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Abstract

To what extent do pre-trained language models
grasp semantic knowledge regarding the phe-
nomenon of distributivity? In this paper, we
introduce DistNLI, a new diagnostic dataset
for natural language inference that targets the
semantic difference arising from distributiv-
ity, and employ the causal mediation analy-
sis framework to quantify the model behav-
ior and explore the underlying mechanism in
this semantically-related task. We find that the
extent of models’ understanding is associated
with model size and vocabulary size. We also
provide insights into how models encode such
high-level semantic knowledge. Our dataset
and code are available on GitHub.

1 Introduction

The ability to understand and utilize semantic
knowledge (consciously or unconsciously) is es-
sential to human reasoning process. Although
significant progress has been made by large-scale
pre-trained language models on many reasoning-
required tasks, it is still unclear whether these mod-
els have reached a considerable level of compe-
tence in discerning and processing semantic knowl-
edge. To break into the black box, recent studies
employ various analysis methods and bring evi-
dence that semantic knowledge (Bowman et al.,
2015b; Ettinger, 2020; Jumelet et al., 2021) is en-
coded by pre-trained models. However, some is-
sues still remain. First, due to the difficulty in
being analyzed and probed for, many semantic phe-
nomena are not touched on by NLP researchers,
even though they have been studied by linguists for
decades. Second, current analysis methods are not
flawless. For example, Belinkov (2021) reviews
some limitations of the probing classifier paradigm
such as the spurious correlation between the prob-
ing classifier and the original model.

†Equal contribution.

To address these issues, in this paper, we lever-
age causal mediation analysis (CMA), a new anal-
ysis framework introduced by Vig et al. (2020a,b),
to test pre-trained language models’ understanding
of semantic knowledge, with a specific focus on
predicative distributivity. As a complex linguistic
phenomenon, predicative distributivity involves se-
mantics, pragmatics, and psycholinguistics. With
minimal pairs differing in distributivity, we look
into whether pre-trained language models grasp the
semantic difference, and how much a model com-
ponent plays a role in such extent of understanding.
Our contributions are as follows:

• We introduce DistNLI, a diagnostic NLI
dataset which targets testing pre-trained lan-
guage models’ ability of discerning the prop-
erty of predicative distributivity via minimal
pairs of coordinated sentences (Section 3).

• We refine metrics used in the CMA frame-
work, namely total effect (TE), natural in-
direct effect (NIE) and natural direct effect
(NDE) to guarantee the effect decomposition.
We apply the framework to the ternary NLI
task (Sections 5.1 and 6.1).

• We find that pre-trained models with either
more parameters or richer vocabulary show
some understanding of distributivity. We also
find that knowledge of distributivity is con-
centrated in middle layers and the level of
concentration is patterned with the degree of
understanding (Sections 4, 5.2 and 6.2).

2 Related Work

Distributivity A sentence with the verb predica-
tion applying to a group, e.g. Sumon and Frank
built a boat., can be interpreted into at least two
readings: the distributive and the collective ones
(Scha, 1981). In the distributive reading, the predi-
cation applies to each individual in the group (e.g.
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both Sumon and Frank individually/separately built
a boat), whereas in the collective reading, the pred-
ication only applies to the group as a whole (e.g.
Sumon and Frank built a boat jointly).

