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Abstract

Nested named entity recognition (NER) has
been receiving increasing attention. Recently,
Fu et al. (2020) adapt a span-based con-
stituency parser to tackle nested NER. They
treat nested entities as partially-observed con-
stituency trees and propose the masked inside
algorithm for partial marginalization. How-
ever, their method cannot leverage entity
heads, which have been shown useful in entity
mention detection and entity typing. In this
work, we resort to more expressive structures,
lexicalized constituency trees in which con-
stituents are annotated by headwords, to model
nested entities. We leverage the Eisner-Satta
algorithm to perform partial marginalization
and inference efficiently. In addition, we pro-
pose to use (1) a two-stage strategy (2) a head
regularization loss and (3) a head-aware label-
ing loss in order to enhance the performance.
We make a thorough ablation study to investi-
gate the functionality of each component. Ex-
perimentally, our method achieves the state-of-
the-art performance on ACE2004, ACE2005
and NNE, and competitive performance on
GENIA, and meanwhile has a fast inference
speed. Our code will be publicly available at:
github.com/LouChao98/nner_as_parsing.

1 Introduction

Named Entity Recognition (NER) is a fundamen-
tal task in information extraction, playing an es-
sential role in many downstream tasks. Nested
NER brings more flexibility than flat NER by al-
lowing nested structures, thereby enabling more
fine-grained meaning representations and broader
applications (Byrne, 2007; Dai, 2018). Traditional
sequence-labeling-based models have achieved re-
markable performance on flat NER but fail to han-
dle nested entities. To resolve this problem, there
are many layer-based methods (Ju et al., 2018;
Fisher and Vlachos, 2019; Shibuya and Hovy,
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2020; Wang et al., 2020, 2021) proposed to rec-
ognize entities layer-by-layer in bottom-up or top-
down manners. However, they suffer from the error
propagation issue due to the cascade decoding.

Recently, Fu et al. (2020) adapt a span-based
constituency parser to tackle nested NER, treating
annotated entity spans as a partially-observed con-
stituency tree and marginalizing latent spans out for
training. Their parsing-based method, namely PO-
TreeCRF, admits global exact inference thanks to
the CYK algorithm (Cocke, 1969; Younger, 1967;
Kasami, 1965), thereby eliminating the error prop-
agation problem. However, their method does not
consider entity heads, which provide important
clues for entity mention detection (Lin et al., 2019;
Zhang et al., 2020d) and entity typing (Katiyar and
Cardie, 2018; Choi et al., 2018; Chen et al., 2021).
For example, University and California are strong
clues of the existence of ORGEDU and STATE en-
tities in Fig.1. Motivated by this and inspired by
head-driven phrase structures, Lin et al. (2019) pro-
pose the Anchor-Region Network (ARN), which
identifies all entity heads firstly and then predicts
the boundary and type of entities governed by each
entity head. However, their method is heuristic
and greedy, suffering from the error propagation
problem as well.

Our main goal in this work is to obtain the
best of two worlds: proposing a probabilistically
principled method that enables exact global infer-
ence like Fu et al. (2020), meanwhile taking en-
tity heads into accounts like Lin et al. (2019). To
enable exact global inference, we also view ob-
served entities as partially-observed trees. Since
constituency trees cannot model entity heads, we
resort to lexicalized trees, in which constituents
are annotated with headwords. A lexicalized
tree embeds a constituency tree and a depen-
dency tree (Gaifman, 1965), and lexicalized con-
stituency parsing can thus be viewed as joint depen-
dency and constituency parsing (Eisner and Satta,
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Figure 1: An example sentence with a compatible latent lexicalized constituency tree (top) and observed entities
(down). All constituents are annotated by headwords with [ · ] and we omit the constituent labels. The dotted frame
shows an example of inherited head (blue) and non-inherited head (red). We can draw a dependency arc from the
inherited head to the non-inherited head. For example, University→ California. Hence a lexicalized constituency
tree embeds a constituency tree and a dependency tree.

1999; Collins, 2003). Fig.1 illustrates an exam-
ple lexicalized tree. Joint dependency and con-
stituency parsing has been shown to outperform
standalone constituency parsing (Zhou and Zhao,
2019; Fernández-González and Gómez-Rodríguez,
2020) possibly because modeling dependencies be-
tween headwords helps predict constituents cor-
rectly. Hence, in the context of nested NER, we
have reasons to believe that modeling latent lex-
icalized constituency trees would bring improve-
ment in predicting entities over modeling latent
constituency trees, and we verify this in experi-
ments.

When using a lexicalized constituency tree for
nested NER, only part of unlexicalized spans, i.e.,
entities, are observed, so we need to marginalize
latent spans and dependency arcs out for training.
Inspired by the masked inside algorithm of Fu et al.
(2020), we propose a masked version of the Eisner-
Satta algorithm (Eisner and Satta, 1999), a fast
lexicalized constituency parsing algorithm, to per-
form partial marginalization. We also adopt the
Eisner-Satta algorithm for fast inference.

Besides the difference in parsing formalism and
algorithms, our work also differs from the work
of Fu et al. (2020) and Lin et al. (2019) in the
following three aspects. First, inspired by Zhang
et al. (2020a), we adopt a two-stage parsing strat-
egy, i.e., we first predict an unlabeled tree and then
label the predicted constituents, instead of using
the one-stage parsing strategy of PO-TreeCRF. We
show that two-stage parsing can improve the per-
formance of both PO-TreeCRF and our proposed
method. Second, Lin et al. (2019) observe that
each entity head governs only one entity span in

most cases, so they impose a hard constraint of
that during learning and inference, which is poten-
tially harmful since the constraint is not always
satisfied. Instead, we add a soft KL penalty term
to encourage satisfaction of the constraint, which
is reminiscent of posterior regularization (Ganchev
et al., 2010; Zhang et al., 2017). Third, consider-
ing that gold entity heads are not given, Lin et al.
(2019) propose a “bag loss” for entity boundary de-
tection and labeling. However, this loss is heuristic
and brings an additional hyperparameter, to which
the final performance is sensitive. In contrast, en-
tity boundary detection is learned in the first stage
of our method, and in the second stage, we propose
a more principled labeling loss based on expec-
tations (i.e., marginal likelihoods) of all possible
entity heads within gold entity spans, which can be
estimated efficiently and does not introduce new
hyperparameters.

We conduct experiments on four benchmark
datasets, showing that our model achieves state-of-
the-art results on ACE2004, ACE2005 and NNE,
and competitive results on GENIA, validating the
effectiveness of our method.

