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Abstract
Open-domain question answering is a challeng-
ing task with a wide variety of practical appli-
cations. Existing modern approaches mostly
follow a standard two-stage paradigm: retriever
then reader. In this article, we focus on improv-
ing the effectiveness of the reader module and
propose a novel copy-augmented generative
approach that integrates the merits of both ex-
tractive and generative readers. In particular,
our model is built upon the powerful gener-
ative model FiD (Izacard and Grave, 2021b).
We enhance the original generative reader by
incorporating a pointer network to encourage
the model to directly copy words from the re-
trieved passages. We conduct experiments on
the two benchmark datasets, NaturalQuestions
and TriviaQA, and the empirical results demon-
strate the performance gains of our proposed
approach.

1 Introduction

Open-domain question answering (ODQA) focuses
on providing highly precise answers to natural lan-
guage questions from a large collection of unstruc-
tured text data (Voorhees, 1999). With the pioneer-
ing work of DrQA (Chen et al., 2017), modern
approaches to ODQA commonly adopt a simple
two-stage retriever-reader pipeline, that firstly re-
trieve a relatively small number of support passages
(Karpukhin et al., 2020; Min et al., 2021b; Yamada
et al., 2021), followed by the reader identifying the
answer.

The reader models can be broadly categorized
into two classes: extractive (Chen et al., 2017; Asai
et al., 2020; Karpukhin et al., 2020) and generative
(Izacard and Grave, 2021b; Lewis et al., 2020b;
Wu et al., 2021). Recently, benefiting from the
powerful ability of large-scale pre-trained encoder-
decoder language models (Lewis et al., 2020a; Raf-
fel et al., 2019) and the capability of aggregat-
ing information from multiple passages (Izacard

∗This work was done when she was at AARC.

Question: where was a hologram for the king filmed?
Passages (Truncated): title: A Hologram for the King (film)
context: Production was set to begin in first quarter of 2014.
Principal photography commenced on March 6, 2014 in Mo-
rocco. Filming also took place in Hurghada in Egypt, as well
as in Berlin and Düsseldorf in Germany. Shooting wrapped in
June 2014.
Answer: Hurghada in Egypt, Berlin and Düsseldorf in Germany
FiD: Dubai in Germany
FiD-PGN: Hurghada in Egypt

Question: who has the most trophies in la liga?
Passages (Truncated): title: La Liga context: A total of 62
teams have competed in La Liga since its inception. Nine teams
have been crowned champions, with Real Madrid winning the
title a record 33 times and Barcelona 25 times.
Answer: Real Madrid
FiD: 33
FiD-PGN: Real Madrid

Table 1: Comparisons of answers generated by FiD and
our approach. The orange text represents supportive
sentences.

and Grave, 2021b), generative approaches have
achieved in general better performance than extrac-
tive methods.

Compared to extractive models, generative mod-
els generate text more freely, which makes it often
suffer from the problem of producing hallucinated
text that is factual inaccuracy or inconsistent to the
input. This problem has been addressed in tasks
like text summarization (Maynez et al., 2020) and
machine translation (Zhou et al., 2021). We found
that the phenomenon also happens in ODQA. As
shown in Table 1, the answer "Dubai in Germany"
produced by the generative model FiD (Izacard and
Grave, 2021b) is factual incorrect and the answer
"33" in the second example is not coherent to the
question. While in both cases, the ground-truth
answers are present in the retrieved passages. Thus,
we hypothesize that if we could put a constraint on
the produced words to the input text, the generated
answer will be more faithful.

Inspired by the work of See et al. (2017), we
enhance the generative model with a pointer net-
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Figure 1: The overall architecture of our proposed model. We add a linear layer to calculate the generation
probability, which decides the weights of generating words from vocabulary or copying from source passages.

work (Vinyals et al., 2015), that enables the model
to directly copy text from the retrieved passages
while retains the ability of generating new words
when the true answers are not explicitly present
in the input. To be more specific, our model
fusion-in-decoder pointer-generator network (FiD-
PGN) is built upon the state-of-the-art model FiD.
We reuse the encoder-decoder attention scores as
the copy distribution to reduce the computational
cost. Compared to FiD, we achieve comparative or
even better accuracy on the NaturalQuestions (NQ)
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017) benchmarks, with less passages used
in training. Our experiments results show the effec-
tiveness and efficiency of our model.

2 Related Work

2.1 Open-Domain Question Answering

In this era of data explosion, ODQA offers a way
to rapidly and accurately fulfill user’s information
needs, and hence has recently received significant
attention from both industry and academia (Min
et al., 2021a). Following the work of DrQA (Chen
et al., 2017), most recent works build a two-stage
retriever-reader system to tackle the problem. The
retriever aims at retrieving supportive passages to
the given question from a large document corpus.
The reader intends to find answer of the question
from the first stage retrieved passages. Early work
of Chen et al. (2017) adapts a BiLSTM architecture
with various lexical and semantic features from
the question and passages as inputs. Later, with
the emergence of large-scale pre-trained language
models, readers based on pre-trained models such

as BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2019) have become a common approach (Yang
et al., 2019; Izacard and Grave, 2021b; Karpukhin
et al., 2020).