To theorize this linguistic phenomenon, Scha
(1981) introduces the property of distributivity as
a tool to formalize the collective and distributive
senses of a predication. While Scha analyzes dis-
tributivity as a pure lexical property of different
predicates, Link et al. (2002) propose that dis-
tributivity is a semantic operator comparable to
each, which he defines as the ‘D-operator’. Some
later semanticists settle their analyses on the mid-
dle ground where the D-operator and the direct
predication (based solely on the lexical property)
theory are useful under different circumstances
(Dowty et al., 1987; Roberts, 1987; Hoeksema,
1988; Verkuyl, 1993; Winter, 1997; De Vries, 2017;
Champollion, 2017). Arguing that the predication
of a simple sentence can be directly interpreted
based on its lexical meaning while the analysis of a
complex one will need a D-operator, Winter (1997)
further defines P-distributivity and Q-distributivity,
which correspond to the distributive sense under
the direct predication and the D-operator respec-
tively. For instance, Azul and Marsha hold three
balloons falls in the category of Q-distributivity,
since it is necessary to introduce the D-operator to
analyze the distributivity given the group Azul and
Marsha. The example Yu and Vivian laughed, on
the other hand, is a case of P-distributivity, since
it is apparent that the predicate laughed entails the
distributivity originated from its lexical meaning.

Adopting the terminology proposed by De Vries
(2017), we investigate the predicative distributivity
in this paper by following the approach advocated
by Winter (1997) and Champollion (2017) that col-
lectivity and P-distributivity are categorized under
the direct predication, which is paralleled to the D-
operator that gives the Q-distributivity. We will call
predicates which can be perceived in both distribu-
tive and collective senses ambiguous predicates in
this paper, which corresponds to the mixed pred-
icates in the previous literature. (De Vries, 2017;
Champollion, 2017).

Natural Language Inference Natural Language
Inference (NLI) is the task of determining whether
one sentence (premise) entails, contradicts, or is
neutral to another sentence (hypothesis). Early at-
tempts include Chen et al. (2017) and Ghaeini et al.
(2018) which are LSTM-based. Recent progress

in pre-trained language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), and
DeBERTa (He et al., 2021) and NLI datasets like
SNLI (Bowman et al., 2015a), XNLI (Conneau
et al., 2018), and MNLI (Williams et al., 2018)
provides more opportunities to tackle this task. Pre-
trained models fine-tuned on NLI datasets often
achieve satisfying performance.

However, diagnostic studies show that high
scores achieved by neural models do not mean
they truly understand the relationship between sen-
tences. For example, McCoy et al. (2019) find
BERT trained on MNLI instead leverages shallow
heuristics to make predictions.

Causal Mediation Analysis Recently, several
analysis methods have been proposed to reveal in-
formation that are learned and utilized by language
models. One of them is causal mediation analysis
(Robins and Greenland, 1992; Pearl, 2001), a sta-
tistical framework to identify direct and indirect
effects of an intervention on an outcome of interest.
It is first introduced as an analysis method to the
NLP field by Vig et al. (2020a,b) to scrutinize gen-
der bias in language models. More recent studies
use it to explore linguistic phenomena such as syn-
tactic agreement (Finlayson et al., 2021) and nega-
tion (Dobreva and Keller, 2021). The framework
consists of three metrics: TE, NIE and NDE. TE
is used to quantify how an input intervention (e.g.,
text edits) would affect a response variable (e.g.,
predicted probabilities). NIE and NDE are used to
measure the mediated influence realized through
an intermediate variable, or mediator, which can be
a neuron, a whole layer, or an attention head. TE is
usually decomposed into the sum of NIE and NDE.
As Vig et al. (2020a,b) suggest, the CMA frame-
work has great potential for extensions. Motivated
by their work, in this paper, we apply the frame-
work, which was limited to binary classification, to
the NLI task and propose alternative definitions of
the metrics for a more robust effect decomposition.

3 The DistNLI Dataset

3.1 Capturing distributivity with NLI

Although semanticists differ in the treatment of
lexical distributivity (i.e., P-distributivity) in their
theories, the evaluation of predicative distributiv-
ity generally relies on the validity of the inference
from a predication of a group and the part with
the each operator in the case of conjunction (e.g.
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Premise Hypothesis NLI Label Distributivity

Mia and Lin laughed. Mia laughed./Lin laughed. Entailment Distributive

Mia and Lin pushed a rock.
Mia pushed a rock./Lin pushed
a rock.

