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Abstract

The growing demand for learning English as
a second language has led to an increasing
interest in automatic approaches for assess-
ing spoken language proficiency. One of the
most significant challenges in this field is the
lack of publicly available annotated spoken
data. Another common issue is the lack of
consistency and coherence in human assess-
ment. To tackle both problems, in this paper
we address the task of automatically predicting
the scores of spoken test responses of English-
as-a-second-language learners by training neu-
ral models on written data and using the pres-
ence of grammatical errors as a feature, as they
can be considered consistent indicators of profi-
ciency through their distribution and frequency.
Specifically, we train a feature extractor on EF-
CAMDAT, a large written corpus containing er-
ror annotations and proficiency levels assigned
by human experts, in order to extract informa-
tion related to grammatical errors and, in turn,
we use the resulting model for inference on the
CLC-FCE corpus, on the ICNALE corpus, and
on the spoken section of the TLT-school corpus,
a collection of proficiency tests taken by Ital-
ian students. The work investigates the impact
of the feature extractor on spoken proficiency
assessment as well as the written-to-spoken ap-
proach. We find that our error-based approach
can be beneficial for assessing spoken profi-
ciency. The results obtained on the considered
datasets are discussed and evaluated with ap-
propriate metrics.

1 Introduction

Automatic scoring of language proficiency is be-
coming a point of growing interest and importance
in the field of second language (L2) assessment be-
cause the number of English-as-a-second-language
(ESL) learners has been steadily increasing world-
wide (Howson, 2013).

A common issue in this field is the lack of pub-
licly available data specifically designed and an-

notated for automatic assessment, especially as re-
gards spoken data. Another typical problem is the
lack of consistency and coherence in human assess-
ment, as it frequently relies on proficiency indica-
tors that often have biases and are not clearly gener-
alizable, therefore not easily transferable into auto-
matic scoring systems (Zhang, 2013). Although L2
proficiency cannot be assessed on the mere basis
of the presence of errors in learners’ written and
spoken productions, this aspect is highly consistent
and plays a major role in language assessment by
human experts (James, 2013). Nevertheless, to the
best of our knowledge, the impact of errors on au-
tomatic spoken language assessment has not been
thoroughly investigated yet, whereas other types of
feature-based assessment have been more widely
studied and explored (Crossley et al., 2015).

In this paper, we address the task of automati-
cally predicting the scores of spoken responses of
ESL learners leveraging written data and exploiting
the presence of grammatical errors, thus tackling
both the aforementioned problems: the issue re-
lated to the scarce availability of spoken data and
the problem of inconsistency in human assessment.

In order to do so, we design a ranking of gram-
matical error gravity based on the frequency of each
human-annotated error in the EF-Cambridge Open
Language Database (EFCAMDAT), modelling it
across 15 proficiency levels aligned with the CEFR
(Common European Framework of Reference) lev-
els ranging from A1 to C1 (Council of Europe,
2001); as our purpose is scoring spoken language
proficiency, we discard spelling, punctuation and
orthographic errors and we group errors into 5 cat-
egories.

Subsequently, we train a feature extraction
model feeding the learners’ texts of the EFCAM-
DAT as inputs and setting the 5 classes of errors as
targets for our predictions and we use this model as
an error feature extractor (EFEX) for inference on
the Cambridge Learner Corpus - First Certificate
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in English (CLC-FCE) and on the International
Corpus Network of Asian Learners of English (IC-
NALE), thus generating 5 labels corresponding to
the aforementioned 5 classes of errors; then, we
train a scoring model on the CLC-FCE injecting
the 5 error labels generated by EFEX and we test it
on the spoken annotated section of ICNALE.

Likewise, we use EFEX for inference on the TLT-
school corpus. Subsequently, we train a scoring
model on the written section of the corpus injecting
the 5 error labels generated by EFEX and we test it
on the spoken section. Figure 1 shows the proposed
pipeline. Finally, we fine-tune our model on a small
spoken subset.