2.2 Generative Readers

Compared to extractive models which extract spans
from the retrieved passages, generative models are
able to produce new words out of the retrieved
passages, and thus provide a more flexible model-
ing framework. Min et al. (2020) and Lewis et al.
(2020b) concatenate the given question with top
retrieved passages and feed the concatenation to
the BART model (Lewis et al., 2020a). Izacard
and Grave (2021b) separately encodes the ques-
tion with each top retrieved passage, then takes
the concatenation of the encoder outputs as input
to the decoder. Their method provide a way to
better aggregate evidence from multiple passages
and improve the performance significantly. FiD-
KD (Izacard and Grave, 2021a) is an extension of
FiD model that increases the accuracy of passage
retrieval by training the dense retriever with the
guidance of the FiD reader iteratively.

2.3 Pointer-Generator Network

Pointer-Generator Network (See et al., 2017) is
an extension of the sequence-to-sequence model
by integrating a copy mechanism (Vinyals et al.,
2015) into the generator. At each decoding stage,
the model is able to either directly copy a word
from the input or generate one with certain prob-
ability, and thus can be viewed as a combination
of extractive and generative approaches. It has
been frequently used in natural language tasks like
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summarization (Gu et al., 2016; See et al., 2017;
Gehrmann et al., 2018) and neural machine trans-
lation (Luong et al., 2015; Gu et al., 2018), but its
application to ODQA has been less explored.

3 Method

Our model follows the standard two-stage retriever-
reader framework with a focus on the enhancement
of the reader module built upon the FiD reader.
We adopt the retriever results of FiD-KD, where a
dense retriever similar to DPR (Karpukhin et al.,
2020) is used. A pointer network is integrated into
the FiD reader to facilitate copying words from the
retrieved passages. The overall reader architecture
is depicted in Figure 1.

Reader Encoder. The reader encoder of our model
is identical to the one of FiD reader. We firstly con-
catenate the given question q with each retrieved
passage pi as xi = [q; pi]. Next, we pass each xi in-
dividually to the reader encoder, i.e., the encoder of
T5 or BART model, and obtain the hidden represen-
tations hi = (hi,1, hi,2, . . . , hi,n) of the question-
passage pair where hi,j ∈ Rd and d is the model
dimension. Finally, we concatenate all the hidden
representations of top-k passages {h1, . . . , hk} as
input to the decoder.

Reader Decoder. Our approach mainly differs
from FiD reader in the decoder module by adding a
pointer network. Specifically, at each decoding step
t, let et ∈ Rd be the embedding vector of the input
token at this step, and denote sLt ∈ Rd as the output
representation of the last layer L of transformer
decoder, then the probability of generation is given
as follows,

pgen = σ(wT
e et + wT

s s
L
t + b) (1)

where we ∈ Rd, ws ∈ Rd and b ∈ R are all learn-
able parameters and σ(·) represents the sigmoid
function. In addition, the probability of copying is
1− pgen.

Next, let V denote the vocabulary containing
words for the generative model and |V| be the size
of the vocabulary. Then at step t, the probability
distribution of words generation over the vocabu-
lary is computed as,

Pvocab = softmax(WEs
L
t ) (2)

where WE ∈ R|V |×d is a learnable weight matrix.

Benefiting from the encoder-decoder attention
layer in transformer architecture, we directly utilize
the cross-attention score αL

t of the last decoder
layer L over the source tokens for the target token
yt as copy distribution. Then the probability of
selecting yt in source sequence is calculated as,

Pctx(yt) =
∑

j:x1:k,j=yt
αL
t,j (3)

where x1:k denotes the concatenation of the top-k
retrieved passages, x1:k,j is the j-th token of x1:k,
and αL

t,j is the j-th element of αL
t . If yt is not

present in the top-k retrieved passages, Pctx(yt)
will be zero.

Finally, put all the above together, the target
token yt could both be generated from vocabulary
with probability pgen, and copy from the source
passages. The final prediction probability is defined
as

P (yt) = pgenPvocab(yt) + (1− pgen)Pctx(yt). (4)

4 Experiments

4.1 Datasets

We evaluate the performance of our approach on
two standard ODQA datasets, NQ and TriviaQA.
The NQ dataset comprises real queries that user is-
sued on Google search engine along with answers.
The TriviaQA dataset consists of question-answer
pairs collected from trivia and quiz-league websites.
The details of data statistics are listed in Table 2. It
can be seen that TriviaQA has on average longer
question length than NQ, indicating that questions
in TriviaQA are relatively more complex. We use
the data released on the repository of FiD1, con-
taining question-answer pairs and top-100 passages
retrieved by FiD-KD.

Statistics NQ TriviaQA
Train 79,168 78,785
Validation 8,757 8,837
Test 3,610 11,313
Avg. Qlen 9.3 16.9
Avg. Alen 2.4 2.2

Table 2: Summary statistics of the two datasets. Avg.
Qlen and Avg. Alen denote the average number of
tokens per question and answer, respectively.

