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1 Introduction

Natural Language Processing (NLP) has achieved
great progress in the past decade on the basis of neu-
ral models, which often make use of large amounts
of labeled data to achieve state-of-the-art perfor-
mance. The dependence on labeled data prevents
NLP models from being applied to low-resource
settings and languages because of the time, money,
and expertise that is often required to label mas-
sive amounts of textual data. Consequently, the
ability to learn with limited labeled data is cru-
cial for deploying neural systems to real-world
NLP applications. Recently, numerous approaches
have been explored to alleviate the need for labeled
data in NLP such as data augmentation and semi-
supervised learning.

This tutorial aims to provide a systematic and up-
to-date overview of these methods in order to help
researchers and practitioners understand the land-
scape of approaches and the challenges associated
with learning from limited labeled data, an emerg-
ing topic in the computational linguistics commu-
nity. We will consider applications to a wide variety
of NLP tasks (including text classification, genera-
tion, and structured prediction) and will highlight
current challenges and future directions.

2 Tutorial Outline

This will be a three-hour tutorial devoted to the
cutting-edge topic of Learning with Limited Text
Data, divided into three sessions. Each session
will be 40 minutes, followed by 10 minutes for
Q&A and 10 minutes for a break. Each part in-
cludes an overview of the corresponding topic and
widely used methods and a deep dive into a set of
representative NLP work.

2.1 Data Augmentation

Data augmentation is a common technique used to
artificially increase both the size (i.e. the number

of datapoints) and the diversity (i.e. the deviation
from the true data distribution) of a given train-
ing dataset. Small labeled training datasets often
lead to overfitting, and data augmentation can help
alleviate this issue by creating augmented data auto-
matically or manually. Such techniques have been
widely explored in the computer vision (CV) field,
with methods like geometric/color space transfor-
mations, mixup, and random erasing. Although
it is relatively challenging to augment textual data
because of its complex syntactic and semantic struc-
tures, there exists a wide range of methods designed
to augment text data.

Representative data augmentation methods in
NLP include: token-level augmentation such as
randomly deleting or masking tokens (Bowman
et al., 2015), replacing words with synonyms or
related words (Zhang et al., 2015; Kobayashi,
2018), and inserting or replacing non-important
tokens with random tokens (Xie et al., 2017, 2019);
sentence-level augmentation by paraphrasing (Roy
and Grangier, 2019; Edunov et al., 2018) based on
back-translation that first translates sentences into
certain intermediate languages and then translates
them back to generate paraphrases as intermedi-
ate languages with different vocabulary and lin-
guistic structures like POS, syntax could introduce
certain variance, round-trip translation (Xie et al.,
2019; Coulombe, 2018), or generating sentences
conditioned on given label; adversarial data aug-
mentation that uses perturbed data to dramatically
influence the model’s predictions and confidence
without affecting human judgements (Morris et al.,
2020), such as finding neighbors in a model’s hid-
den representations using gradients (Cheng et al.,
2019) or concatenating distracting but meaningless
sentences as the end of paragraphs (Jia and Liang,
2017); and hidden-space augmentation that manip-
ulates the hidden representations through perturba-
tions like adding noise or performing interpolations
with other data points (Chen et al., 2020a).
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We will walk audiences through the recent
widely-used data augmentation methods and use
example NLP applications such as back-translation
for unsupervised translation to demonstrate how
to utilize these representative data augmentation
techniques in practice.

2.2 Semi-supervised Learning

While data augmentation can be applied in the
supervised setting to produce better results when
only a small labeled training dataset is available,
data augmentation is also commonly used in semi-
supervised learning. Semi-supervised learning pro-
vides a way to leverage unlabeled data when train-
ing a model, which can significantly improve the
models when there is only limited labeled data
available. This is particularly useful in the com-
mon setting where unlabeled data is cheaper and
easier to obtain compared to labeled data.

In this tutorial, we will briefly discuss various
semi-supervised techniques explored by recent re-
search in NLP using example applications or tasks.
We group existing semi-supervised learning meth-
ods into different categories based on how they
utilize unlabeled data: Self-training leverages su-
pervision that inherently exists or can be automati-
cally generated from the dataset (McClosky et al.,
2006); multi-task training leverages extra auxil-
iary tasks with labels to further utilize unlabeled
data related to the task of interest; and consistency
regularization trains a model to output the same
prediction when the input is perturbed through data
augmentation (Sachan et al., 2019; Xie et al., 2019;
Chen et al., 2020a,b).