Entailment Distributive
non-Entailment Collective

Mia and Lin gathered. ∗Mia gathered./∗Lin gathered. N/A Collective

Table 1: The relationship between distributivity and NLI labels illustrated by examples from DistNLI. The NLI
label is determined by the type of the predicate in the premise, and non-entailment means that both neutral and
contradiction are acceptable as true labels. Here, pushed a rock is an ambiguous predicate, so it can be assigned
with both NLI labels.

Sumon and Frank each built a boat) (Dowty et al.,
1987; Lasersohn, 1995; Winter, 1997; Champol-
lion, 2017; De Vries, 2017).

Rooted in this definition, distributive predicates
sanction the entailment relation between the plural-
ity and its part, whereas collective or ambiguous
predicates do not. Consequently, we use the NLI
task to evaluate models’ understanding of predica-
tive distributivity. In our approach, the model’s
ability to discern distributivity is evaluated by the
divergent prediction of models between predicates
with differing distributivity. Table 1 demonstrates
the relationship between distributivity and NLI la-
bels. For instance, given the premise Mia and Lin
laughed and the hypothesis Lin laughed, the model
should predict the label as entailment based on the
distributive predicate laughed. On the other hand,
given the premise Mia and Lin pushed a rock and
the hypothesis Mia pushed a rock, since pushed a
rock is an ambiguous predicate, the model will ex-
hibit a completely different performance if it grasps
the disparity in semantics the distributivity exerts.

3.2 Data Generation
We generate a synthetic NLI dataset consisting
of premise-hypothesis pairs with [DP1] and
[DP2] [Pred] as premise and[DP1]/[DP2]
[Pred] as hypothesis. [DP1] and [DP2] de-
note determiner phrases and [Pred] denotes a
predicate. For example:

Premise: Mia and Lin wore a mask.
Hypothesis: Mia (Lin) wore a mask.

None of determiner phrase contains quantifiers
in its structure, and both lexical and phrasal pred-
icates are included (Champollion, 2017). Three
kinds of noun phrases have been formulated,
namely person, animal, and object, and it is guar-
anteed that no group nouns like the committee and

conventionalized conjunctions like Simon and Gar-
funkel are included. The template is further in-
stantiated with distributive and ambiguous predi-
cates. We scrape existing categorized predicates
from past publications on distributivity, and aug-
ment the list with predicates of similar pattern and
characteristics regarding the semantic ambiguity
in the information structure (Kroch, 1974; Taub,
1989; De Vries, 2017; Champollion, 2017; Cop-
pock and Champollion, 2019). The augmented list
aligns with the report of Safir and Stowell (1987)
that most predications with indefinite cardinal as
the determiner manifest the distributive feature.

3.3 Annotation

The annotation on predicative distributivity in this
dataset consists of two stages. During the first stage,
we recruit three graduate students, who are native
speakers of American English with both linguis-
tics and NLP background, to annotate grammatical
sentences with predicates for whether they are dis-
tributive, collective or ambiguous. An example
with pictures and explanation is given prior to the
task. Considering the subtle nature of distributivity,
we synthesize their judgements and discard highly
controversial data points (i.e. predicates which re-
ceived three distinct labels). During the second
stage, the dataset is further confirmed by an ex-
pert in both Semantics and NLP to validate the
result and guarantee a trustworthy dataset. The
post-annotated data is split into the control group
and the intervention group, with the former contain-
ing 164 pairs with distributive predicates and the
latter containing 164 pairs with ambiguous predi-
cates. The construction of the groups is explained
in Section 5.1. They together form the final Dis-
tNLI dataset of 328 premise-hypothesis pairs.
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ConjNLI HANS DistNLI
Model Total Acc AND Acc Ent. Acc Non-Ent. Acc Dis. Acc Amb. Acc

