
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 4767 - 4784

May 22-27, 2022 c©2022 Association for Computational Linguistics

Unsupervised Dependency Graph Network

Yikang Shen1,2, Shawn Tan1, Alessandro Sordoni3, Peng Li4, Jie Zhou2, Aaron Courville1
1Mila/Université de Montréal

2Pattern Recognition Center, WeChat AI, Tencent Inc
3Microsoft Research Montréal

4Institute for AI Industry Research (AIR), Tsinghua University
yikang.shn@gmail.com

Abstract

Recent work has identified properties of pre-
trained self-attention models that mirror those
of dependency parse structures. In partic-
ular, some self-attention heads correspond
well to individual dependency types. In-
spired by these developments, we propose a
new competitive mechanism that encourages
these attention heads to model different depen-
dency relations. We introduce a new model,
the Unsupervised Dependency Graph Network
(UDGN), that can induce dependency struc-
tures from raw corpora and the masked lan-
guage modeling task. Experiment results show
that UDGN achieves very strong unsupervised
dependency parsing performance without gold
POS tags and any other external information.
The competitive gated heads show a strong
correlation with human-annotated dependency
types. Furthermore, the UDGN can also
achieve competitive performance on masked
language modeling and sentence textual sim-
ilarity tasks 1.

1 Introduction

The goal of unsupervised dependency parsing is
to induce dependency grammar from corpora that
don’t have annotated parse trees (Marecek, 2016).
Although the task is difficult, one advantage of
unsupervised methods is that they can leverage
vast amount of unannotated raw corpus (Han et al.,
2020). Thus, adapting the task into a pretrain-
ing framework is increasingly tempting. The in-
duced dependency trees can also help solve other
NLP problems such as unsupervised discourse pars-
ing (Nishida and Nakayama, 2020), aspect-based
sentiment analysis (Dai et al., 2021) and intent dis-
covery (Liu et al., 2021). Furthermore, the task can
also be used as a probe to verify cognitive theories
for human language acquistition (Yang et al., 2020;

1Our code is publicly available at https://github.
com/yikangshen/UDGN.

Figure 1: The architecture of Unsupervised Depen-
dency Graph Network (UDGN). Given an input sen-
tence, the parser can predict the dependency relation
between tokens and generate a soft mask to approxi-
mate the undirected dependency graph. Conditioning
on the mask, the DGN computes contextual word em-
beddings for the training task. Since the mask is soft,
the gradient can be backpropagated from the DGN into
the parser. Thus UDGN can induce grammar while
training on masked language modeling or other down-
stream tasks.

Pate and Goldwater, 2013; Katzir, 2014; Solan
et al., 2002).

Pretrained Language Models (PLMs) have be-
come the foundation of modern natural language
processing in the last few years (Bommasani et al.,
2021). They dominate the most if not all NLP
tasks. But Recent works show that, beyond pre-
training big models on large-scale corpora, deep
learning methods can improve performance by in-
creasing models’ awareness of syntactic informa-
tion (Kuncoro et al., 2020). These methods either
include known structural information as input to the
model (Sundararaman et al., 2019; Bai et al., 2021),
or incorporate structural prediction tasks into the
training process (Wang et al., 2019a). However,
these attempts require access to large datasets with
supervised parses, which may be complicated and
expensive.

Recent work also identified properties of pre-
trained self-attention models that mirror those of de-
pendency parse structures (Htut et al., 2019; Hewitt

4767

https://github.com/yikangshen/UDGN
https://github.com/yikangshen/UDGN


and Manning, 2019; Jawahar et al., 2019). Struct-
Former (Shen et al., 2020) shows that a transformer-
based model can induce a good dependency struc-
ture. The belief that linguistic structure may be
embedded in these models is of interest to the com-
munity. Furthermore, Dai et al. (2021) shows that
the induced trees from finetuned RoBERTa outper-
form parser-provided trees on aspect-based senti-
ment analysis tasks. This result brings interest to
study task-specific structures. From this perspec-
tive, the unsupervised acquisition of dependency
structure from raw data or downstream tasks ap-
pears important and feasible.