The structure of the paper is as follows: in the
next paragraphs, we briefly illustrate the theoreti-
cal framework and literature related to automatic
scoring and assessment; in Section 2, we describe
the data used in our experiments and our ranking of
grammatical error gravity; in Section 3, we show
the model architectures; in Section 4, we show the
results of our experiments on the models; finally,
in Section 5, we illustrate the conclusions of the
study and reflect upon next steps.

Figure 1: Diagram of the proposed training pipeline
based on textual input (i.e the written train set). The
scoring model is then used to predict proficiency scores
on manual and ASR transcriptions (i.e. the spoken test
set).

1.1 Theoretical framework

The origins of the field of L2 assessment date back
to the influential work of Lado (1961), who be-
lieved that the problems of learning a new language
could be predicted comparing the learners’ native
language and their target language, consistently
with his structuralist perspective of language and
contrastive linguistics. Language was taught - and
thus assessed - as a set of distinct elements, starting
from a contrastive analysis of sounds, grammar and
vocabulary. As a result, errors play an important
role in this construct. In response to and in con-
tinuation of contrastive analysis, at the end of the

1960s the work of Corder (1967) set the foundation
for error analysis and considered the concept of
error from a developmental perspective.

In the 1970s, the subsequent fundamental step
in language testing and assessment was inspired
by the forward-looking work on communicative
competence by Hymes (1972), later refined and
framed in the so-called communicative approach
by Canale and Swain (1980). According to this ap-
proach, language is used to communicate meaning,
which encompasses: grammatical knowledge, soci-
olinguistic competence, and strategic competence.

Around the 1990s, an approach theoretically
rooted in the communicative approach, started to
be developed and was later fixed in the Common
European Framework of Reference (CEFR) (Coun-
cil of Europe, 2001). Although it might seem that
this approach privileges communication at the ex-
pense of formal correctness, errors still play a major
role in assessing language proficiency (Pfingsthorn,
2013). Furthermore, Thewissen (2013) has shown
that learner errors can be connected to CEFR profi-
ciency levels and they can be considered as criterial
features for each level, together with other linguis-
tic features, as illustrated in Hawkins and Buttery
(2010).

1.2 Reference to prior work

Deep learning techniques have brought significant
improvements in the field of automatic scoring,
for assessing both writing and speaking, such that
end-to-end neural based approaches outperformed
ETS’s SpeechRater (Chen et al., 2018), one of the
best known oral proficiency test engines (Xi et al.,
2008). Specifically, transformer-based models have
led to a remarkable improvement in tasks of pre-
dicting linguistic proficiency (Raina et al., 2020;
Wang et al., 2021).

While grammatical error detection for speech
assessment has been the focus of relatively few
studies (Knill et al., 2019; Caines et al., 2020),
grammatical errors have received more attention
in the field of automatic essay scoring and are one
of the features employed in Yannakoudakis et al.
(2011) along with lexical, part-of-speech (POS)
and syntactic features for automatically assessing
ESL examination scripts, and they were found to
be significant for enhancing the overall correlation
between true scores and predicted ones. Gamon
et al. (2013) uses Leacock and Chodorow (2003)’s
findings on the influence of grammatical errors on
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TOEFL (Test of English as a Foreign Language)
scores for automatic essay scoring and feedback.
Similarly, errors are a feature investigated in the
work of Vajjala (2018), in which spelling and gram-
mar errors are extracted by LanguageTool1. In
this case, the error rate feature considered individ-
ually was found to have little impact on the clas-
sification performance. Similar experiments were
conducted again by Vajjala and Rama (2018) with
German, Czech and Italian, including errors as a
feature. This work was reproduced by Caines and
Buttery (2020), who applied such experiments also
to English and Spanish corpora. Another research
conducted on the CLC-FCE found that grammati-
cal error detection highly influences essay scores
(Cummins and Rei, 2018).

Recently, the work described by Ballier et al.
(2019) has investigated the possibility of predicting
CEFR proficiency levels based on manually anno-
tated errors in the French and Spanish section of the
EFCAMDAT corpus, but their study did not employ
deep learning techniques. However, they identified
that certain types of errors, such as punctuation,
spelling and verb tense errors, are characteristic of
specific CEFR proficiency levels. For our study, we
reversed the process and we started from a ranking
of error gravity across the CEFR proficiency levels.