DeBERTa-base 65.81 64.84 99.3 53.25 100.00 0.00
DeBERTa-large 66.61 65.99 99.89 54.81 100.00 0.00
DeBERTa-xlarge 65.01 64.84 100 42.33 100.00 0.00
DeBERTa-v2-xlarge 66.29 65.99 99.96 49.87 100.00 0.00
DeBERTa-v2-xxlarge 66.45 65.42 99.92 43.35 100.00 0.00
RoBERTa-large 64.53 64.55 99.65 46.61 100.00 0.61

Table 2: Pre-examination results on ConjNLI, HANS and DistNLI. For ConjNLI, Total Acc is the accuracy on
the full ConjNLI data, and AND Acc is the accuracy on cases with and in the premise, hypothesis, or both. For
HANS, Ent. Acc and Non-Ent. Acc stand for Entailed Acc and Non-Entailed Acc, which are the accuracy on
entailed cases and non-entailed cases respectively. For DistNLI, Dis. Acc and Amb. Acc stand for Distributive
Acc and Ambiguous Acc, which are the accuracy on the control group and intervention group respectively.

4 Models

4.1 Model Selection
We choose recent pre-trained models that are fine-
tuned on MNLI as our target models. We try to
control conditions as much as possible, such as
model size and training setup. We use six mod-
els: DeBERTa (base, large, xlarge), DeBERTa-v2
(xlarge, xxlarge), and RoBERTa-large. RoBERTa-
large shares the same vocabulary of size 50K as
DeBERTa variants while DeBERTa-v2 variants in-
crease their vocabulary size to 128K.

4.2 Pre-examination
Pre-trained language models can leverage various
types of information learned from the training cor-
pus to tackle the downstream tasks. The one we
want to test in this paper is distributivity, but there is
other related information models may use to make
predictions, such as coordination, which is used
to generate our dataset, or lexical overlap between
the hypothesis and premise. To minimize the effect
of these confounders, we run selected models over
existing diagnostic NLI datasets, namely ConjNLI
(Saha et al., 2020) and HANS (McCoy et al., 2019).
In addition, we also report each model’s accuracy
on DistNLI as a preliminary evaluation of models’
ability to recognize distributivity. Results on these
datasets are shown in Table 2.

ConjNLI ConjNLI is an NLI dataset testing both
Boolean and non-Boolean usage of conjuncts in-
cluding and, or, but, and their combination with
quantifiers and negation (Saha et al., 2020). We
report each model’s accuracy on the whole devel-
opment set of ConjNLI as well as the subset where
and exists in the premise, the hypothesis, or both.

We find that all selected models perform reasonably
well on ConjNLI, suggesting that they can handle
diverse Boolean and non-Boolean coordinated sen-
tences to a certain extent.

HANS HANS is an NLI dataset testing whether
models have adopted syntactic heuristics, e.g., the
lexical overlap heuristic, the subsequence heuris-
tic, the constituent heuristic during pre-training
(McCoy et al., 2019). HANS is annotated with
entailment on which the heuristics make correct
predictions, and non-entailment (neutral or con-
tradiction) on which the heuristics make incorrect
predictions. Therefore, if a model can perform
perfectly on the entailed cases but fails on the non-
entailed cases, it may exploit the heuristics. For
selected models, we report their accuracy on both
entailed and non-entailed cases. As expected, we
find that all models achieve nearly perfect perfor-
mance on entailed cases. Nevertheless, they reach
much higher scores on the non-entailed cases com-
pared to the experiment with BERT by McCoy et al.
(2019). This indicates that these models rely less
on syntactic heuristics to solve the NLI task.

