
vectors with ablated norms.

our noise function to ablate the norm fully removes
the information from the norms: the correlation
between either norm and the class labels drops to
≈0,15 indicating that information encoded by the
norm and any distinguishing properties it may have
had have been removed.

The data shows that most task labels do not ex-
hibit a correlation with the vanilla GloVe norm.
There is a moderate positive correlation between
TD and the L2 norm, but not the L1 norm, and
a weak positive correlation between TE and the
L1 norm, but not the L2 norm. There is a high
correlation between the SL labels and both norms,
showing that GloVe uses the norm to encode sen-
tence length, as reflected in our experiments in §4.

When it comes to vanilla BERT, most task labels
do not exhibit a correlation with the norms. How-
ever, both norms have a weak negative correlation
with SL, and a moderate negative correlation with
BS and SOMO. The latter two are most highly cor-
related with BERT’s norm, which also aligns with
our experimental findings in §4.

5 Discussion

The correlation coefficients in Table 3 can be inter-
preted in terms of how these linguistic phenomena
are encoded in vector space. A negative correla-
tion coefficient means that larger norms indicate a

the results to be significant, indicating some correlation.
15Except in GloVe-SL-L1 where the coefficient ’only’ drops

from strongly correlated to weakly correlated.

negative class, while a positive coefficient means
that larger norms indicate a positive class. For ex-
ample, the negative correlation in SL-GloVe and
SL-BERT indicates that longer sentences are posi-
tioned closer to the origin. The same interpretation
holds for BERT embeddings on the BS and SOMO
tasks; e.g. in SOMO a sentence containing an out
of context word is positioned closer to the origin.

It is interesting that BERT’s norm stores informa-
tion on the BS and SOMO tasks specifically. Their
common thread is a violation of the local context
of the affected words: though the overall context
and structure of the sentence is unaffected, there
is a small, localised disruption in co-occurrences.
Hence, these tasks capture contextual incongruity.
Given that we know that BERT is a contextual en-
coder, and that its self-attention uses the vector
norm to control the levels of contribution from less
informative words (Kobayashi et al., 2020), we
suspect that this gives it the capabilities to accu-
rately model these short-distance dependencies and
word co-occurence probabilities, concepts which
strongly correspond to local contextual incongruity.
BERT is evidently capable of encoding this signal
well, and seems to be using its norm to supplement
the encoding of the phenomenon in such a way that
it positions sentences exhibiting local contextual in-
congruity closer to the origin, relative to sentences
that do not contain it. Furthermore, BERT’s ability
to model incongruity via the norm could essentially
be frequency-based, similar to how some word em-
beddings encode word frequency in the norm. In
contrast, GloVe is a static encoder and exhibits
no indication that it stores this information in the
norm, or indeed any ability to accurately model
this phenomenon at all, but uses the norm to store
surface-level and syntactic information.

We emphasise the importance of the norm as
it expands our understanding of the way informa-
tion is encoded in vector space, but it could also
have important implications for downstream tasks
involving operations on vectors: e.g. the calcula-
tion of a cosine similarity measure normalises the
vectors being compared. This nullifies the informa-
tion in the norm, reducing the comparison to one
of directions (i.e. dimensions), and any linguistic
information encoded in the norm will be lost and
unaccounted for when making the comparison.
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6 Related Work

Probing has been proposed seemingly indepen-
dently by different groups of NLP researchers
(Ettinger et al., 2016; Shi et al., 2016; Veldhoen
et al., 2016; Adi et al., 2017) and has gained sig-
nificant momentum in the community, helping to
explore different aspects of text encodings (e.g.
Hupkes et al. (2018); Giulianelli et al. (2018);
Krasnowska-Kieraś and Wróblewska (2019); Ten-
ney et al. (2019a); Lin et al. (2019); Şahin et al.
(2020); Liu et al. (2021); Arps et al. (2022)). Probes
trained on various representations successfully pre-
dict surface properties of sentences (Adi et al.,
2017; Conneau et al., 2018), POS and morpho-
logical information (Belinkov et al., 2017a; Liu
et al., 2019), as well as syntactic (Zhang and Bow-
man, 2018; Peters et al., 2018a; Tenney et al.,
2019b), semantic (Belinkov et al., 2017b; Ahmad
et al., 2018; Conia and Navigli, 2022), and even
number (Wallace et al., 2019), emotions (Qian
et al., 2016), idiomaticity (Salton et al., 2016; Ne-
dumpozhimana and Kelleher, 2021; Garcia et al.,
2021; Nedumpozhimana et al., 2022) and world
knowledge information (Ettinger, 2020), among
others (Belinkov and Glass, 2019; Rogers et al.,
2020; Koto et al., 2021; Ousidhoum et al., 2021;
Aghazadeh et al., 2022).