2 Preliminary

2.1 One-stage and Two-stage Parsing

A labeled constituency tree can be represented as
a rank-3 binary tensor T where Tijk = 1 if there
is a span from the i-th word to the j-th word with
label k in the tree and Tijk = 0 otherwise. We as-
sume the 0-th label is preserved for ∅ (i.e., no label)
without loss of generality. Similarly, an unlabeled
constituency tree can be represented as a binary ma-
trix T ′. One-stage span-based constituency parsers
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decompose the score of a labeled constituency tree
into the scores of constituents sijk:

s(T ) =
∑
ijk

Tijksijk

They use the CYK algorithm to recover the optimal
labeled tree. In contrast, two-stage constituency
parsers score unlabeled trees and constituent labels
independently. They decompose the score of an
unlabeled constituency tree into the scores of spans
si,j :

s(T ′) =
∑
ij

T ′ijsij

They use the CYK algorithm to recover the optimal
unlabeled tree in the first stage and then use a
separate component to label spans, including the
∅ label, in the second stage. Zhang et al. (2020c)
show that adopting the two-stage parsing strategy
leads to a better result in constituency parsing.

2.2 PO-TreeCRF
PO-TreeCRF (Fu et al., 2020) adapts a one-stage
constituency parser to tackle nested NER. It views
the set of entities y := {(i, j, k), . . . } as observed
parts of a constituency tree T where (i, j) is the
unlabeled entity span and k is the entity label. We
refer to other constituents as latent spans. A labeled
tree T is compatible with y if Tijk = 1 for any
entity (i, j, k) ∈ y and Tij0 = 1 for all latent spans
(i, j) (recall that the 0-th label is ∅). Define set
T̃ (y) as all compatible trees with y. PO-TreeCRF
maximizes the total likelihood of all compatible
trees:

s(y) = log
∑

T∈T̃ (y)

exp(s(T ))

log p(y) = s(y)− logZ

where logZ is the log-partition function. The diffi-
culty is how to estimate s(y) efficiently. Fu et al.
(2020) propose the masked inside algorithm to
tackle this, in which they set all incompatible span
(overlapped but not nested with any of y) values
to negative infinity before running the inside algo-
rithm. We refer readers to their paper for more
details.

2.3 Lexicalized Parsing
Figure 1 shows an example lexicalized constituency
tree. We omit all constituent labels for brevity.
Each constituent is annotated by a headword. A

non-leaf constituent span consists of two adjacent
sub-constituents and copies the headword from one
of them. We refer to the copied headword as the
inherited head and the other headword as the non-
inherited head. We can draw a dependency arc
from the inherited head to the non-inherited head.
A dependency tree can be obtained by reading off
all headwords recursively, and hence in this view, a
lexicalized constituency tree embeds a dependency
tree and a constituency tree.

The O(n4) Eisner-Satta algorithm (Eisner and
Satta, 1999) can be used to calculate the partition
function or obtain the best parse if we decompose
the score of a lexicalized constituency tree into
scores of spans and arcs. We refer interested read-
ers to Appendix A for details of the Eisner-Satta
algorithm.

3 Model

Notations Given a length-n sentence x =
x0, ..., xn−1 with (gold) entity set y :=
{(i, j,Ω), . . . }, where (i, j) is an unlabeled en-
tity span and Ω is the set of entity labels (there
could be multiple labels for one entity). We de-
note ỹ as the set of unlabeled entity spans, i.e.,
ỹ := {(i, j), . . . }.

3.1 Two-stage Strategy and Training Loss

The first stage always predicts 2n− 1 spans1 and
most of them are not entities. Hence naively adopt-
ing the two-stage parsing strategy to nested NER
suffers from the imbalanced classification problem
when predicting labels in the second stage because
the ∅ label would dominate all the entity labels.
To bypass this problem, we modify unlabeled con-
stituency trees by assigning 0-1 labels to unlabeled
constituency trees, where 0 stands for latent spans
and 1 stands for entities. It transfers the burden of
identifying non-entities to the first stage, in which
the binary classification problem is much more bal-
anced and easier to tackle. The total training loss
can be decomposed into:

L = Ltree + Llabel + Lreg

where Ltree is a 0-1 labeled constituency tree loss,
Llabel is a head-aware labeling loss and Lreg is a
regularization loss based on the KL divergence.

1A binary (lexicalized) constituency tree consists of exactly
2n− 1 constituents.
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3.2 Stage I: Structure Module
Encoding and scoring We feed the sentence into
the BERT encoder (Devlin et al., 2019), apply
scalar mixing (Peters et al., 2018) to the last four
layers of BERT, and apply mean-pooling to all sub-
word embeddings to obtain word-level contextual
embedding. We concatenate static word embed-
ding, e.g., GloVe (Pennington et al., 2014), to the
contextual embedding to obtain the word repre-
sentation a = a0, .., an−1. Then we feed a into
a three-layer bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) network (BiLSTM):

. . . , (
−→
bi ,
←−
bi ), · · · = BiLSTM([. . . , ai, . . . ])

Next, we use deep biaffine scoring functions (Dozat
and Manning, 2017) to calculate span scores sc ∈
Rn×n×2 and arc scores sd ∈ Rn×n:

e
c,in/out
i = MLPc,in/out([

−→
bi ;
←−−
bi+1])

e
d,in/out
i = MLPd,in/out([

−→
bi ;
←−
bi ])

scij = PN([ec,ini ; 1]TW c[ec,outj ; 1])

sdij = PN([ed,ini ; 1]TW d[ed,outj ; 1]),

where MLPs are multi-layer perceptrons that
project embeddings into k-dimensional spaces;
W c ∈ R(k+1)×2×(k+1),W d ∈ R(k+1)×(k+1) are
trainable parameters; PN is Potential Normaliza-
tion, which normalizes scores to follow unit Gaus-
sian distributions and has been shown beneficial
(Fu et al., 2020).