DistNLI We report each model’s accuracy on the
control (distributive) group and the intervention
(ambiguous) group. Because the control group is
labeled with entailment and the intervention group
is labeled with non-entailment, unsurprisingly re-
sults on DistNLI match the same pattern as that
on HANS. However, the accuracy gap between the
two groups is much bigger. Although this seems
to suggest selected models heavily rely on syntac-
tic heuristics and hence fail to recognize distribu-
tivity, results on ConjNLI and HANS show that
selected models can handle at lease some of the
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non-Boolean coordinated sentences on which the
heuristics provide no help. It is also worth noting
that even for our recruited annotators, distributiv-
ity is a challenging phenomenon. Their responses
demonstrate more variance in ambiguous predi-
cates labeling. This implies accuracy may not be
a good metric to evaluate models’ understanding
of distributivity since it does not account for the
change of predicted probability when the decision
is not flipped. Thus, we leverage the CMA frame-
work for further investigation.

5 Total Effect

5.1 Experiment Design
Response Variable To quantify the model behav-
ior, we follow the general idea proposed by Fin-
layson et al. (2021). We define the response vari-
able y as the odds that a model (parameterized by θ)
predicts non-entailment for a premise-hypothesis
pair SI , where I is the set of possible readings
of S which may contain a distributive reading, a
collective reading or both:

y(SI) = Odds(non-entailment|SI)

=
Pθ(non-entailment|SI)
Pθ(entailment|SI)

(1)

The larger the y(SI), the more likely the model pre-
dicts non-entailment on the input pair SI . With this
definition, we can transform the original question
into a binary task: whether models have a stronger
preference over non-entailment given a premise-
hypothesis pair with a particular predicate.

We hypothesize that if a model has some un-
derstanding of distributivity, ceteris paribus, an
ambiguous pair should result in a larger predicted
probability of non-entailment than a distributive
pair, even if the model predicts entailment for both.
In other words, y(SI) should be small when I only
contains a distributive reading but relatively large
when I contains both readings, provided that all
other aspects of S are equal.

Input Intervention To isolate distributivity, we
need a class of interventions to change possible
readings of a given premise-hypothesis pair S
while keeping everything else the same. Since it is
intractable to directly modify the possible readings
I , we choose to modify the surface form. For our
data templates, I is determined by the predicate.
Therefore, we define a do-operator swap-pred,
which replaces the predicate in the given pair with a

y y

John and Mary ate an apple.
                             ambiguous

John and Mary screamed.
  distributive

Total Effect

swap
pred

Figure 1: Total effect measures the relative change in y
from the input intervention which alters the distributiv-
ity of the predicate in the sentence.

random sampled predicate of a different type, as il-
lustrated in Figure 1.1 We also define the null op-
erator which preserves the original predicate. The
response variable y(SI) can be redefined as yi(Sp)
where i is a do-operator, S is a premise-hypothesis
pair, and p indicates the type of the predicate in S:

ynull(Sp) = Odds(non-entailment|Sp) (2)

yswap-pred(Sp) = Odds(non-entailment|Sp′)
(3)

Leveraging these interventions, we can split the
input dataset into two groups: the control group
and the intervention group. Pairs in the control
group have distributive predicates with the null
operator applied. Pairs in the intervention group
are the same sentences but with the swap-pred
operator applied. Each pair in the control group can
have one or more matches in the intervention group.
For example, if John and Mark smiled. (premise)
and John smiled. (hypothesis) is in the control
group, John and Mark built a house. (premise)
and John built a house. (hypothesis) could be its
potential match in the intervention group.

Metric TE is used to measure how much a re-
sponse variable y would change if we apply the
swap-pred operator rather than the null oper-
ator. Instead of the odds difference definition used
by previous studies (Vig et al., 2020b; Finlayson
et al., 2021; Dobreva and Keller, 2021; Jeoung and
Diesner, 2022), we adopt the odds ratio definition
proposed by VanderWeele and Vansteelandt (2010).
To make the scale more symmetric, we take the

1The illustration of TE and the following NIE figure are
inspired by Vig et al. (2020a); Finlayson et al. (2021).
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equivalent logarithmic version:

TE(swap-pred,null; y, Sp)

= log

(
yswap-pred(Sp)

ynull(Sp)