Furthermore, some dichotomies have emerged in
the literature, due to nuanced differences in the pre-
suppositions behind probing approaches. Ravichan-
der et al. (2020) distinguish varying points of view
on embeddings, highlighting a difference between
instrumentative and agentive probing. Vig et al.
(2020) view probing as a method of analysis and
distinguish two types of methods: structural and
behavioural. Additionally, Pimentel et al. (2020)
and Voita and Titov (2020) take an information-
theoretic perspective on embeddings, highlighting
the tension between probing identifying the mere
presence of information, versus its extractability.
We position our work as being instrumentative,
i.e. we view embeddings as tools that extract and
store knowledge from text; we consider our prob-
ing method to be structural, i.e. it provides insight
into how information is encoded within the rep-
resentation and the vector space; and the goal of
our work is to identify the presence of informa-
tion in embedding components. It is important to
clearly signpost this position in order to avoid con-
fusion and emphasise that our chosen approach is
sufficient to address our research questions.

Meanwhile, recent work calls for greater rigor in
evaluation approaches in NLP (McCoy et al., 2020;
Sadeqi Azer et al., 2020; Card et al., 2020), advocat-
ing for more widespread use of statistical tests on
common benchmarks. Probing has attracted simi-
lar criticism: Hewitt and Liang (2019) have shown
that under certain conditions, above-random prob-
ing accuracy can be achieved even when probing
for linguistically-meaningless noise. Recent work
addresses some of these problems by constructing
counterfactual representations in order to compare
the performance of the probe with and without the
pertinent information (Feder et al., 2020). Simi-
larly, Elazar et al. (2020) remove the relevant in-
formation from the representation, allowing a com-
parison of probe performance with and without the
removed information; not unlike the intrinsic probe
of Torroba Hennigen et al. (2020) who focus on
isolating the dimensions that encode relevant infor-
mation. In essence, these recent efforts address the
issue of relativising probe interpretations by remov-
ing information from the encoding; in that sense,
our work finds its place alongside them. However,
our method is not meant to remove specific infor-
mation, but is more exploratory in nature, with a
focus on understanding where within an embedding
certain information is encoded. Our use of confi-
dence intervals gives us a way to claim statistically
significant differences in our evaluations, offering
a more principled basis for result interpretation.

Our work also contributes to the relatively scarce
study of the role of the norm: Adi et al. (2017) ex-
plain its correlation with SL information due to the
central limit theorem (which we see does not apply
to BERT as its vector values are not centred around
zero). Hewitt and Manning (2019) show that the
squared L2 norm of BERT and ELMo corresponds
to the depth of the word in a parse tree (a finding
we could not confirm as they probe embeddings at
the word level, unlike our work). In contrast, work
on the role of dimensions as carriers of specific
types of information is plentiful (e.g. Karpathy
et al. (2015); Qian et al. (2016); Bau et al. (2019);
Dalvi et al. (2019); Lakretz et al. (2019)). Work
complementary to ours (Torroba Hennigen et al.,
2020) which focuses on the dimension container
also highlights the need for an intrinsic probe of
embedding models, and shows that most linguistic
properties are reliably encoded by only a handful
of dimensions, a finding consistent with Durrani
et al. (2020) and Durrani et al. (2022).
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7 Conclusion

We have developed a method of enquiry that pro-
vides geometric insights into embeddings and show
experimental evidence that both BERT and GloVe
embeddings use two separate information contain-
ers to store different types of linguistic information.
Our findings show that BERT primarily uses the
norm to store contextual incongruity information
and positions incongruous sentences closer to the
origin. Meanwhile, GloVe stores much more syn-
tactic information in its norm than BERT, but does
not store contextual information at all, and mainly
stores surface-level information in the norm.

Probing with noise can shift perspectives and
broaden our understanding of embeddings, demon-
strated by our experiments which provide novel in-
sights into contextual and static encoders. However,
they are by no means exhaustive: deeper and fur-
ther applications of the method, such as exploring
a host of other representations, different pooling
strategies or tracking behavior across embedding
layers, exploring word-level tasks or folding in ad-
ditional datasets, are all fruitful avenues for future
work. Fortunately, the method is robust enough to
be applied to any encoder and any dataset, whether
it is at the word or sentence level, which allows for
systematic further study.