Scores of trees A 0-1 labeled lexicalized con-
stituency tree l embeds an unlabeled dependency
tree d and a 0-1 labeled constituency tree c. The
label set is {0, 1}, where 0 denotes latent spans and
1 denotes entity spans. We use a binary rank-3 ten-
sor C ∈ Rn×n×2 to represent c, where Cijk = 1 if
and only if there is a span from xi to xj with label
k in c; and a binary matrix D ∈ Rn×n to represent
d, where Dij = 1 if and only if there is an arc from
xi to xj in d. We define the score of l as :

s(l) = s(c) + s(d)

=
∑
ijk

Cijks
c
ijk +

∑
ij

Dijs
d
ij

Structural tree loss We marginalize all latent
spans and arcs out to define the loss:

s(ỹ) = log
∑
T̃∈T̃

exp(s(T̃ ))

Ltree = logZ − s(ỹ)

where T̃ is the set of all compatible lexicalized
trees whose constituents contain ỹ; logZ is the
log-partition function that can be estimated by the
Eisner-Satta algorithm. For each compatible tree
T̃ ∈ T̃ , the 0-1 labels are assigned in accordance
with the entity spans in ỹ. We use a masked ver-
sion of the Eisner-Satta algorithm (Appendix A) to
estimate s(ỹ).

Regularization loss As previously discussed, en-
tity heads govern only one entity in most cases. But
imposing a hard constraint is sub-optimal because
there are also cases violating this constraint. Hence
we want to encourage the model to satisfy this
constraint in a soft manner. Inspired by posterior
regularization (Ganchev et al., 2010; Zhang et al.,
2017), we build a constrained TreeCRF and mini-
mize the KL divergence between constrained and
original unconstrained TreeCRFs. The first prob-
lem is how to construct the constrained TreeCRF.
We propose to “hack” the forward pass (i.e., inside)
of the Eisner-Satta algorithm to achieve this: we
decrease the arc scores by a constant value (we typ-
ically set to 0.4) whenever the parent has already
governed an entity during computing the inside
values, so it discourages a head having several chil-
dren and thus governing several spans. We refer
readers to Appendix A for more details. The sec-
ond problem is how to optimize the KL divergence
efficiently for exponential numbers of trees. We
adopt the specific semiring designed to calculate
KL divergences between structured log-linear mod-
els (Li and Eisner, 2009) from the Torch-Struct
library (Rush, 2020) 2. The calculation of KL diver-
gence is fully differentiable and thus is amenable
to gradient-based optimization methods. It has the
same time complexity as the forward pass of the
Eisner-Satta algorithm. We denote the value of KL
divergence as Lreg.

3.3 Stage II: Labeling Module

To incorporate entity head information when label-
ing entity spans, we score the assignment of label
l ∈ L to a span (i, j) with head xk as follows:

e
l,in/out
i = MLPl,in/out([

−→
bi ;
←−−
bi+1])

el,headi = MLPl,head([
−→
bi ;
←−
bi ])

slabelijkl = TriAff(el,ini , el,outj , el,headk ),

2https://github.com/harvardnlp/
pytorch-struct/blob/master/torch_struct/
semirings/semirings.py
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where Triaff is the triaffine scoring function (Zhang
et al., 2020b); L is the set of all labels. We reuse
the encoder (BiLSTM) from Stage I.

Nested named entities could have multiple labels.
For instance, 7% entity spans in the NNE dataset
(Ringland et al., 2019) have multiple labels. We
use a multilabel loss introduced by Su (2020). For
each (i, j,Ω) ∈ y, consider a potential head xk
with i ≤ k ≤ j, we define the loss as:

l(i, j, k,Ω) = log(1 +
∑

l∈L/Ω

exp(slabelijkl ))

+ log(1 +
∑
l∈Ω

exp(−slabelijkl ))

Since the gold entity heads are not given, we
define the head-aware labeling loss based on ex-
pectation over the headword for each entity span:

Llabel =
∑

(i,j,Ω)∈y

∑
i≤k≤j

αijkl(i, j, k,Ω)

where αijk is the marginal likelihood of xk being
the headword of span (i, j) under the TreeCRF,
which satisfies

∑
i≤k≤j αijk = 1 and can be esti-

mated efficiently via the backward pass (i.e., back-
propagation (Eisner, 2016)) of the Eisner-Satta al-
gorithm.

4 Experiment

4.1 Setup

We conduct experiments on four datasets:
ACE2004 (Doddington et al., 2004), ACE2005
(Walker, Christopher et al., 2006), GENIA (Kim
et al., 2003) and NNE (Ringland et al., 2019). For
ACE2004, ACE2005 and GENIA, we use the same
data splitting and preprocessing as in Shibuya and
Hovy (2020)3. For NNE, we use the official prepro-
cessing script4 to split train/dev/test sets. We refer
readers to Appendeix B.1 for implementation de-
tails and to Appendix B.2 for data statistics of each
dataset. We report span-level labeled precision (P),
labeled recall (R) and labeled F1 scores (F1). We
select models according to the performance on de-
velopment sets. All results are averaged over three
runs with different random seeds.

3https://github.com/yahshibu/
nested-ner-tacl2020-transformers

4https://github.com/nickyringland/
nested_named_entities/tree/master/
ACL2019%20Paper

4.2 Main Result

We show the comparison of various methods on
ACE2004, ACE2005 and GENIA in Table 1. We
note that there is an inconsistency in the data pre-
possessing. For instance, the data statistics shown
in Table 1 of (Shibuya and Hovy, 2020) and Table
5 of (Shen et al., 2021) do not match. More seri-
ously, we find Shen et al. (2021); Tan et al. (2021)
use context sentences, which plays a crucial role in
their performance improvement but is not standard
practice in other work. In addition, they report the
best result instead of the mean result. Hence we
rerun the open-sourced codes of Shen et al. (2021);
Tan et al. (2021) using our preprocessed data and
no context sentences and we report their mean re-
sults over three different runs. We also rerun the
code of PO-TreeCRF for a fair comparison.

We can see that our method outperforms PO-
TreeCRF, our main baseline, by 0.30/2.42/0.64
F1 scores on the three datasets, respectively. Our
method has 87.90 and 86.91 F1 scores on ACE2004
and ACE2005, achieving the state-of-the-art per-
formances. On GENIA, our method achieves com-
petitive performance.

We also evaluate our method on the NNE dataset,
whereby there are many multilabeled entities. Ta-
ble 2 shows the result: our method outperforms
Pyramid by 0.27 F1 score.

5 Analysis

5.1 Ablation Studies

We conduct a thorough ablation study of our model
on the ACE2005 test set. Table 3 shows the result.