1https://github.com/facebookresearch/
FiD
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Model Reader Size Top-k NQ TriviaQA
DPR (BERT-base) (Karpukhin et al., 2020) 110M 24 41.5 57.9
RAG-Seq (BART-large) (Lewis et al., 2020b) 406M 50 44.5 56.8
FiD (T5-base) (Izacard and Grave, 2021b) 220M 100 48.2 65.0
FiD-KD (T5-base) (Izacard and Grave, 2021a) 220M 100 49.6 68.8
FiD-KD (Our implementation) 220M 25 48.5 67.5
FiD-PGN 220M 25 51.4 68.4

Table 3: Exact match (EM) scores on NQ and TriviaQA test sets. Top-k indicates the number of retrieved passages
used during reader training. The performance of SOTA model is in bold and the second best model is in underline.

4.2 Implementation Details

We follow the experimental settings as in FiD.
Our model is initialized with a pre-trained T5-base
model, and trained using AdamW (Loshchilov and
Hutter, 2017) algorithm with a learning rate of
10−4, linear scheduling with 15k total steps and 1k
warm-up steps. Moreover, we train our model us-
ing the top-25 retrieved passages for each question
and set the batch size as 64 due to computational
limitation. All experiments are run on eight Nvidia
V100 32GB GPUs.

4.3 Results

Table 3 shows the experimental results of our model
and other approaches on the test sets, evaluated
with the standard exact match (EM) score (Ra-
jpurkar et al., 2016). For a fair comparison, we
retrained the FiD reader on the top-25 retrieved
passages to match our experimental settings.

As shown in Table 3, our model outperforms
FiD-KD on both NQ and TriviaQA datasets under
the same setting. This demonstrates that the pointer
network could help to generate answers more accu-
rately. It is worth noting that, compared with FiD-
KD trained with the top-100 retrieved passages, our
model achieves comparative or even better results
with only 1/4 of the input data and without introduc-
ing many parameters (only 1537 extra parameters
are added), indicating the efficiency of our model.

5 Analysis

Generation Probability. We explore the proba-
bility of generation during training to further in-
vestigate the effects of the pointer module. As
shown in Figure 2, the generation probability pgen
in TriviaQA is always higher than the one in NQ.
Note that a higher generation probability means
that more tokens are produced from the vocabulary
instead of copying from the input. We conjecture
that this phenomenon is caused by the different

Figure 2: Generation probability pgen over training steps
on NQ and TriviaQA.

question types. As stated in Rogers et al. (2021),
Trivia questions are more like probing questions.
Compared to the information-seeking questions in
NQ, probing questions tend to need more complex
reasoning, and thus it is difficult to directly extract
relevant tokens from input texts. Moreover, this
observation is also consistent with the results that
the improvements of our model over FiD reader is
smaller in TriviaQA than the one in NQ (0.9 vs. 2.9
EM for TriviaQA and NQ, respectively).

Test-Train Overlap Evaluation. The study of
test-train overlap (Lewis et al., 2021) provides valu-
able insights into the model’s question answering
behavior. We evaluate our model on the same test
data splits as in Lewis et al. (2021). Table 4 reports
the results with respect to three kinds of test-train
overlaps. It can be seen that our approach improves
most over FiD reader on "No Overlap" category,
the most challenging setting, indicating a better
generalization ability to question answering.

Training with Varying Number of Passages. Fig-
ure 3 shows the performance of our model and FiD
reader with regard to different number of retrieved
training passages. We train both models with top-k
passages (k ∈ {1, 5, 10, 25}) and evaluate on the
development sets with the same number of pas-
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Dataset Overlap Type FiD FiD-PGN ∆

NQ

Total 48.5 51.4 2.9
Question Overlap 73.5 75.9 2.4
Answer Overlap Only 41.0 45.1 4.1
No Overlap 28.8 38.4 9.6

TriviaQA

Total 67.5 68.4 0.9
Question Overlap 88.4 89.6 1.2
Answer Overlap Only 66.9 68.4 1.5
No Overlap 41.5 43.4 1.9

Table 4: Test-train overlap evaluation on NQ and Trivi-
aQA test sets. Exact match (EM) scores are reported.

Figure 3: The variation of performance with different
number of retrieved passages used in reader training.
Exact match (EM) scores are measured on the develop-
ment sets of NQ and TriviaQA.

sages. We can observe that the matching scores of
both models increase with respect to the number of
passages used in training, consistent with the find-
ings in Izacard and Grave (2021b) that sequence-to-
sequence model is capable of gathering information
across multiple retrieved passages. Moreover, the
two models show comparative performance when
the number of training passages is small, but when
more passages are included, our model outperforms
FiD, especially on the NQ dataset.

6 Conclusion

In this article, we propose a novel FiD-PGN ap-
proach for the reader module of ODQA under the
standard retriever-reader framework. Specifically,
we integrate a pointer network into the FiD reader
to allow the model to directly select words from the
retrieved passages. Experimental results show that
our model outperforms FiD-KD on two benchmark
datasets under the same setting, demonstrating the
advantages of our method.
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