Limitations

While our insights into how linguistic information
can be encoded in embeddings are valuable on their
own merit, our experiments mainly serve the pur-
pose of validating the probing with noise method,
in demonstrating that it can produce relevant in-
sights on different types of embeddings. Hence
we did not have scope to more thoroughly pursue
many of the topics touched upon in the paper.

One example is our choice in generating sen-
tence embeddings needed to probe for sentence-
level information. The encoders we have used
generate word-level embeddings, so we average
the word embeddings in each sentence, as this
is one of the most popular ways to generate sen-
tence representations. However, there are other
known approaches available to choose from, such
as max pooling and min pooling, or, when it comes
to BERT, using the CLS token.16 Indeed, rather
than a pooling strategy, using direct sentence-level

16Presumably, we may have observed a crisper effect in
BERT encoding incongruity using min or max pooling, given
that the BS task mainly affects only a few vectors in a sentence.

representations such as doc2vec (Le and Mikolov,
2014) or SentenceBERT (Reimers and Gurevych,
2019) might also be prudent, as well as applying
the method to word-level representations, for which
this paper did not allow scope.

Similarly, we have consistently used only one
probing classifier, an MLP with default parameters,
and we cannot say whether parameter tuning or dif-
ferent probes would yield different results. These
choices were made consciously, in order to avoid
adding more variables to our line of enquiry and
increasing the complexity of our experiments, yet it
is still a limitation in the sense that we do not know
whether the findings generalise to other probes.

It is also worth noting that the correlation study
in §4 comes with the limitation of only describ-
ing linear relationships, whereas it is possible that
connections between variables can be non-linear.
We argue that this demonstrates the value of our
method, which allows for a non-linear probe to test
for non-linear relationships. While even this lim-
ited correlation test can provide interesting insights,
much more can be done to study both the norm
and the dimension container—we have just barely
scratched the surface. Indeed, we have considered
only the most fundamental geometric properties of
vectors, yet vectors have other (distributed) prop-
erties that could potentially be considered distinct
information containers in their own right, such as
the vector’s minimum and maximum value, their
ratio, the entropy in the vector etc. Thankfully
the principles underpinning our method can be ex-
panded to include other types of noise that help
discriminate other possible geometric properties of
embeddings as information containers.

These points speak to the more general limita-
tions of our research: like any empirical work, we
measure behaviours on a number of data points
and draw conclusions from these measurements.
Thus there is a risk that our findings hold only for
the datasets on which we measured or the models
which were used to measure, be it encoders, probes
or probing tasks, and it is possible that our find-
ings might not generalise to other settings. While
this issue is more epistemological than it is specific
to our work, we must keep it in mind. Now, hav-
ing demonstrated that a signal is detectable in our
particular setting, a more comprehensive host of
studies is needed to draw more general conclusions.

Another source of uncertainty stems from our
use of off-the-shelf GloVe and BERT embeddings:
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they have been trained on completely different
datasets of dramatically varying sizes and content.
To truly test the interaction of their architectures
with our method, the training data used to train
their word embeddings should be identical between
both encoders, however implementing this was not
feasible in practice. Granted, using off-the-shelf va-
rieties does provide insight into the functioning of
well-known and commonly used embeddings, but
it consequently limits the comparability of their re-
sults as we cannot confidently distinguish whether
differences in probe performance are due to differ-
ences in encoder architecture or training data.

While we acknowledge a number of the work’s
limitations, we stress that all our choices have been
made in a sound, informed and methodologically
consistent manner. Here we simply highlight just
how many choices have been made along the way,
and how quickly the number of alternative paths
grows the further back up the decision tree we look.
While we believe that the work is fundamentally
sound, each choice could have made for a drasti-
cally different suite of experiments and could poten-
tially have yielded different results. In fact, we find
this to be a very exciting motivator for future work,
as this long list of “missed opportunities” only goes
to show how young and rich this research area still
is and how many more avenues there are to explore.

Acknowledgements

This research was conducted with the financial sup-
port of Science Foundation Ireland under Grant
Agreements No. 13/RC/2106 and 13/RC/2106_P2
at the ADAPT SFI Research Centre at Technologi-
cal University Dublin. ADAPT, the SFI Research
Centre for AI-Driven Digital Content Technology,
is funded by Science Foundation Ireland through
the SFI Research Centres Programme, and is co-
funded under the European Regional Development
Fund.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi,

and Yoav Goldberg. 2017. Fine-grained analysis of
sentence embeddings using auxiliary prediction tasks.
In Proceedings of ICLR, 2017.

Ehsan Aghazadeh, Mohsen Fayyaz, and Yadollah
Yaghoobzadeh. 2022. Metaphors in pre-trained lan-
guage models: Probing and generalization across
datasets and languages. In Proceedings of the 60th
Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 2037–
2050, Dublin, Ireland. Association for Computational
Linguistics.