Traditionally, dependency grammars consider
the dependency types (a.k.a. syntactic func-
tions) as primitive and then derive the dependency
graph (Debusmann, 2000). Every head-dependent
dependency bears a syntactic function (Mel’cuk
et al., 1988). Htut et al. (2019) shows that some
attention heads in BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) track individual depen-
dency types. In other words, these heads model
different syntactic functions. Inspired by this obser-
vation and syntactic functions, we introduce com-
petitive gated heads to model different syntactic
parts and the process of selecting the proper syn-
tactic function for each edge. These heads include
two key components:

• A set of gated heads that model different infor-
mation propagation processes between tokens;

• A competitive controller that selects the most
suitable gated head for each pair of tokens.

Building on these components, we propose a
novel architecture, the Unsupervised Dependency
Graph Network (UDGN). As shown in Figure 1,
the UDGN is composed of two networks: a parser
that computes the dependency head distribution pi
for each word wi in the input sentence and then
converts it to a matrix of edge probability mij that
approximates an undirected dependency graph; a
Dependency Graph Network (DGN) that uses the
edge probabilities {mij} and competitive gated
heads to propagate information between words to
compute a contextualized embedding hi for each
word wi. While training with the masked language
modeling or other objectives, the gradient can flow
through the DGN to the parser network through its
dependence onmij . As a result, UDGN can induce
a dependency grammar while solely relying on the
masked language modeling objective.

In the experiment section, we first train the
UDGN with masked language modeling, then eval-
uate it on unsupervised dependency parsing. Our
experimental results show that UDGN can: 1)
achieve very strong unsupervised parsing results
among models that don’t have access to extra an-
notations (including POS tags); 2) learn atten-
tion heads that are strongly correlated to human-
annotated dependency types; 3) achieve competi-
tive performance on language modeling tasks. We
also finetune the pretrained UDGN on Semantic
Textual Similarity (STS) tasks. Our experiments
show that UDGN outperforms a Transformer base-
line trained on the same corpus.

2 Related Work

Unsupervised dependency parsing Unsuper-
vised dependency parsing is a long-standing task
for computational linguistics. Dependency Model
with Valence (DMV; Klein and Manning 2004)
is the basis of several unsupervised dependency
parsing methods (Daumé III, 2009; Gillenwater
et al., 2010). Jiang et al. (2016) updates the method
using neural networks to predict grammar rule
probabilities. While previous methods mostly re-
quire additional Part-of-Speech (POS) information,
Spitkovsky et al. (2011) tackled the issue by per-
forming clustering based on word context infor-
mation and then assigning the cluster ID to each
word as their tag. He et al. (2018) incorporate an in-
vertible neural network into DMV model to jointly
model dependency grammar and word embeddings.
Recently, NL-PCFG (Zhu et al., 2020) and NBL-
PCFG (Yang et al., 2021) combined neural network
and L-PCFG to achieve good performance in a joint
unsupervised dependency and constituency parsing
setting. StructFormer (Shen et al., 2020) proposes
a joint constituency and dependency parser and
uses the dependency distribution to regularize the
self-attention heads in the transformer model. This
joint parser-language model framework can induce
grammar from masked language modeling tasks.

The UDGN’s architecture is similar to Struct-
Former, both models include a parser and masked
language model. Our model, however, has three
major differences: 1) it uses competitive gated
heads to improve models performance on gram-
mar induction; 2) it uses a neural head selective
parser that can produce both projective and non-
projective dependency trees, whereas the distance
parser in StructFormer can only produce projective

4768



trees; 3) it uses a simplified method to generate an
undirected dependency mask.

Transformers, Graph Neural Networks and De-
pendency Graphs In many Transformer-based
models, attention masks are often used to limit the
input tokens that a particular timestep can attend
over. In Yang et al. (2019), for example, a mask
derived from the permutation of inputs is used to
induce a factorization over the tokens so that the
resulting model is a valid probabilistic model. This
attention mask can be viewed as an adjacency ma-
trix over a graph whose nodes are the input to-
kens. From this perspective, Transformers are a
form of Graph Neural Network (Scarselli et al.,
2008) — specifically, a Graph Attention Network
(GAT; Veličković et al. 2017), as it attends over
the features of its neighbors. Several works have
made this connection, and integrated dependency
structures into transformers (Ahmad et al., 2021;
Wang et al., 2019b; Tang et al., 2020). Results from
Omote et al. (2019) and Deguchi et al. (2019) sug-
gest that embedding these structures can improve
translation models.

However, these dependency parses may not al-
ways be present to be used as input to the model.
Strubell et al. (2018) trains the self-attention to at-
tend the syntactic governor (head) of a particular
token, resulting in a model that does not require de-
pendency structure as input during inference time.
We take a further step in our work and attempt to
learn these structures in an unsupervised fashion
from the MLM objective.