Finally, some recent studies on automatic as-
sessment of L2 proficiency have employed state-
of-the-art models, combining associated auxiliary
tasks (Craighead et al., 2020), none of which re-
lated to errors.

2 Datasets and setup

2.1 EFCAMDAT
Firstly, we use the EFCAMDAT corpus (Geertzen
et al., 2014) that comprises L2 learners’ scripts
annotated with their respective score on a scale
from 0 to 100, their proficiency level from 1 to 16
(mapped to CEFR levels from A1 to C2) and par-
tially error-tagged by human experts. As our work
investigates the efficacy of errors as features, we
only use the error-tagged section of the EFCAM-
DAT Cleaned Subcorpus (Shatz, 2020), consisting
of 498,208 scripts ranging from proficiency level
1 to 15 (i.e. from A1 to C1), which we divided
into training and test set. The error tagset of the
corpus consists of 24 types of errors, of which we
discarded 7 related to spelling, punctuation and or-
thographic errors, as they would be of no use for

1https://languagetool.org/

Code Meaning Code Meaning
XC change from x to y NSW no such word
AG agreement PH phraseology
AR article PL plural
D delete PO possessive
PS part of speech PR prepositions
EX expression of idiom SI singular
IS insert VT verb tense
MW missing word WC word choice
WO word order

Table 1: EFCAMDAT error tagset without codes related
to spelling, punctuation and orthographic errors.

assessing speech (see Table 1). As a preliminary
analysis, we computed the KL-Divergence between
the distribution of the 17 error labels counts across
CEFR proficiency levels in EFCAMDAT. The la-
bels were converted into a smoothed distribution,
by applying add-one smoothing. The symmetric
KL-Divergence was then calculated. Therefore, for
error type ti for proficiency level Lk:

P(ti|Lk) =
cnt(ti, Lk) + 1

∑N
j=1(cnt(ti, Lk) + 1)

where cnt(ti, Lk) is the number of occurrences
for a given label in a given grade.

The symmetric KL Divergence was subsequently
calculated across proficiency levels:

KL(Lk|Ll) =

(
N∑

i=1

P(ti|Lk)log
(

P(ti|Lk)

P(ti|Ll)

))

+

(
N∑

i=1

P(ti|Ll)log
(

P(ti|Ll)

P(ti|Lk)

))

Table 2 reports the symmetric KL-Divergence
between distributions of counts from all the 17 error
labels across CEFR proficiency levels. It appears
that we can consider errors as criterial features of
linguistic proficiency, as there are differences in
the distributions of grammatical errors across profi-
ciency levels, to which we can correlate differences
in their frequency.
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A1 A2 B1 B2 C1
A1 0.0 0.055 0.065 0.085 0.066
A2 0.055 0.0 0.013 0.029 0.028
B1 0.065 0.013 0.0 0.005 0.009
B2 0.085 0.029 0.005 0.0 0.010
C1 0.066 0.028 0.009 0.010 0.0

Table 2: Symmetric KL Divergence between distribu-
tions of counts from all 17 error labels in EFCAMDAT.

2.2 Ranking of error gravity
In light of this, we analyzed the frequency of each
type of error across the 15 proficiency levels of the
corpus. We calculated it dividing the sum of all the
occurrences of a given type of error in a given pro-
ficiency level by the number of texts assigned to a
given proficiency level. We then decided to design
a ranking of error gravity for each type of error in
relation to each proficiency level, by introducing a
negative bias in the error count when this amounts
to 0:

bt =





−1 0.1 ≤ Ft,L < 0.2
−2 0.2 ≤ Ft,L < 0.3
· · ·
−9 0.9 ≤ Ft,L < 1.0

where Ft,L is the normalized frequency of error
type t at proficiency level L; e.g. if FAR,1 is 0.2, all
the occurrences of error AR at level 1 reporting 0
errors are replaced by -2. The rationale behind this
idea is to "award" learners who have not made a fre-
quent error in their proficiency level. Subsequently,
in order to avoid having a too sparse representation,
we grouped the 17 types of errors into 5 classes
of errors: verb tense (VT), lexis and use of words
(LUW), prepositions, articles, possessives and part
of speech (PAP), agreement (AG) and generic er-
rors (GE), as shown in Table 3. We divided each
of the 5 error counts by the word count, in order to
weigh also the text length. Finally, the error count
in each level is normalized on a scale from 0 to 1.