Structured vs. unstructured We study the ef-
fect of structural training and structured decoding
as a whole. “Unstructured” is a baseline that adopts
the local span classification loss and local greedy
decoding. “1-stage“ is our re-implementation of
PO-TreeCRF, which adopts the latent structural
constituency tree loss and uses the CYK algorithm
for decoding. “1-stage+LEX” adopts the latent
structural lexicalized constituency tree loss and
uses the Eisner-Satta algorithm for decoding. All
methods use the same neural encoders. We can
see that “1-stage” outperforms the unstructured
baseline by 0.33 F1 score. Further, “1-stage+LEX”
outperforms “1-stage” by 0.25 F1 score, verifying
the effectiveness of using latent lexicalized con-
stituency tree structures.
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Model ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

Comparable
SH - - - 83.30 84.69 83.99 77.46 76.65 77.05
Pyramid-Basic 86.08 86.48 86.28 83.95 85.39 84.66 78.45 78.94 79.19
W(max) 86.27 85.09 85.68 85.28 84.15 84.71 79.20 78.16 78.67
PO-TreeCRFs† 87.62 87.57 87.60 83.34 85.67 84.49 79.10 76.53 77.80
Seq2set† 87.05 86.26 86.65 83.92 84.75 84.33 78.33 76.66 77.48
Locate&Label† 87.27 86.61 86.94 86.02 85.62 85.82 76.80 79.02 77.89
BARTNER 87.27 86.41 86.84 83.16 86.38 84.74 78.57 79.3 78.93
Ours 87.39 88.40 87.90 85.97 87.87 86.91 78.39 78.50 78.44
For reference
SH [F] - - - 83.83 84.87 84.34 77.81 76.94 77.36
Pyramid-Full [A] 87.71 87.78 87.74 85.30 87.40 86.34 - - -
PO-TreeCRFs [D] 86.7 86.5 86.6 84.5 86.4 85.4 78.2 78.2 78.2
Seq2set [C,P,D] 88.46 86.10 87.26 87.48 86.63 87.05 82.31 78.66 80.44
Locate&Label[C,P,D] 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54

Table 1: Results on ACE2004, ACE2005 and GENIA. SH: Shibuya and Hovy (2020); Pyramid-Basic/Full: Wang
et al. (2020)5; W(max/logsumexp): Wang et al. (2021)6; PO-TreeCRFs: Fu et al. (2020); Seq2set: Tan et al. (2021)
; Locate&Label: Shen et al. (2021); BARTNER: Yan et al. (2021). Labels in square brackets stand for the reasons
of the results being incomparable to ours. F: +Flair; A: +ALBERT, C: context sentences, P: POS tags, D: different
data preprocessing. † denotes that we rerun their open-sourced codes using our data.

Model NNE
P R F1

Pyramid-Basic 93.97 94.79 94.37
Ours 94.32 94.97 94.64

Table 2: Results on NNE.

1-stage vs. 2-stage On the unstructured model,
we adopt a 0-1 local span classification loss in the
first stage of the two-stage version, and we observe
that the two-stage version performs similarly the
one-stage version. On the other hand, we observe
improvements on structured methods: “2-stage”
outperforms “1-stage” by 0.23 F1 score and “2-
stage+LEX” outperforms “1-stage+LEX” by 0.18
F1 scores, validating the benefit of adopting the
two-stage strategy. Moreover, "2-stage(0/1)+LEX"
outperforms "2-stage+LEX" by 0.15 F1 score, sug-
gesting the effectiveness of bypassing the imbal-
anced classification problem.

Effect of structural training and decoding We
study the importance of structural training and de-

5They did not report Pyramid-Full with BERT only. How-
ever, with BERT+ALBERT, Pyramid-Full only outperforms
Pyramid-Basic with a small margin (< 0.1).

6The max and logsumexp versions are the best models for
BERT only and BERT+Flair respectively.

coding in a decoupled way here. “-parsing” de-
notes the case that we use the latent lexicalized
constituency tree loss for training, while we do
not use the Eisner-Satta algorithm for parsing and
instead predict spans locally whenever their label
score of 1 is greater than that of 0. We can see
that it causes a performance drop of 0.49 F1 score,
indicating the importance of structural decoding,
i.e., parsing. It is also worth noting that “-parsing”
outperforms the unstructured baseline by 0.42 F1
score, showing the benefit of structural training
even without structural decoding.

Effect of head regularization We can see that
using the regularization loss brings an improvement
of 0.24 F1 score (86.32->86.56). In the case study
(Section 5.2), we observe that some common errors
are avoided because of this regularization.

Effect of head-aware labeling loss We can see
that using the head-aware labeling loss brings an
improvement of 0.30 F1 score (86.32 -> 86.62).
When combined with the head regularization, we
achieve further improvements because of more ac-
curate head estimation (Appendix B.3).
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Model P R F1
Unstructured(1-stage) 83.76 87.17 85.43
Unstructured(2-stage) 84.23 86.62 85.41
1-stage 84.08 87.52 85.76
1-stage + LEX 84.26 87.83 86.01
2-stage 84.68 87.33 85.99
2-stage + LEX 84.60 87.80 86.17
2-stage (0-1) + LEX 84.83 87.87 86.32

- parsing 84.26 87.40 85.83
+ head regularization 85.84 87.30 86.56
+ head-aware labeling 85.50 87.77 86.62
+ both (our final model) 85.97 87.87 86.91

Table 3: Ablation studies on the ACE2005 test set. LEX
represents lexicalized structures.

5.2 Case Study

Table 4 shows example predictions of our models.
In the first pair, “2-stage” predict reasonable struc-
tures (visualized in B.5), but fail to label entities,
whereas “2-stage (0-1)” predicts further correct
labels. The second pair shows that, by constrain-
ing head sharing and head-aware entity labeling,
“+both” successfully detect bus as a headword, then
produce correct entity boundaries and labels. Be-
sides, “+both” can be seen to handle both fine-
grained and coarse-grained entities in the last two
predictions: this bus near the airport is predicted
into two entities but all sites and people in Iraq
remains one multilabeled entity.

Table 5 gives the most common headwords of
each type predicted by our model on ACE2005. We
find that the most frequently predicted headwords
are gold headwords7, except for some common
function words, e.g., in and of. It proves the ability
of our model in recognizing headwords.

5.3 Speed Comparison

One concern regarding our method is that since
the Eisner-Satta algorithm has a O(n4) time com-
plexity, it would be too slow to use for NER practi-
tioners. Fortunately, the Eisner-Satta algorithm is
amenable to highly-parallelized implementation so
that O(n3) out of O(n4) can be computed in paral-
lel (Zhang et al., 2020b; Rush, 2020), which greatly
accelerates parsing. We adapt the fast implemen-

7ACE2005 is additionally annotated with headwords. We
only use them for evaluation.

tation of Yang and Tu (2022b) 8. Empirically, we
observe linear running time on GPUs in most cases.
We show the comparison of (both training and de-
coding) running time in Table 6. We measure the
time on a machine with Intel Xeon Gold 6278C
CPU and NVIDIA V100 GPU.