Differentiable Structured Prediction While
the head selection is a good approximation of a
tree structure, there are methods to obtain a relaxed
adjacency matrix as the output of the parser. Pre-
vious work have used such methods for predicting
structure. Koo et al. (2007) proposed using the
Kirchoff matrix tree theorem for dependency pars-
ing. They explain how the marginals of the edge
potentials are computed, and these marginals have
properties similar to a tree adjacency matrix (sum
over the marginals are equal to N − 1 for exam-
ple, where N is the length of the sentence). Eisner
(2016) describes how backpropagation can be used
to compute marginals of some structured predic-
tion algorithm. We also tried using the Kirchhoff
method to normalize our dependency distributions
in Appendix A.3. Corro and Titov (2018) uses
similar notions but relaxes projective trees using

Gumbel-softmax. Kim et al. (2017) proposed a
structured form of attention and show that they
are useful for certain sequence-to-sequence tasks.
Mensch and Blondel (2018) gives a general theoret-
ical treatment for these types of relaxations, while
Paulus et al. (2020) gives a practical treatment of
possible applications for these methods.

3 Model Architecture

As shown in Figure 2, the parser computes a de-
pendency head distribution for each token and then
converts it to a soft dependency mask mij . The
DGN takes mij and the sentence as input and uses
a competitive mechanism to propagate information
between tokens.

3.1 Head Selective Parser
We use a simplified version of the Dependency Neu-
ral Selection parser (DENSE; Zhang et al. 2016)
that only predicts unlabelled dependency relations.
The parser takes the sentence s = w1w2...wT as
input, and, for each token wi, it produces a distri-
bution pi over all tokens in the sentence, resulting
in a T × T weight matrix.

The parser first maps the sequence of to-
kens w1w2...wT into a sequence of embeddings
[x1,x2, ...,xT ]. Then the word embeddings are fed
into a stack of a bidirectional LSTM (BiLSTM):

hi = BiLSTM(xi) (1)

where hi is the output of the BiLSTM at i-th
timestep. Linear transforms are applied to the out-
put of the BiLSTM to extract head and dependent
information.

hH
i = WHhi + bH (2)

hD
i = WDhi + bD (3)

To map the head and dependents, we use bilinear
attention:

eij =
hD
i h

H
j√

D
(4)

pij =
exp(eij)∑
k exp(eik)

(5)

where pij is the probability that wi depends on
wj , D is the dimension of hidden states. During
the inference for parsing, the Chu-Liu/Edmonds’
algorithm (Chu and Liu, 1965b) is used to extract
the most likely directed dependency graph from the
matrix p.

4769



Figure 2: Details of the UDGN. Given the input sentence, the parser (left) produces a dependency head distribution
for each token. These distributions form a distribution matrix pij . To do unsupervised parsing, the Chu-Liu
algorithm (Chu and Liu, 1965a) generates the most likely dependency graph given pij . While training, however,
we remove the direction of dependency in pij and obtain an undirected dependency mask mij (middle). mij is
symmetric and with zeroes along the diagonal. The DGN (right) takes mij and the sentence as input and uses
competitive gated heads to propagate information between tokens. mij controls the amount of information being
propagated between nodes. If mij is small then less information will be communicated between xi and xj , and
vice versa.

3.2 Dependency Mask
Given the dependency probabilities, StructFormer
(Shen et al., 2020) uses a weighted sum of ma-
trix p and p> to produce a mask for self-attention
layers in the transformer. We found that simply
using the adjacency matrix of the undirected de-
pendency graph provides better parsing results and
perplexities. However, simply using the sum of
the matrix and its transpose to create a symmetric
weight matrix does not ensure that the attention
mask has values < 1. When pij = 1 and pji = 1,
for instance, the mask violates the constraints of a
dependency mask. Thus, we treat pij and pji as pa-
rameters for independent Bernoulli variables, and
we compute the probability that either wi depends
on wj or wj depends on wi.

mij = p(i→ j or j → i)

= pij + pji − pij × pji (6)

3.3 Dependency Graph Network
To better induce and model the dependency rela-
tions, we propose a new Dependency Graph Net-
work (DGN). One DGN layer includes several
gated heads and a competitive controller. A gated
head can process and propagate information from
one node to another. Different heads can learn
to process and propagate different types of infor-
mation. The competitive controller is designed to
select the correct head to propagate information
between a specific pair of nodes.