2.3 Limited Data Learning for Low
Resourced Languages and Future Work

There are other orthogonal directions for tackling
the problem of learning with limited data, such as
other methods for semi-supervised learning such
as self-training (He et al., 2020), generative mod-
els (Cheng et al., 2016), and co-training (Clark
et al., 2018). We will briefly discuss these meth-
ods, and more specifically, we will walk through
audiences on how the aforementioned techniques
can be leveraged for improving performance on
low-resource languages as a case study, includ-
ing cross-lingual transfer learning which transfers
models from resource-rich to resource-poor lan-
guages (Schuster et al., 2019), few/zero-shot learn-
ing (Pham et al., 2019; Abad et al., 2020) which

uses only a few examples from the low-resource
domain to adapt models trained in another domain.

Despite the success of learning with limited data
in recent years, there are still certain challenges that
need to be tackled for better learning. To this end,
we will conclude our tutorial by highlighting some
of these challenges, including but not limited to the
data distribution shift, quantify the diversity and
efficiency of augmentation, dealing with out-of-
domain unlabeled data, learning data augmentation
strategies that are specific to text, and discussing
future directions that may help advance the field.

2.4 Breadth

While we will give pointers to dozens of relevant
papers over the course of the tutorial, we plan to
cover around 7-8 research papers in close detail.
Only 1-2 of the “deep dive” papers will come from
the presenter team.

3 Diversity Considerations

This tutorial will cover techniques and topics be-
yond English as an application domain. We will
also cover content around how learning with lim-
ited text data can be applicable to low-resourced
language, dialects, and other related tasks. Our
presenter team has a diverse background from both
academia (a junior female faculty from Georgia
Institute of Technology, and an assistant professor
from University of North Carolina, Chapel Hill)
and industry (a research scientist from Google).
Our presenter team will share our tutorial with a
worldwide audience by promoting it on social me-
dia. We will work with ACL/NAACL D&I teams,
and consult resources such as the BIG directory
to diversify our audience participation. Further-
more, we will engage with NLP initiatives like
Masakhane that our team has connections to.

4 Prerequisites

The prerequisite includes familiarity with basic ma-
chine learning and deep learning models, especially
those typically used in modern NLP, including at-
tention mechanisms (Bahdanau et al., 2014), the
Transformer architecture (Vaswani et al., 2017),
sequence-to-sequence learning (Sutskever et al.,
2014), etc. Furthermore, this tutorial assumes back-
ground in basic probability, linear algebra, and cal-
culus. We will also provide a more paced introduc-
tion to the material with additional readings.
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4.1 Reading List

1. An Empirical Survey of Data Augmentation
for Limited Data Learning in NLP (Chen et al.,
2021)1;

2. MixText: Linguistically-Informed Interpola-
tion of Hidden Space for Semi-Supervised
Text Classification (Chen et al., 2020a)2;

3. Understanding Back-Translation at Scale
(Edunov et al., 2018);

4. Cross-lingual Language Model Pretraining
(Conneau and Lample, 2019);

5. Parsing with Multilingual BERT, a Small Cor-
pus, and a Small Treebank (Chau et al., 2020);

6. TextAttack: A Framework for Adversarial At-
tacks, Data Augmentation, and Adversarial
Training in NLP (Morris et al., 2020);

7. Self-training Improves Pre-training for Natu-
ral Language Understanding (Du et al.)

5 Tutorial Presenters

Diyi Yang is an assistant professor at the School
of Interactive Computing, Georgia Tech. Her re-
search focuses on learning with limited and noisy
text data, user-centric language generation, and
computational social science. Diyi has organized
four workshops at NLP conferences: Widening
NLP Workshops at NAACL 2018 and ACL 2019,
Casual Inference workshop at EMNLP 2021, and
NLG Evaluation workshop at EMNLP 2021. She
also gave a tutorial at the 2020 Chinese CSCW
Summer School. She has taught courses on natural
language processing at Georgia Tech since 2019.

Ankur Parikh is a senior research scientist at
Google NYC and adjunct assistant professor at
NYU. His research interests are in natural language
processing and machine learning with a recent fo-
cus on high precision text generation. Ankur re-
ceived his PhD from Carnegie Mellon in 2015
and has received a best paper runner up award
at EMNLP 2014 and a best paper in translational
bioinformatics at ISMB 2011. He has taught natu-
ral language processing at NYU since 2017.

1Collaboration from two of our tutorial presenters.
2Work from one of our tutorial presenters.

Colin Raffel is an assistant professor of Com-
puter Science at the University of North Carolina,
Chapel Hill. His research is focused on ma-
chine learning algorithms for learning from lim-
ited labeled data, including semi-supervised, un-
supervised, and transfer learning methods. His
best-known work on the topics related to this
tutorial include the T5 model and the Mix-
Match/ReMixMatch/FixMatch series of semi-
supervised learning algorithms. He gave a tuto-
rial at the 2017 International Society for Music
Information Retrieval Conference3 and has taught
machine learning courses at UNC, Columbia Uni-
versity, and Google’s TechExchange program.

6 Ethics Statement

We do not anticipate any ethical issues related to
the topics of the tutorial.
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