We can see that compared with PO-TreeCRF,
which also uses a highly-parallelized implementa-
tion of the O(n3) CYK algorithm, our method is
around 20% slower in training and decoding, which
is acceptable. Notably, both PO-TreeCRF and our
method are much faster than Seq2Set (Tan et al.,
2021) and Locate&Label(Shen et al., 2021).

6 Related Work

Nested NER Nested NER has been receiving in-
creasing attentions and there are many methods
proposed to tackle it. We roughly categorize the
methods into the following groups: (1) Span-based
methods: Luan et al. (2019); Yu et al. (2020); Li
et al. (2021) directly assign scores to each potential
entity span. (2) Layered methods: Ju et al. (2018);
Fisher and Vlachos (2019) dynamically merge sub-
spans to larger spans and Shibuya and Hovy (2020);
Wang et al. (2021) use linear-chain CRFs and recur-
sively find second-best paths for predicting nested
entities. (3) Hypergraph-based methods: Lu and
Roth (2015); Katiyar and Cardie (2018) propose
different hypergraph structures to model nested en-
tities but suffer from the spurious structure issue,
and Wang and Lu (2018) solve this issue later. (4)
Object-detection-based methods: Shen et al. (2021)
adapt classical two-stage object detectors to tackle
nested NER and Tan et al. (2021) borrow the idea
from DETR (Carion et al., 2020). (5) Parsing-based
methods (Finkel and Manning, 2009; Wang et al.,
2018; Fu et al., 2020; Yang and Tu, 2022a). (6)
Sequence-to-sequence methods (Yan et al., 2021).

Our method belongs to parsing-based meth-
ods. Finkel and Manning (2009) use a non-neural
TreeCRF parser. Wang et al. (2018) adapt a shift-
reduce transition-based parser. Fu et al. (2020)
use a span-based neural TreeCRF parser. Recently,
Yang and Tu (2022a) propose a bottom-up con-
stituency parser with pointer networks to tackle
nested NER as well. All of them cast nested NER
to constituency parsing, while we cast nested NER
to lexicalized constituency parsing and our method

8https://github.com/sustcsonglin/
span-based-dependency-parsing/blob/main/
src/inside/eisner_satta.py
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Model Prediction
2-stage [I]PER have never heard of [a pig like [this]WEA]WEA before !
2-stage (0-1)‡ [I]PER have never heard of a pig like this before !

2-stage (0-1) [Police]PER surrounded [this bus near [the airport]FAC]VEH,FAC with [guns]WEA drawn .
+ both‡ [Police]PER surrounded [this bus]VEH near [the airport]FAC with [guns]WEA drawn .
+ both‡ [Blix]PER stressed that [council]ORG resolutions call for [[U.N.]ORG inspectors]PER to

have access to [all sites and people in [Iraq]GPE]FAC,PER .

Table 4: Two sentences with predicted entity decorated. Blue entities are correct and red entities are wrong. The
underlined words are the entity heads. Models annotated with ‡ predict all entities correctly.

Type Most Frequent Headwords
PER you, I, he, they, i, his, of, their, we, who
LOC world, of, area, there, coast, where, beach, desert, Southeast, that
ORG we, they, Starbucks, its, court, company, military, of, their, companies
GPE U.S., Indonesia, Baghdad, city, state, Russian, we, country, Iraqi, where
FAC airport, house, jail, in, prison, street, of, it, hospital, home
VEH of, car, in, aircraft, that, bus, plane, lincoln, deck, its
WEA gun, weapons, arms, guns, firearms, missile, bullet, knife, rifles, Kalashnikov

Table 5: The most common (top 10) headwords of each entity type predicted by our method on the ACE2005 test
set. Red words are not headwords in the gold annotation.

Model Train Sents/sec
PO-TreeCRF 2m1s 205
2-stage 2m15s 184
2-stage + LEX 2m23s 173
Seq2set 3m24s 122
Locate&Label 4m23s 94

Table 6: Speed comparison for training one epoch on
ACE2005.

is thus able to model entity heads.

Structured models using partial trees Full
gold parse trees are expensive to obtain, so there
are many methods proposed to marginalize over
latent parts of partial trees, performing either ap-
proximate marginalization via loopy belief prop-
agation or other approximate algorithms (Narad-
owsky et al., 2012; Durrett and Klein, 2014) or
exact marginalization via dynamic programming
algorithms (Li et al., 2016; Zhang et al., 2020b; Fu
et al., 2020; Zhang et al., 2021). Naradowsky et al.
(2012); Durrett and Klein (2014) construct fac-
tor graph representations of syntactically-coupled
NLP tasks whose structures can be viewed as la-
tent dependency or constituency trees, such as
NER, semantic role labeling (SRL), and relation

extraction. Li et al. (2016); Zhang et al. (2020b)
perform partial marginalization to train (second-
order) TreeCRF parsers for partially-annotated de-
pendency parsing. Zhang et al. (2021) view arcs
in SRL as partially-observed dependency trees;
Fu et al. (2020) view entities in nested NER as
partially-observed constituency trees; and we view
entities in nested NER as partially-observed lexi-
calized constituency trees in this work.

Lexicalized parsing Probabilistic context-free
grammars (PCFGs) have been widely used in syn-
tactic parsing. Lexicalized PCFGs (L-PCFGs)
leverage headword information to disambiguate
parsing and are thus more expressive. Eisner and
Satta (1999) propose an efficient O(n4) algorithm
for lexicalized parsing. Collins (2003) conduct a
thorough study of lexicalized parsing. Recently,
neurally parameterized L-PCFGs have been used
in unsupervised joint dependency and constituency
parsing (Zhu et al., 2020; Yang et al., 2021). Our
work removes the grammar components and adapts
the dynamic programming algorithm of lexical-
ized parsing (Eisner and Satta, 1999) in the spirit
of span-based constituency parsing (Stern et al.,
2017).
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7 Conclusion

We have presented a parsing-based method for
nested NER, viewing entities as partially-observed
lexicalized constituency trees, motivated by the
close relationship between entity heads and entity
recognition. Benefiting from structural modeling,
our model does not suffer from error propagation
and heuristic head choosing and is easy for reg-
ularizing predictions. Furthermore, our highly-
parallelized implementation enables fast training
and inference on GPUs. Experiments on four
benchmark datasets validate the effectiveness and
efficiency of our proposed method.