We take inspiration from the linguistic theory
that dependencies are associated with different syn-
tactic functions. These functions can appear as la-
bels, e.g. ATTR (attribute), COMP-P (complement
of preposition), and COMP-TO (complement of to).
However, DGN learns these functions from train-
ing tasks, which in our experiments is the masked
language model objective. Since these objectives
tend to be statistical in nature, these functions may
not be correlated with ground truth labels given by
human experts.

Inside each layer, the input vector hl−1i is first
projected into N groups of vectors, where N is
the number of heads. Each group contains four
different vectors, namely, query q, key k, value v
and gate g:

qik

kik

vik

gik

 = Wheadkh
l−1
i + bheadk (7)

Gated Head To model the information propaga-
tion from node j to node i, we proposed a gated
head:

cijk = σ(vjk)� sigmoid(gik) (8)

where σ is a non-linear activation function, and
gates sigmoid(g) allows the i-th token to filter the
extracted information. We also found that the gate
effectively improves the model’s ability to induce

4770



Figure 3: Competitive Gated Heads. Suppose that the
information should be propagated from node j to node
i, the competitive controller takes qi·,kj· as input, out-
put a probability distribution âij across different heads.
This allows the model to select a head for the informa-
tion propagation. Then the probability âijk is multi-
plied by dependency mask mij to get aijk. The mask
mij functions as a macro gate to control the amount of
information propagate between the node pair. For the
k-th head, the node j send representation vjk, the node
i uses a gate gik to filter the incoming representation.

latent dependency structures that are coherent to
human-annotated trees. The activation function can
be chosen from a wide variety of functions, includ-
ing the identity function, tanh, ReLU, and ELU,
etc. In our experiment, we found that tanh func-
tion provides the best overall performance. This
is probably due to two reasons: a) tanh function
provides a bounded output (between -1 and 1), and
b) gates and head weights are more effective while
controlling a bounded value.

Competitive Controller Lamb et al. (2021) pro-
posed the idea of using a competition method to
encourage heads to specialize over training iter-
ations to learn different functions. This idea is
coherent with our intuition different heads should
model different dependency relations. In UDGN, a
competitive controller is designed to select a head
for each pair of nodes (i, j). However discrete as-
signment is hard to optimize, we replace it with a
soft relaxation:

eijk =
qikkjk√

D
(9)

âijk = softmaxk(eijk) (10)

where âijk is the probability that the k-th head
is assigned to propagate information from the j-
th token to the i-th token. To obtain the actual
head weights, we multiply the probability of edge

existence with the probability of choosing a specific
attention head:

aijk = âijk ×mij (11)

where aijk is the weight from the node j to the
node i for k-th attention head.

Relative Position Bias Transformer models use
positional encoding to represent the absolute po-
sition for each token. In DGN, we only model
whether the token is before or after the current to-
ken. The motivating intuition is the association of
different heads with different directions. In equa-
tion 10, we can introduce a relative position bias:

âijk = softmaxk(eijk + blrk ) (12)

blrk =

{
blk, i > j

brk, i < j
(13)

where blk and brk are trainable parameters. The rel-
ative position bias allows the attention head k to
prioritize forward or backward directions. A mere
forward and backward differentiation may seem
weak compared to other parameterizations of posi-
tional encoding (Vaswani et al., 2017; Shaw et al.,
2018), but in conjunction with the dependency con-
straints, this method is a more effective way to
model the relative position in a tree structure. As
shown in Table 4, the relative position bias achieves
stronger masked language modeling and parsing
performance than positional encoding.

At the end, a matrix multiplication is used to
aggregate information from different positions.

oik =
∑
j

aijkcijk (14)

Then, the output o from different heads are con-
catenated, and then projected back to the hidden
state space with a linear layer.

hl
i = hl−1

i +Wo

oi1...
oin

+ bo (15)

where hl
i is the output of the l-th gated self attention

layers. The shared hidden state space can be seen
as the shared global workspace (Goyal et al., 2021)
for different independent mechanisms (heads).

4771



Model PTB BLLIP BLLIP BLLIP
-SM -MD -XL

Transformer 68.9 44.6 22.8 17.0
StructFormer 64.8 43.1 23.4 16.8
UDGN 59.3 40.2 24.2 19.7

Table 1: Masked Language Model perplexities on dif-
ferent datasets.