Before applying our ranking of error gravity and
introducing the negative bias, we also calculated
the averaged error rates (i.e. the number of errors
divided by the number of words times 100) of each
of the 5 classes and of their sum for each profi-
ciency level (see Table 4). In the VT class, the
increase of the error rate at A2 can be explained
by the fact that A1 learners generally use a smaller
variety of tenses. As a result, they tend to make
fewer verb tense errors.

Errors Class
VT VT
NSW + PH + EX + MW + WC + WO LUW
AR + PO + PR + PS PAP
AG + PL + SI AG
D + IS + XC GE

Table 3: The 5 error classes we used for our study.

Furthermore, we performed ANOVA on each of
the 5 classes and we always obtained significant
p-values (<0.05), thus finding that there are sig-
nificant differences between proficiency levels in
terms of errors.

mean (%)
A1 A2 B1 B2 C1

LUW 3.67 3.10 2.69 1.96 1.58
PAP 1.63 1.42 1.20 0.99 0.70
AG 0.99 0.49 0.47 0.36 0.31
GE 2.00 1.67 1.29 0.95 0.80
VT 0.31 0.43 0.41 0.36 0.19
total 8.62 7.13 6.08 4.63 3.59

Table 4: Averaged error rate of each error class and their
sum across proficiency levels.

2.3 ICNALE
In order to test our approach, we consider IC-
NALE (Ishikawa), a publicly available dataset 2

comprising written and spoken responses of ESL
learners ranging from A2 to B2 and partially of
native speakers. The CEFR levels were assigned
prior to collecting the data, as the ICNALE team
required all the learners to take an L2 vocabulary
size test and to present their scores in English pro-
ficiency tests such as TOEFL, TOEIC, IELTS, etc.
On the basis of these two scores, the learners were
classified into proficiency levels. Only a small sec-
tion of dialogues and essays has been scored by
human experts so far and has been included in the
ICNALE Global Rating Archives (Ishikawa, 2020):
it currently includes the assessments and scores (on
a scale from 0 to 100) of 140 dialogues and 140 es-
says by 40 human raters. Since not all the dialogues
and essays were previously assigned a proficiency
level, for our experiments we selected only the ones
classified into CEFR levels and scored by human
experts, and we also considered the scored texts

2http://language.sakura.ne.jp/icnale/download.html
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and speeches of native speakers, therefore reducing
the written section to 121 essays and the spoken
section to 116 dialogues, of which we considered
only the learners’ utterances. Out of the 40 raters
involved in the project, we only selected the native
speakers with more than 5 years of experience in
ESL teaching and assessment, i.e. 4 raters for the
written section and 3 raters for the spoken section.
We set the average of these scores as targets. De-
tails about average and standard deviation of the
raters’ scores can be found in Ishikawa (2020).

2.4 CLC-FCE

Due to the limited amount of annotated data in
the ICNALE corpus, we train our models on the
CLC-FCE corpus, a publicly available dataset 3,
containing the scripts of an English language exam
aimed at around B2 level of the CEFR, which is
also the highest level of the ICNALE corpus. Its
1244 exam scripts include responses to two differ-
ent prompts asking the test-takers to write a short
answer (e.g. a letter, an article, a report, a short
story) and range from 200 to 400 words on average.
Each answer has been error-tagged and annotated
by human experts with a mark. Note that we elimi-
nated the answers that did not report a score. More
information about the dataset can be found in Yan-
nakoudakis et al. (2011).