Acknowledgments

We thank the anonymous reviewers for their con-
structive comments. This work was supported by
the National Natural Science Foundation of China
(61976139).

References
Kate Byrne. 2007. Nested named entity recognition in

historical archive text. In International Conference
on Semantic Computing (ICSC 2007), pages 589–
596.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part I, volume 12346 of
Lecture Notes in Computer Science, pages 213–229.
Springer.

Pei Chen, Haibo Ding, Jun Araki, and Ruihong Huang.
2021. Explicitly capturing relations between en-
tity mentions via graph neural networks for domain-
specific named entity recognition. In Proceedings of
the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 735–742, Online.
Association for Computational Linguistics.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word em-
beddings for biomedical NLP. In Proceedings of
the 15th Workshop on Biomedical Natural Language
Processing, pages 166–174, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 87–96, Melbourne, Australia. Associa-
tion for Computational Linguistics.

J. Cocke. 1969. Programming languages and their com-
pilers: Preliminary notes.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Lin-
guistics, 29(4):589–637.

Xiang Dai. 2018. Recognizing complex entity men-
tions: A review and future directions. In Pro-
ceedings of ACL 2018, Student Research Workshop,
pages 37–44, Melbourne, Australia. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassel, and Ralph
Weischedel. 2004. The automatic content extraction
(ACE) program – tasks, data, and evaluation. In
Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal. European Language Resources As-
sociation (ELRA).

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Greg Durrett and Dan Klein. 2014. A joint model
for entity analysis: Coreference, typing, and link-
ing. Transactions of the association for computa-
tional linguistics, 2:477–490.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17, Austin, TX. Asso-
ciation for Computational Linguistics.

Jason Eisner and Giorgio Satta. 1999. Efficient pars-
ing for bilexical context-free grammars and head au-
tomaton grammars. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics, pages 457–464, College Park, Maryland,
USA. Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2020. Multitask pointer network
for multi-representational parsing. CoRR,
abs/2009.09730.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested named entity recognition. In Proceedings of
the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 141–150, Singa-
pore. Association for Computational Linguistics.

6191

https://doi.org/10.1109/ICSC.2007.107
https://doi.org/10.1109/ICSC.2007.107
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/2021.acl-short.93
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.18653/v1/W16-2922
https://doi.org/10.18653/v1/P18-1009
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.18653/v1/P18-3006
https://doi.org/10.18653/v1/P18-3006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
http://arxiv.org/abs/2009.09730
http://arxiv.org/abs/2009.09730
https://aclanthology.org/D09-1015


Joseph Fisher and Andreas Vlachos. 2019. Merge and
label: A novel neural network architecture for nested
NER. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 5840–5850, Florence, Italy. Association
for Computational Linguistics.

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang,
and Fei Huang. 2020. Nested named entity recogni-
tion with partially-observed treecrfs.

Haim Gaifman. 1965. Dependency systems and
phrase-structure systems. Inf. Control., 8(3):304–
337.

Kuzman Ganchev, Jo&#227;o Graça, Jennifer Gillen-
water, and Ben Taskar. 2010. Posterior Regulariza-
tion for Structured Latent Variable Models. Journal
of Machine Learning Research, 11(67):2001–2049.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.
2018. A neural layered model for nested named en-
tity recognition. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1446–1459, New Orleans, Louisiana. Association
for Computational Linguistics.

Tadao Kasami. 1965. An efficient recognition
and syntax-analysis algorithm for context-free lan-
guages.

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003. GE-
NIA corpus–a semantically annotated corpus for bio-
textmining. Bioinformatics, 19(Suppl 1):i180–i182.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. 2019. BioBERT: a pre-
trained biomedical language representation model
for biomedical text mining. Bioinformatics,
36(4):1234–1240.

Fei Li, ZhiChao Lin, Meishan Zhang, and Donghong Ji.
2021. A span-based model for joint overlapped and
discontinuous named entity recognition. In Proceed-
ings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4814–4828,
Online. Association for Computational Linguistics.

Zhenghua Li, Min Zhang, Yue Zhang, Zhanyi Liu,
Wenliang Chen, Hua Wu, and Haifeng Wang. 2016.
Active learning for dependency parsing with partial
annotation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 344–354, Berlin,
Germany. Association for Computational Linguis-
tics.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications to
minimum-risk training on translation forests. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing, pages 40–51,
Singapore. Association for Computational Linguis-
tics.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun.
2019. Sequence-to-nuggets: Nested entity mention
detection via anchor-region networks. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5182–5192,
Florence, Italy. Association for Computational Lin-
guistics.

Wei Lu and Dan Roth. 2015. Joint mention extrac-
tion and classification with mention hypergraphs.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
857–867, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari
Ostendorf, and Hannaneh Hajishirzi. 2019. A gen-
eral framework for information extraction using dy-
namic span graphs. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 3036–3046, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jason Naradowsky, Sebastian Riedel, and David A
Smith. 2012. Improving nlp through marginaliza-
tion of hidden syntactic structure. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 810–820.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha,
Qatar. Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke

6192

https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
http://arxiv.org/abs/2012.08478
http://arxiv.org/abs/2012.08478
https://doi.org/10.1016/S0019-9958(65)90232-9
https://doi.org/10.1016/S0019-9958(65)90232-9
http://jmlr.org/papers/v11/ganchev10a.html
http://jmlr.org/papers/v11/ganchev10a.html
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1131
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
https://doi.org/10.1093/bioinformatics/btg1023
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/2021.acl-long.372
https://doi.org/10.18653/v1/P16-1033
https://doi.org/10.18653/v1/P16-1033
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/D15-1102
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162


Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Nicky Ringland, Xiang Dai, Ben Hachey, Sarvnaz
Karimi, Cecile Paris, and James R. Curran. 2019.
NNE: A dataset for nested named entity recognition
in English newswire. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5176–5181, Florence, Italy. Asso-
ciation for Computational Linguistics.

Alexander Rush. 2020. Torch-struct: Deep structured
prediction library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–
342, Online. Association for Computational Linguis-
tics.

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,
Wen Wang, and Weiming Lu. 2021. Locate and
label: A two-stage identifier for nested named en-
tity recognition. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2782–2794, Online. Association for
Computational Linguistics.