4 Experiments

4.1 Masked Language Modeling
Language Modeling tasks evaluate the model’s gen-
eral ability to model different semantic and syn-
tactic phenomena (e.g., words co-occurrence, verb-
subject agreement, etc.). The performance of MLM
is evaluated by measuring perplexity on masked
words. We perform experiments on two corpora:
the Penn TreeBank (PTB) and Brown Laboratory
for Linguistic Information Processing (BLLIP). In
this experiment, we randomly replace each token
with a mask token <mask>, such that the model is
required to predict the original token. But we never
replace <unk> token.

PTB The Penn Treebank (Marcus et al., 1993) is
a standard dataset for language modeling (Mikolov
et al., 2012) and unsupervised constituency parsing
(Shen et al., 2018; Kim et al., 2019). It contains 1M
words (2499 stories) from Wall Street Journal. Fol-
lowing the setting proposed in Shen et al. (2020),
we preprocess the Penn Treebank dataset by re-
moving all punctuations, lower case all letters, and
replaces low frequency tokens (< 5) with <unk>.
The preprocessing results in a vocabulary size of
10798 (including <unk>, <pad> and <mask>).

BLLIP The Brown Laboratory for Linguistic
Information Processing dataset is a large corpus,
parsed in the same style as the PTB dataset. It con-
tains 24 million sentences from Wall Street Jour-
nal. We perform experiments on four subsets of
BLLIP: BLLIP-XS (40k sentences, 1M tokens),
BLLIP-SM (200K sentences, 5M tokens), BLLIP-
MD (600K sentences, 14M tokens), and BLLIP-
LG (2M sentences, 42M tokens). Following the
same setting proposed in Hu et al. (2020) for sen-
tence selection, each subset is a superset of smaller
subsets. Models trained on different subsets are
tested on a shared held-out test set (20k sentences,
500k tokens). We use a shared vocabulary for all
splits to make the mask language modeling and
parsing results comparable. Like the PTB dataset,
we preprocess the BLLIP dataset by removing all

Methods DDA UDA

DMV (Klein and Manning, 2004) 35.8
E-DMV (Headden III et al., 2009) 38.2
UR-A E-DMV (Tu and Honavar, 2012) 46.1
Neural E-DMV (Jiang et al., 2016) 42.7
Gaussian DMV (He et al., 2018) 43.1
INP (He et al., 2018) 47.9
NL-PCFGs (Zhu et al., 2020) 40.5 55.9
NBL-PCFGs (Yang et al., 2021) 39.1 56.1
StructFormer (Shen et al., 2020) 46.2 61.6
UDGN 49.9 61.8

Table 2: Dependency Parsing Results on WSJ test set
without gold POS tags. DMV-based baseline results
are from He et al. (2018). DDA stands for Directed
Dependency Accuracy. UDA stands for Undirected De-
pendency Accuracy. Unsupervised dependency parsing
results with the knowledge of gold POS tags or other
external knowledge are excluded from this table.

punctuations and lower case letters. The shared vo-
cabulary is obtained by counting word frequencies
on the BLLIP-LG dataset and selecting the words
that appear more than 27 times. The resulting vo-
cabulary size is 30232 (including <unk>, <pad>
and <mask>), and covers more than 98% tokens
in BLLIP-LG split.

The mask rate is 30% when training on both
corpora. In Section A.4, we further explore the
relationship between mask rate and parsing results.
Other hyperparameters are tuned separately for
each model and dataset. Details are further de-
scribed in Section A.1. Table 1 shows The masked
language model results. UDGN outperforms the
baselines on smaller datasets (PTB, BLLIP-SM),
but underperforms against baselines trained on
large datasets (BLLIP-MD, BLLIP-LG). However,
in Section 4.5, we find that the UDGN pretrained
on BLLIP-LG dataset can achieve stronger per-
formance when finetuned on a downstream task.
This result may suggest that our model learns more
generic contextual embeddings.