2.5 TLT-school

In Trentino, an autonomous region in northern Italy,
the linguistic competence of Italian students have
been assessed over years through proficiency tests
in both English and German (Gretter et al., 2020),
involving about 3000 students ranging from 9 to 16
years old, belonging to four different school grade
levels (5th, 8th, 10th, 11th) and three proficiency
levels (A1, A2, B1). Since our experiments are
conducted only on the B1 section of the English
written and spoken parts of the corpus, we will
not describe the section concerning the texts and
utterances of the German section, as their analysis
goes beyond the scope of this paper.

The written section consists of 895 answers to 2
question prompts. Test-takers are asked two ques-
tions: the first one requires them to write a blog
entry in which they have to describe what happened
during the day and to talk about their plans for the
rest of the week, while the second one asks them to
write an email to a friend who broke an object bor-

3https://ilexir.co.uk/datasets/index.html

rowed from them. The spoken section is composed
of 442 responses to 7 small talk questions about
everyday life situations. It is worth mentioning that
some answers are characterized by a number of is-
sues (e.g. presence of words belonging to multiple
languages or presence of off-topic answers). We
decided not to eliminate these answers from the
data used in the experiments, but we removed the
empty responses.

As regards the speech transcriptions, we elimi-
nated the annotations related to spontaneous speech
phenomena such as hesitations and fragments of
words etc. Detailed information about the manual
transcriptions and other aspects of the corpus can
be found in Gretter et al. (2020).

As for the automatic speech recognition (ASR)
output text, its word error rate is 35.9% on the
whole spoken test data, whereas it amounts to
41.13% for the B1 subset we used in our experi-
ments; acoustic and language models are described
in Gretter et al. (2019).

The total score ranges from 0 to 8 in the written
section and from 0 to 12 in the spoken section and
consists of the sum of the subscores assigned by hu-
man experts for each specific proficiency indicator
assigned by the human raters (i.e. fulfillment, for-
mal correctness and lexical complexity, cohesion,
and narrative and descriptive competences for writ-
ing; and relevance, formal correctness, lexical com-
plexity, pronunciation, fluency, and communicative
competence for speaking). For each indicator hu-
man raters could choose 0, 1 or 2 points. Since
every utterance was scored by only one expert, it
was not possible to evaluate any kind of agreement
among experts. Note that the CEFR levels were as-
signed before the tests and should be considered as
expected proficiency levels, whereas the test scores
are effectively representing each learner’s perfor-
mance in the exam. Table 6 shows the number of
answers and word counts of the TLT-school spoken
test set across test scores.

3 Model architectures

We build our models using a BERT architec-
ture (Devlin et al., 2018) in the version provided by
the HuggingFace Transformer Library (Wolf et al.,
2019) (bert-base-uncased). In both the feature ex-
tractor and the scoring models BERT layers are
frozen.
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ICNALE CLC TLT
Wr Sp Wr Sp

Train - - 2122 594 345
Dev - - 160 - -
Test 121 116 194 301 97

Avg. len 225 186 192 103 28
Max. len 302 455 462 279 221
Min. len 179 23 72 1 1
Score 0-100 0-100 1-40 0-8 0-12

Table 5: Statistics (number of answers and word counts)
for the three test sets: ICNALE (Written and Spoken),
CLC-FCE, TLT-school (Written and Spoken).

Score Samples Min. len Max. len Avg. len
0-3 27 1 100 11.18
3-6 23 9 85 22.00
6-9 14 11 51 27.07
9-12 33 20 196 55.57

Table 6: Statistics (number of answers and word counts)
for the TLT-school spoken test set across test scores.

3.1 Feature extractor
Specifically, EFEX takes a sequence of token em-
beddings i.e. of the answers provided by the learn-
ers [x1, ..., xn], as inputs and predicts the ‘biased’
estimate (see formula in section 2.1) of error rate
of each class of error, i.e. VT, LUW, PAP, AG and
GE. Each rate is calculated by a final dense layer
and the model uses mean squared error (MSE) as
the loss function. For the GE and LUW outputs
we add one and two extra dense layers respectively.
We used Adam optimizer (Kingma and Ba, 2014)
with learning rate of 8e-6, batch size set at 16, vali-
dation split at 0.1, and we trained our models for 60
epochs. Figure 2 shows the architecture of EFEX.

Figure 2: EFEX model architecture.