)

= log

(
Odds(non-entailment|Sp′)
Odds(non-entailment|Sp)

)
(4)

We calculate the sample average total effect over
DistNLI to estimate the average total effect over
the population of all possible matched pairs:

TE(swap-pred,null; y) =̂ µTE (5)

One benefit of this definition is that the total ef-
fect now inherits the interpretation of odds ratio,
in addition to its own causal interpretation. Odds
ratio is used to measure the strength of association
between a response variable and an intervention.
It compares the relative odds of the occurrence
of an outcome of interest, given whether a partic-
ular intervention is performed (Szumilas, 2010).
Therefore, by analogy with the odds ratio, we can
interpret TE in three cases: (i) If TE > 0, then
the presence of ambiguous predicate in S causes
higher odds of non-entailment; (ii) If TE = 0, then
there is no causal relationship between the type of
the predicate in S and the model prediction; (iii) If
TE < 0, then the presence of ambiguous predicate
in S causes lower odds of non-entailment.

Another benefit is that the lexical overlap heuris-
tic is not a problem to our experiment, because TE
measures the difference between sentences with
swapped and unswapped predicates. If a model
completely depends on the heuristic, TE will be
close to 0 since the overlap between the premise
and hypothesis remains the same when the input is
intervened. In this case, no causal relationship is
concluded between distributivity and the model pre-
diction. If, however, we obtain a non-zero TE, this
should be due to factors other than the heuristic.

Since the size of DistNLI is relatively small, we
perform the one-sample t-test with a significance
level of 0.05 to infer about the average total effect
over the full population. If TE is statistically sig-
nificantly positive, we can conclude that the model
has some understanding of distributivity.

5.2 Result and Discussion

Table 3 presents a one-sample t-test of the average
total effect for each model. Except for DeBERTa-
base, all models have a significantly positive TE

Model Mean SD T P-value

D-b 0.040 1.091 0.468 0.320
D-l 0.314 0.900 4.452 <7e-06
D-xl 0.351 0.507 8.844 <7e-16
D-v2-xl 0.856 0.796 13.724 <2e-29
D-v2-xxl 0.828 1.088 9.724 <3e-18
R-l 0.779 1.279 7.774 <4e-13

Table 3: One Sample t-test of TE for each model.
Here, R stands for RoBERTa, D stands for DeBERTa,
b stands for base, and l stands for large.

Figure 2: Relationship between TE, the number of pa-
rameters and vocabulary size. Each point is a model.

with a significant level of 0.05. Based on the inter-
pretation of TE, these models are able to discern
distributivity to some extent.

Models with more parameters tend to show un-
derstanding of distributivity. We find that TE
is positively correlated with the number of parame-
ters, as shown by Figure 2 (r = 0.649). While there
are confounders such as vocabulary size, number of
layers, pre-training task, etc., the trend holds when
we control for model architecture and only consider
DeBERTa variants. This finding may suggest that
larger models have a stronger ability to capture lin-
guistic phenomena presented in the training corpus.
Vig et al. (2020a) report an analogous result on
gender bias. We also observe that the effect on TE
vanishes when the number of parameters increases:
as shown by Table 3, DeBERTa-large has a TE
eight times greater than DeBERTa-base, but merely
0.04 lesser than DeBERTa-xlarge. This observation
is in line with the finding of K et al. (2020) that
the number of parameters has little effect on model
performance after a certain threshold.

Models with richer vocabulary tend to show un-
derstanding of distributivity. We find that TE
is associated with the size of vocabulary. As il-
lustrated in Figure 2, DeBERTa-v2 variants have
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y y

John and Mary ate an apple.
   ambiguous

Natural Indirect Effect

swap
pred

John and Mary ate an apple.
   ambiguous

m

distributive

Figure 3: Natural indirect effect measures the relative
change in y, given the presence of the input interven-
tion, if every path into the mediator m is blocked by
setting m to the value it would have been without the
input intervention.

a TE of around 0.8, which is considerably larger
than other models. We suspect this significant in-
crease is due to their larger vocabulary size. Since
distributivity is determined by the type of predi-
cates, a richer vocabulary is expected to lead to a
better semantic representation of predicates which
in turn boosts TE, although the effects of other
confounders might not be ruled out.