Wasi Uddin Ahmad, Xueying Bai, Zhechao Huang,
Chao Jiang, Nanyun Peng, and Kai-Wei Chang. 2018.
Multi-task learning for universal sentence embed-
dings: A thorough evaluation using transfer and aux-
iliary tasks.

Howard Anton and Chris Rorres. 2013. Elementary
linear algebra: applications version. John Wiley &
Sons.

David Arps, Younes Samih, Laura Kallmeyer, and Has-
san Sajjad. 2022. Probing for constituency structure
in neural language models.

Kaspars Balodis and Daiga Deksne. 2018. Intent detec-
tion system based on word embeddings. In Artificial
Intelligence: Methodology, Systems, and Applica-
tions, pages 25–35, Cham. Springer International
Publishing.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017a. What do neural
machine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 861–872, Vancouver, Canada.
Association for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2017b. Eval-
uating layers of representation in neural machine
translation on part-of-speech and semantic tagging
tasks. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1–10, Taipei, Taiwan.
Asian Federation of Natural Language Processing.

Dallas Card, Peter Henderson, Urvashi Khandelwal,
Robin Jia, Kyle Mahowald, and Dan Jurafsky. 2020.
With little power comes great responsibility. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9263–9274, Online. Association for Computa-
tional Linguistics.

Simone Conia and Roberto Navigli. 2022. Probing for
predicate argument structures in pretrained language
models. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4622–4632, Dublin,
Ireland. Association for Computational Linguistics.

413

https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.18653/v1/2022.acl-long.144
https://doi.org/10.18653/v1/2022.acl-long.144
http://arxiv.org/abs/1804.07911
http://arxiv.org/abs/1804.07911
http://arxiv.org/abs/1804.07911
https://doi.org/10.48550/ARXIV.2204.06201
https://doi.org/10.48550/ARXIV.2204.06201
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://aclanthology.org/I17-1001
https://doi.org/10.18653/v1/2020.emnlp-main.745
https://doi.org/10.18653/v1/2022.acl-long.316
https://doi.org/10.18653/v1/2022.acl-long.316
https://doi.org/10.18653/v1/2022.acl-long.316


Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Bhavana Dalvi, Niket Tandon, Antoine Bosselut, Wen-
tau Yih, and Peter Clark. 2019. Everything happens
for a reason: Discovering the purpose of actions in
procedural text. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4496–4505, Hong Kong, China. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nadir Durrani, Fahim Dalvi, and Hassan Sajjad.
2022. Linguistic correlation analysis: Discovering
salient neurons in deepnlp models. arXiv preprint
arXiv:2206.13288.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pre-trained language models. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4865–4880, Online. Association for Computational
Linguistics.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2020. When bert forgets how to POS:
Amnesic probing of linguistic properties and MLM
predictions. arXiv preprint arXiv:2006.00995.

Allyson Ettinger. 2020. What bert is not: Lessons from
a new suite of psycholinguistic diagnostics for lan-
guage models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134–139, Berlin, Ger-
many. Association for Computational Linguistics.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart.
2020. CausaLM: Causal model explanation through
counterfactual language models. arXiv preprint
arXiv:2005.13407.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. Probing
for idiomaticity in vector space models. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3551–3564, Online. Association
for Computational Linguistics.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Under
the hood: Using diagnostic classifiers to investigate
and improve how language models track agreement
information. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 240–248.

Yoav Goldberg. 2017. Neural network methods for
natural language processing. Synthesis Lectures on
Human Language Technologies, 10(1):117.

Jim Hefferon. 2018. Linear Algebra. openintro.org.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelli-
gence Research, 61:907–926.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
CoRR, abs/1506.02078.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2020. Attention is not only a weight:
Analyzing transformers with vector norms. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7057–7075, Online. Association for Computa-
tional Linguistics.

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021.
Discourse probing of pretrained language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 3849–3864, Online. Association for Computa-
tional Linguistics.

414

https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/D19-1457
https://doi.org/10.18653/v1/D19-1457
https://doi.org/10.18653/v1/D19-1457
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/2020.emnlp-main.395
https://doi.org/10.18653/v1/W16-2524
https://doi.org/10.18653/v1/W16-2524
https://doi.org/10.18653/v1/2021.eacl-main.310
https://doi.org/10.18653/v1/2021.eacl-main.310
https://joshua.smcvt.edu/linearalgebra/book.pdf
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
http://arxiv.org/abs/1506.02078
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2021.naacl-main.301


Katarzyna Krasnowska-Kieraś and Alina Wróblewska.
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A Appendix A

A.1 Analysis of L1 and L2 Normalised
Embeddings

Table 4 presents an extended Pearson correlation
analysis that includes correlations between class
labels and the norms of L1- and L2-normalised
vectors, in addition to vanilla vectors and vectors
with ablated norm information using our noising
function as described in §2.