3.2 Scoring models
Before testing the impact of the labels generated
by EFEX, we run several experiments on the se-
lected datasets using our simple baseline scoring
models, which take only a sequence of token em-
beddings, i.e. of the answers provided by the test-
takers [x1, ..., xn], as inputs and predict the total
score of each answer normalized on a scale from -1
to 1. The EFEX-enriched models take the answers
as inputs combined with a 5-dimensional vector,
i.e. the number of classes of errors generated by
EFEX, and have the same outputs as the baselines,
as shown in Figure 3.

In both the baseline models and the EFEX-
enriched models, the scores are calculated by a final
dense layer and the model employs MSE as the loss
function. The structure and hyper-parameters of
the models are shown in Table 7. For the evaluation
we consider two metrics: MSE and Pearson’s cor-
relation coefficient (PCC) between the true scores
and the predicted ones.

Figure 3: Scoring model architecture.

4 Experiments and results

4.1 CLC-FCE to ICNALE
We run a series of experiments starting from train-
ing EFEX on the EFCAMDAT dataset, setting VT,
PAP, AG, GE and LUW as our prediction targets,
feeding only the input text. We tested EFEX on the
EFCAMDAT test set and we obtained significant
results when comparing the true labels with the
predicted ones in terms of PCC (see Table 8).

Secondly, we run the scorer on ICNALE (see
Table 9); since we do not have enough ICNALE
data for a proper training, we train our models on
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TLT CLC/ICNALE
Max. seq. len. 256 512
Learning rate 9e-6 2e-6
Epochs 60 (120) 60 (150)
Batch size 32 16
1st Dense layer 768 - relu 768 - relu
Dropout 0.2 0.2
2nd Dense layer 128 - relu 64 - relu
Dropout 0.2 0.2
Output layer 1 1

Table 7: Model architectures and hyperparameters.
The number of epochs in brackets refers to the EFEX-
enriched model.

PCC

LUW 0.796

PAP 0.862

AG 0.868

GE 0.831

VT 0.876

Table 8: EFEX performance in terms of PCC on EF-
CAMDAT.

the CLC-FCE. Considering that we test our models
trained on the CLC-FCE directly on out-of-domain
data without fine-tuning, we achieve overall inter-
esting results. In this case, the performance of the
EFEX-enriched model is slightly lower than the
baseline when tested on the scores of the ICNALE
written set, but still better in terms of PCC when
used for predicting the scores of the spoken set.

ICNALE Written Spoken
Model MSE PCC MSE PCC
CLC baseline 0.201 0.719 0.121 0.614
+ EFEX labels 0.254 0.709 0.134 0.625

Table 9: Results on the ICNALE test dataset (MSE and
PCC).

4.2 TLT-school - Written to spoken

Finally, we run our experiments on the TLT-school,
training our baseline on the written training set and
testing it on the spoken test set. We follow the same
steps with our EFEX-enriched model and we gain

TLT - Spoken
Man. transcr. ASR
MSE PCC MSE PCC

Baseline 0.555 0.734 0.793 0.605

+ fine-tuning 0.488 0.741 0.715 0.609

+ EFEX labels 0.468 0.759 0.688 0.638
+ fine-tuning 0.400 0.764 0.606 0.642

Table 10: Results on the TLT test dataset (MSE and
PCC): baseline; baseline + fine-tuning; baseline + EFEX
labels; baseline + EFEX labels + fine-tuning.

a higher performance when predicting the spoken
scores both using the manual transcriptions and the
ASR output text, as shown in Table 10. Addition-
ally, we fine-tune our model on the spoken training
set for 2 epochs reducing the learning rate to 2e-6
and we obtain our best performance, reaching a
PCC of 0.764 on the manual transcriptions.

Also the results on the ASR output appear to be
enhanced by fine-tuning, as we obtain a PCC of
0.642. Fine-tuning the baseline without additional
features reaches a PCC of 0.741 on the manual tran-
scriptions and of 0.609 on the ASR. We find that
the EFEX-enriched model achieves higher results
across both metrics.