6 Natural Indirect Effect

6.1 Experiment Design

Neuron Intervention To study the causal contri-
bution of neurons, the hypothesized mediator in
our experiment will be a single neuron or a group
of neurons. Rather than investigating neurons for
each input token independently (Vig et al., 2020a,b;
Finlayson et al., 2021), we intervene on neurons
for all input tokens simultaneously. This approach
is computationally cheaper but still comprehen-
sive enough to give a full picture of the underlying
causal mechanism.2

Metric Natural Indirect Effect is used to measure
how much the response variable y would change
with the swap-pred operator applied, if we set
the hypothesized mediator m to the value it would
have been without rather than with the input inter-
vention (demonstrated in Figure 3). Similar to TE,
we use the log odds ratio and estimate the popula-

2Pilot experiments focusing on the [CLS] token, an ap-
proach used by Dobreva and Keller (2021), yielded mixed
results, which is consistent with the findings of Reimers and
Gurevych (2019) that the [CLS] token is not an ideal repre-
sentation of sentence level meaning.

tion average natural indirect effect:

NIE(swap-pred,null; y,m, Sp)

= log

(
yswap-pred(Sp)

yswap-pred,mnull(Sp)

)
(6)

where m is a hypothesized mediator and mnull

means that m is set to the value it would have been
in the absence of the input intervention. We can
also define NDE in a similar way:

NDE(swap-pred,null; y,m, Sp)

= log

(
yswap-pred,mnull(Sp)

ynull(Sp)

)
(7)

VanderWeele and Vansteelandt (2010) prove that
the log odds ratio definition of causal effects holds
a decomposition property: TE = NIE+NDE even
when there are interactions and nonlinearities.

The NIE and NDE defined above are in princi-
ple an implementation of what Robins and Green-
land (1992) refer to as “total indirect effect” and
“pure direct effect”. The NDE given by Vig et al.
(2020a,b) follows the same idea, but their NIE
instead formulates the "pure indirect effect". A
consequence is that the decomposition property is
only guaranteed for linear models (Pearl, 2001; Vig
et al., 2020a), which is a potential shortcoming as
an analysis method for neural networks.

Given the decomposition property, NIE allows
us to measure the magnitude of causal contribution
a model component makes to the model behav-
ior, which is quantified by TE. In this respect, it
potentially solves the problem of spurious correla-
tion between the probing classifier and the original
model (Belinkov, 2021). In our experiment, we use
it to verify the causal relationship between the se-
mantic information encoded in the original model
and the prediction given by the NLI classifier. We
can interpret the values of NIE similarly to TE.

6.2 Result and Discussion
We experiment on models which pass the signifi-
cance threshold.3 Figure 4 illustrates the neuron-
wise NIE: for all models, most neurons have NIEs
around zero, but a few outliers can also be iden-
tified. In order to determine which neurons are
responsible the most for the model behaviour, we
also select the top 1% of neurons with highest in-
dividual NIEs from each layer and evaluate the
layer-wise NIE. Figure 5 illustrates the layer-wise
NIE obtained from selected neurons.

3Due to limited computational resources, DeBERTa-v2-
xxlarge is excluded.
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(a) DeBERTa-large (b) DeBERTa-xlarge

(c) DeBERTa-v2-xlarge (d) RoBERTa-large

Figure 4: Neuron-wise NIE of the models that pass the TE threshold. The x-axis represents the indices of neurons,
which range from 0 to hidden size. The indices are not unique: neurons from different layers have the same index.