Takashi Shibuya and Eduard Hovy. 2020. Nested
named entity recognition via second-best sequence
learning and decoding. Transactions of the Associa-
tion for Computational Linguistics, 8:605–620.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Jianlin Su. 2020. Extend “softmax+cross entropy” to
multi-label classification problem.

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,
and Yueting Zhuang. 2021. A sequence-to-set net-
work for nested named entity recognition. In Pro-
ceedings of the 30th International Joint Conference
on Artificial Intelligence, IJCAI-21.

Walker, Christopher, Strassel, Stephanie, Medero,
Julie, and Maeda, Kazuaki. 2006. ACE 2005 Mul-
tilingual Training Corpus. Type: dataset.

Bailin Wang and Wei Lu. 2018. Neural segmental hy-
pergraphs for overlapping mention recognition. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
204–214, Brussels, Belgium. Association for Com-
putational Linguistics.

Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018.
A neural transition-based model for nested mention
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1011–1017, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020.
Pyramid: A layered model for nested named en-
tity recognition. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5918–5928, Online. Association for
Computational Linguistics.

Yiran Wang, Hiroyuki Shindo, Yuji Matsumoto, and
Taro Watanabe. 2021. Nested named entity recog-
nition via explicitly excluding the influence of the
best path. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3547–3557, Online. Association for Computa-
tional Linguistics.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 5808–5822,
Online. Association for Computational Linguistics.

Songlin Yang and Kewei Tu. 2022a. Bottom-up con-
stituency parsing and nested named entity recogni-
tion with pointer networks. In ACL.

Songlin Yang and Kewei Tu. 2022b. Combining
(second-order) graph-based and headed-span-based
projective dependency parsing. In Findings of ACL.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021.
Neural bi-lexicalized PCFG induction. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 2688–2699,
Online. Association for Computational Linguistics.

D. Younger. 1967. Recognition and parsing of context-
free languages in time n3. Inf. Control., 10:189–
208.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Biao Zhang, Ivan Titov, and Rico Sennrich. 2020a.
Fast interleaved bidirectional sequence generation.
In Proceedings of the Fifth Conference on Machine
Translation, pages 503–515, Online. Association for
Computational Linguistics.

6193

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/P19-1510
https://doi.org/10.18653/v1/P19-1510
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.18653/v1/2021.acl-long.216
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.1162/tacl_a_00334
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://kexue.fm/archives/7359
https://kexue.fm/archives/7359
https://arxiv.org/abs/2105.08901
https://arxiv.org/abs/2105.08901
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2020.acl-main.525
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.275
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.209
https://doi.org/10.18653/v1/2020.acl-main.577
https://aclanthology.org/2020.wmt-1.62


Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu,
and Maosong Sun. 2017. Prior knowledge integra-
tion for neural machine translation using posterior
regularization. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1514–1523,
Vancouver, Canada. Association for Computational
Linguistics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020b. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang,
Zhenghua Li, Guohong Fu, and Min Zhang. 2021.
Semantic role labeling as dependency parsing:
Exploring latent tree structures inside arguments.
ArXiv, abs/2110.06865.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020c.
Fast and accurate neural crf constituency parsing.
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence.

Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe
Ma, and Eduard Hovy. 2020d. A two-step approach
for implicit event argument detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7479–7485,
Online. Association for Computational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396–2408, Florence, Italy. Association for Compu-
tational Linguistics.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.
The return of lexical dependencies: Neural lexical-
ized PCFGs. Transactions of the Association for
Computational Linguistics, 8:647–661.

A Details of the Eisner-Satta algorithm

Table 7 describes the Eisner-Satta algorithm in the
parsing-as-deduction framework. Each deductive
rule of the Eisner-Satta algorithm has only one
word participating in the computation in addition,
e.g., p and h, resulting in one-order higher than the
CYK algorithm.

The masked version of the Eisner-Satta algo-
rithm masks scores similar to PO-TreeCRF except
for different label sets in our model “2-stage” and
“2-stage (0/1)”. For the construction of constrained
trees, we introduce a minor penalty (0.4 in our pa-
per) on type I items’ scores if the item represents a
gold entity. We show the pseudocode of the stan-
dard Eisner-Satta algorithm, the masked version of

Items:

I [i, j, h,−]: span [i, j] is headed by word wh

and its parent is not determined. i ≤ h ≤ j.

II [i, j,−, p]: span [i, j] is headed by arbitrary
word wh. The common parent is wp. p < i or
k < p.

Axiom items: [i, i, i,−], 1 ≤ i ≤ n
Goal items: [1, n, r,−], 1 ≤ r ≤ n
Deductive rules:

I
[i, k, h,−]
[i, k,−, p]

attach left/right

II
[i, j,−, p] [j + 1, k, p,−]

[i, k, p,−]
complete left

III
[i, j, p,−] [j + 1, k,−, p]

[i, k, p,−]
complete right

Table 7: The Eisner-Satta algorithm described in the
parsing-as-deduction framework.

the Esiner-Satta algorithm and the construction of
constrained trees all in Algorithm 1.

B Experiments

B.1 Implementation Details

We use BERT (bert-large-cased) and GloVe
(6B-100d) to obtain word representations for
ACE2004, ACE2005, and NNE. For GENIA, we
use BioBERT (biobert-large-cased-v1.1) (Lee et al.,
2019) and BioWordvec (Chiu et al., 2016) instead
to match its domain. The hidden size of BiLSTM
is set to 400. We use an Adam optimizer (Kingma
and Ba, 2015) and a linear learning rate scheduler.
We warm up training for 2 epochs and decay learn-
ing rates to 0 linearly for the rest of the epochs. The
peak learning rates are 5e− 5 for BERT/BioBERT
and 5e−3 for the other parts of the neural networks.

B.2 Data statistics

Table 9 shows the statistics of ACE2004, ACE2005,
GENIA and NNE. We report the number of multil-
abeled entities and single-word entities in addition.