As supported by Goldberg (2017, page 117), the
results show that normalising the vectors removes
information encoded in the norm. This also comes
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Task Vectors GloVe BERT
L1 L2 L1 L2

Vanilla -0.7278 -0.3758 -0.1564 -0.1039
SL L1 normal. -0.0013 0.7161 0.0032 0.2195

L2 normal. -0.7027 0.0001 -0.2223 0.0001
Abl. norm -0.1893 -0.0025 -0.0417 -0.0013
Vanilla 0.0360 0.0268 0.0071 0.0146

SN L1 normal. 0.0028 -0.0228 -0.0010 0.0087
L2 normal. 0.0255 -0.0019 -0.0086 -0.0003
Abl. norm 0.0036 -0.0033 -0.0035 -0.0021
Vanilla 0.0013 0.0008 -0.0736 -0.0583

ON L1 normal. -0.0016 0.0048 -0.0015 0.0892
L2 normal. -0.0004 -0.0015 -0.0901 0.0037
Abl. norm 0.0009 0.0013 -0.0181 -0.0010
Vanilla -0.1152 -0.0571 -0.0542 -0.0413

TE L1 normal. -0.0020 0.1040 -0.0023 0.0659
L2 normal. -0.1071 -0.0006 -0.0691 -0.0018
Abl. norm -0.0317 -0.0007 -0.0116 0.0010
Vanilla -0.0817 0.1908 -0.0415 -0.0251

TD L1 normal. 0.0005 0.3133 0.0021 0.0645
L2 normal. -0.3159 -0.0026 -0.0652 0.0000
Abl. norm -0.0665 0.0016 -0.0163 -0.0045
Vanilla -0.0019 -0.0094 -0.0755 -0.0638

CIN L1 normal. 0.0000 -0.0062 -0.0047 0.0846
L2 normal. 0.0065 0.0064 -0.0850 0.0034
Abl. norm 0.0029 0.0018 -0.0152 -0.0015
Vanilla 0.0040 0.0002 -0.3866 -0.3238

BS L1 normal. -0.0015 -0.0048 0.0004 0.4333
L2 normal. 0.0056 -0.0019 -0.4357 0.0024
Abl. norm 0.0022 0.0006 -0.0978 -0.0005
Vanilla -0.0464 -0.0222 -0.2414 -0.2305

SO L1 normal. 0.0031 0.0401 0.0035 0.2213
MO L2 normal. -0.0392 -0.0014 -0.2219 0.0023

Abl. norm -0.0105 0.0000 -0.0420 0.0021

Table 4: Pearson correlation coefficients between the
class labels and vector norms for vanilla vectors, L1 and
L2 normalised vectors, as well as vectors with ablated
L2 norm containers.

with a caveat: normalisation only removes informa-
tion from the same order norm as the normalisation
algorithm. We can observe this in the table: apply-
ing an L1 normalisation algorithm to the vectors
seems to completely remove any information en-
coded in the L1 norm, as the correlation drops to
≈ 0. The same happens to the correlation with the
L2 norm when applying L2 normalisation. How-
ever, surprisingly, it seems that a given normalisa-
tion algorithm impacts the other norm as well. For
example, in the BS task L2 normalisation nullifies
the L2 norm’s correlation with the class labels, but
in turn strengthens that correlation for the L1 norm,
which intensifies from -0.39 to -0.44. On the other
hand, L1 normalisation causes the same strengthen-
ing of correlation in the L2 norm, but also changes
the sign—the L2 norm’s correlation with BS class

labels increases from -0.32 to 0.43.
This shows that on certain tasks, not only is the

other norm unaffected by a normalisation proce-
dure, but its correlation with the task labels in-
creases. We observe this to varying degrees in
SL, ON, TE and BS. Furthermore, while the cor-
relation weakens in SOMO, it still exhibits the lat-
ter behaviour—the sign changes when the vectors
are L1 normalised, but not when they are L2 nor-
malised. This is prevalent across all datasets, even
in cases where the correlation between norm and
class labels is ≈0.

This analysis supports our decision from §2 to
use a different noising function to remove informa-
tion from the norm container, as only the vectors
with fully ablated norms have an ≈0 correlation
with both the L1 and L2 norms.
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