(a) (b) (c) (d)

Figure 5: Layer-wise NIE (top 1% neurons) of the
models that pass the TE threshold. From left to right
are DeBERTa-large, DeBERTa-xlarge, DeBERTa-v2-
xlarge and RoBERTa-large. The y-axis represents lay-
ers and the color represents values of the NIE.

Knowledge of distributivity is mostly concen-
trated in middle layers. We define the depth of
a layer as its number divided by the total number of
layers. Based on this metric, we can divide layers
into three groups: early (0 - 0.33), middle (0.33 -
0.67), and final (0.67 - 1). In Figure 5, a concen-
tration pattern of NIE is clearly shown by the color
opacity of layers for all models. Specifically, mid-
dle layers have higher NIEs than other layers. The
exact layer where NIE peaks occur is more idiosyn-
cratic, but still inside or near middle layers: 0.5
(layer #11) for DeBERTa-large, 0.73 (layer #35) for
DeBERTa-xlarge, 0.54 (layer #13) for DeBERTa-
v2-xlarge, and 0.42 (layer #9) for RoBERTa-large.
This finding differs from the conclusion of Tenney

et al. (2019) that semantic information is hardly
localized in BERT-like models, although Jawahar
et al. (2019) also report that most semantic tasks
archive the best performance around middle layers.

Knowledge of distributivity is more concen-
trated in the models with higher degree of un-
derstanding. We find that the level of concen-
tration of NIE patterns with the magnitude of
TE: NIEs are concentrated in fewer neurons in
DeBERTa-v2-xlarge and RoBERTa-large (both
have a TE of about 0.8) than in DeBERTa-large
and DeBERTa-xlarge (both have a TE of about
0.3). This finding is supported by the following ob-
servations: First, as shown by Figure 5, top 1% of
neurons is sufficient to achieve the full total effect
for the former two models, but not for the latter two
models. Second, we notice that a few neurons have
extremely higher NIE for the former two models.
For example, neuron #1279 at layer #0 (located at
the top right of Figure 4c) in DeBERTa-v2-xlarge
has a NIE of 0.6735, much higher than most other
neurons. According to the interpretation of NIE,
these neurons are causally and positively respon-
sible for the model behaviour. The pattern is not
observed in DeBERTa-large and DeBERTa-xlarge.

7 Conclusion

In this paper, we propose DistNLI, a diagnostic
NLI dataset to examine to what extent pre-trained
language models can discern the phenomenon of
distributivity. By extending the CMA framework,
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we show that models including DeBERTa and
RoBERTa have some understanding of distribu-
tivity, which provides further evidence that models
have ability to encode high-level semantic knowl-
edge, and reveal some interesting patterns related
to the underlying mechanism of these models.

One direction for future improvement would be
increasing the diversity of predicates and subjects
in DistNLI. At present, we only look at subjects
that are two coordinated DPs, but the phenomenon
of distributivity applies to all noun phrases which
denote groups and even without the utilization of
conjuncts. It is possible that pre-trained language
models can also differentiate more complicated
combinations, as they are trained on large-scale text
data. Another direction would be investigating how
robust the CMA framework is to the definition of
metrics, such as an empirical comparison between
alternative definitions.

8 Limitation

Due to the specificity of the linguistic phenomenon
involved and its size, this DistNLI dataset should
only be used as a diagnostic dataset in the investiga-
tion of distributivity of verb predication. Also, oc-
casionally some minimal pairs in the dataset could
contradict with the world knowledge considering
the nature of artificiality. On the one hand, the
creators of this dataset have filtered out pairs that
are tremendously deviant from the world knowl-
edge by majority voting. On the other hand, even if
there is still any deviating pair against the common-
sense (i.e. The lion and the seal found a habitat),
the distributivity manifested in such examples will
not be confounded as long as the grammaticality is
guaranteed, since the extent of deviance is constant
between the premise and the hypothesis.
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