B.3 Studies on Headwords

We conduct more experiments to analyze the be-
havior of head regularization. Table 10 shows the
results of models trained with different penalty con-
stants of the head regularization. c = 0 means no
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PER LOC ORG GPE FAC VEH WEA
ρ 0.57 0.02 0.18 0.14 0.05 0.03 0.02
PER 0.92 0.00 0.06 0.03 0.01 0.03 0.00
LOC 0.00 0.74 0.00 0.02 0.01 0.01 0.00
ORG 0.02 0.00 0.83 0.02 0.03 0.02 0.00
GPE 0.00 0.07 0.03 0.87 0.04 0.00 0.00
FAC 0.00 0.06 0.01 0.00 0.77 0.04 0.00
VEH 0.00 0.00 0.00 0.00 0.01 0.73 0.00
WEA 0.00 0.00 0.00 0.00 0.01 0.00 0.90
∅ 0.06 0.13 0.08 0.06 0.12 0.18 0.10

Table 8: Error distribution on the ACE2005 test set nor-
malized along with columns. ρ is the gold label distri-
bution. Each row is a gold label and each column is
a predicted label. ∅ denotes entities not recognized by
our model.

constraint applied, and larger c means harder con-
straint. We observe that too hard constraints (e.g.,
c = 1) are less effective than proper constraints
(e.g., c = 0.4). We choose c = 0.4 as the penalty
constant for experiments in the main body. Table 11
shows the results if we apply head regularization
only when decoding. We observe that the over-
all performance changes marginally, although the
number of shared heads is significantly reduced,
possibly because the head accuracy is still low and
the labeling module is trained to pay less atten-
tion to the headwords as they are noisy. Finally,
we analyze the number of shared heads and the
head accuracy for models trained with head reg-
ularization and head-aware entity labeling. Table
12 shows few shared heads and high head accu-
racy, consistent with the high overall performance.
Besides, we observe that adding the head-aware en-
tity labeling does not reduce the shared headwords
much, showing the limitation of models to learn
such prior knowledge.

B.4 Error Distribution
We report the error distribution in Table 8. Com-
pared with PO-TreeCRF, we reduce the error rates
off all extremely imbalanced classes (VEH, FAC,
LOC and WEA).

B.5 Predicted Parse Tree
Here we draw the parse trees in 5.2. Fig. 2a shows
a tree produced by “2-stage”, which is reasonable.
But the label module of “2-stage” fail to label spans
correctly due to the label imbalance problem. “2-
stage (0-1)” predict the same tree but correct labels.
Fig. 2b shows a tree predicted by “2-stage (0-1)”.
The model fail to detect headwords, e.g., bus and
airport. In contrast, Fig. 2c shows a tree predicted

by “2-stage (0-1) + both”, in which shared heads
are much fewer and correct headwords are found.
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Algorithm 1: The Eisner-Satta Algorithm
input: sc ∈ Rn×n×B for span scores, where B is #sent in a batch
input: sd ∈ Rn×n×B for arc scores
input: enable_soft_constraint for whether enable the soft exclusive head constraint
input: mask ∈ Rn×n for incompatible spans. (optional)
define: H ∈ Rn×n×n×B for type I span in Table 7
define: P ∈ Rn×n×n×B for type II span in Table 7
initialize: H:,:,: = −∞, P:,:,: = −∞

1 if mask is given then
2 for all i, j, sc[i, j] = −∞ if mask[i, j] is true.
3 end
4 for i = 0 to n− 1 do
5 H[i, i, i] = sc[i, i]
6 for j = 0 to n− 1 do
7 P [i, i, j] = sd[i, j] +H[i, i, i]
8 end
9 if enable_soft_constraint then

10 H[i, i, i]− = c // c is a small positive constant (0.4 in our paper).
// Equivalent to minus c for arcs headed by i.

11 end
12 end
13 for w = 1 to n− 1 do
14 for i = 0 to n− w − 1 do
15 j = i+ w
16 for h = i to j do
17 H[i, j, h] = sc[i, j] + log

∑
r∈[i,j]

[exp(P [i, r, h] +H[r + 1, j, h]) + exp(H[i, r, h] + P [r + 1, j, h])]

// complete left/right
18 end
19 for p = 0 to n− 1 do
20 P [i, j, p] = log

∑
h∈[i,j]

exp(H[i, j, h] + sd[h, p]) // attach left/right

21 end
22 if enable_soft_constraint then
23 for h = i to j do
24 H[i, j, h]− = c
25 end
26 end
27 end
28 end
29 return H[0, n− 1, 0] ≡ logZ
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ACE2004 ACE2005 GENIA NNE
train dev test train dev test train dev test train dev test

# sentences 6198 742 809 7285 968 1058 15022 1669 1855 43457 1989 3762
- nested 2718 294 388 2797 352 339 3222 328 448 28606 1292 2489
# entities 22195 2514 3034 24827 3234 3041 47006 4461 5596 248136 10463 21196
- nested 10157 1092 1417 9946 1191 1179 8382 818 1212 206618 8487 17670
- single-word 11527 1363 1553 13988 1852 1706 12933 1009 1392 166183 7291 14397
- multi-type 3 1 1 9 3 2 21 5 5 16769 792 1583

Table 9: Statistics of ACE2004, ACE2005, GENIA and NNE. An entity is considered nested if contains any entity
or is contained by any entity. A sentence is considered nested if contains any nested entity.

c 0 0.1 0.2 0.3 0.4 0.5 0.6
F1 86.32 86.45 86.54 86.53 86.56 86.49 86.41

Table 10: The impact of different constants used to construct constrained trees for training on ACE2005. A higher
value means harder constraints.

c -2 0 0.2 0.4 0.6 1
F1 86.38 86.44 86.46 86.46 86.43 86.41

#shared 347 234 30 10 7 6
Head acc. 43.19 48.45 57.27 57.94 58.33 58.08

Table 11: Results of different constants when decoding. #shared denotes the number of entities having shared
headwords. Models are trained without the head regularization. Head accuracy do not count single word spans.
Results are of one run.

0 0.4 0 + HA 0.4 + HA
#shared 234 73 216 10

Head acc. 48.45 59.42 73.58 81.00

Table 12: Number of shared heads and head accuracy on the ACE2005 test set. HA means head-aware entity
labeling. The head accuracy do not count single word spans. Results are of one run.
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I have never heard of a pig like this before !

(a) A tree predicted by “2-stage”. It produce reasonable structures, but the labeling module can not label them well.

Police surrounded this bus near the airport with guns drawn .

(b) A tree predicted by “2stage (0-1)”. It fails to detect “bus” and “airport” as headwords.

Police surrounded this bus near the airport with guns drawn .

(c) A tree predicted by “2-stage (0-1) + both”. It detect “bus” and “airport” as headwords correctly. The span this bus near the
airport do not exist on the tree.

Figure 2: Predicted dependency trees. We highlight interesting spans.
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