Furthermore, we continue our analysis compar-
ing the performance of the baseline and the EFEX-
enriched model across test scores. Figure 4 shows
the MSE variation across 4 ranges of scores, i.e.
0-3, 3-6, 6-9, 9-12. It can be observed that the MSE
is always lower for the EFEX-enriched model ex-
cept in the range of scores between 0 and 3 on both
the manual transcriptions and ASR output text, for
which the EFEX-enriched model shows a minute
increase of the MSE. Such difference is probably
due to the fact that, in this specific range of scores,
learners’ answers, in addition to having lower qual-
ity, are also shorter on average (about 11 words),
as shown in Table 6. As the score increases, the
word average rises to 56 for scores between 9 and
12. Fewer words also means fewer and less variety
of errors. Therefore, EFEX might be introducing
some information that is not needed for answers
with lower scores.

Specifically, the error distribution for the lowest
range might be less informative, as can be inferred
from the Frobenius norm values of the EFEX vec-
tors for each score range shown in Table 11.
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Figure 4: MSE variation across scores on manual tran-
scriptions and ASR output text.

Norm
Score range Man. transcr. ASR
0-3 1.786 1.780
3-6 2.386 2.540
6-9 2.022 2.090
9-12 4.011 3.986

Table 11: Frobenius norm values of EFEX vectors
across score ranges.

5 Conclusions and future work

In this work we presented a promising approach
to automatic proficiency assessment of spoken re-
sponses based on the presence of errors across profi-
ciency levels, extracted with an error feature extrac-
tor that we developed using a BERT-based archi-
tecture. Furthermore, we proposed to use models
previously trained on written data in order to tackle
the problem related to limited availability of spo-
ken data. First, we tried our error-based approach
on some publicly available datasets, training our
models on the CLC-FCE and testing them on the
ICNALE. In this case, our EFEX-enriched model
managed to modestly improve the prediction of the
dialogues scores in terms of PCC. Specifically for
this experiment, one also has to consider the dif-
ference in domain and scoring metrics between the
two corpora, albeit they are approximately around
the same proficiency levels.

Subsequently, we discovered that the use of
EFEX labels shows a more interesting improve-
ment in scoring the spoken section of TLT-school
after training our models on written data, suggest-
ing that these additional features can mitigate the
impact of ASR errors and some typical phenomena
of the spoken modality. An example drawn from

the data could be the following: "in fact when a
person does a lot of movement and moves a lot
and goes out in the in the nature then his his body
is in more healthy". The repetitions ’in the’ and
’his’ as well as what appears to be a wrongly in-
serted preposition ’in’ would be considered actual
errors if they occurred in written productions, but
not necessarily so in spoken texts.

Our assumption is that BERT models, as they are
trained on large written corpora, already possess
written grammatical knowledge and are sensitive to
grammatical violations to a certain extent. There-
fore, when evaluating written proficiency, they do
not need to be warned with explicit indications
with regard to errors, but error-related features can
be beneficial to understand and decode the typi-
cal phenomena of oral language and learn spoken
and conversational grammar. Considering that in
spoken responses the scoring module could take
advantage of a distinction of errors made by the
speaker or introduced by ASR (Knill et al., 2019),
we assume that there is still room for improvement
in the approaches that detect errors as additional
features.

Further work should be undertaken starting from
the first step of our pipeline, i.e. the error feature
extractor, since, despite the good results shown
in Table 8, we can still improve it and analyse its
effectiveness in various ways, e.g. by rearranging
the error classes and remapping the ranking of error
gravity.

Considering that we removed spontaneous
speech phenomena such as hesitations and frag-
ments of words from the data for our experiments,
we envisage a combination of the approach pre-
sented in this paper and the use of error-related
features derived from audio recordings, such as
phonological errors as well as repetitions and other
types of disfluency.

Moreover, we plan to investigate the impact of
models trained on written data and tested on spo-
ken data also for other CEFR levels. Finally, we
acknowledge that the presence of errors cannot
be the only feature to be taken into account when
assessing L2 proficiency at higher levels, but, if
properly weighted and balanced with other profi-
ciency indicators, it might improve consistency and
objectivity in assessment.
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