4.2 Unsupervised Dependency Parsing

Following previous research (Shen et al., 2020),
we use the model trained on the PTB training set
(section 0-20, no punctuations) and test its parsing
accuracy on section 23 of the PTB corpus. Punctua-
tions are ignored during the evaluation. We convert
the human-annotated constituency trees in the PTB
test set (Marcus et al., 1993) to dependency trees
with Stanford CoreNLP (Manning et al., 2014) and
use the Directed Dependency Accuracy (DDA) as
our metric. To derive valid trees from the attention

4772



Models prep pobj det compound nsubj amod dobj aux

UDGN 0.65(0.12) 0.60(0.11) 0.68(0.15) 0.42(0.04) 0.50(0.06) 0.39(0.07) 0.39(0.07) 0.62(0.10)
StructFormer 0.39(0.05) 0.38(0.07) 0.57(0.03) 0.33(0.01) 0.25(0.06) 0.26(0.01) 0.22(0.05) 0.23(0.04)
Transformer 0.43(0.00) 0.46(0.03) 0.46(0.12) 0.30(0.01) 0.39(0.15) 0.26(0.02) 0.28(0.01) 0.30(0.10)

Table 3: The pearson correlation coefficients between most frequent dependency types and their most correlated
head. All results are average across four random seeds, standard derivation are in parentheses. Types are ar-
ranged from the highest frequency to lowest frequency. PCC heat maps between all types and all heads are in
Appendix A.2.

mask, we use the Chu-Liu (Chu and Liu, 1965b) (or
Edmonds’ (Edmonds, 1967)) algorithm to obtain
the maximum directed spanning tree.

Table 2 shows that our model outperforms base-
line models. This result suggests that, given our
minimum inductive bias (a token must attach to
another, but the graph is not necessarily a tree),
predicting missing tokens implicitly learns a good
graph that correlates well with human-annotated
dependency trees. In other words, some of the
dependency relations proposed by linguists may
correspond with efficient ways of propagating in-
formation through the sentence. Parsing examples
of our model can be found in Appendix A.5.

4.3 Correlation Between Heads and
Dependency Types

In this section, we test the correlation between
heads and dependency types. We consider each
dependency edge i → j (i depends on j) in the
ground truth structure as a data point. Given all
the edges, we can obtain three sets of quantities:
head probabilities Ak = {âkji} and type values
Y l = {ylij}. âkij is a real value between 0 and 1,
represents the probability that heads k is used to
model the information propagation from the child
i to the parent j. Details about this value can be
found at Equation 12. ylij is a binary value, repre-
sents whether the label l is assigned to edge i→ j.
We can then compute Pearson Correlation Coeffi-
cient (PCC) for every pair of Ak and Y l across all
ground truth edges {i→ j}:

ρAk,Y l =
cov(Ak, Y l)

σAkσY l

(16)

where cov(·) is the covariance function, σ· is
the standard deviation of the respective variable.
Hence, ρAk,Y l measures the correlation between
head k and dependency type l. ρAk,Y l > 0 means
that the model tends to use head k for propagating
information from child to parent for dependency
edges of the type l. Here, we only consider the

Figure 4: Relationship between the parsing perfor-
mance and the number of heads in each layer. The
hidden state size of heads are adjusted to maintain the
same number of total parameters.

information propagation from child to parent even
though information can propagate in both direc-
tions in masked language models. In Appendix A.2,
we also computed the PCC for the parent to child
direction.

Table 3 shows the PCC between the most fre-
quent dependency types and their most correlated
heads. We can observe that all three models
have heads that are positively correlated to human-
annotated dependency types. This result is coherent
with the observation of Htut et al. (2019). Mean-
while, the UDGN achieves a significantly better
correlation than the StructFormer and the Trans-
former. This confirms our intuition that competitive
gated heads can better induce dependency types.

4.4 Ablation Experiments

Figure 4 shows the relation between the number of
heads in each UDGN layer and the model’s unsu-
pervised parsing performance. Table 4 shows the
model’s performance when individual components
are removed. We can observe that the number of
heads has the most significant influence on unsu-
pervised parsing performance. While this is only
one head, the model fails to learn any meaningful
structure. Then the parsing performance increase
as the number of heads increase. And we observe

4773



Model MLM Argmax Chu-Liu
PPL DDA UDA DDA UDA

UDGN 59.3(0.5) 52.7(0.9) 58.3(0.7) 49.9(1.6) 61.8(0.9)
- Gates 69.5(1.9) 31.5(2.2) 40.7(0.3) 26.1(2.1) 48.9(0.5)
- Competition 73.6(3.1) 44.7(1.9) 54.4(1.9) 40.4(1.6) 56.6(2.1)
- relative pos bias 62.1(1.0) 51.6(1.6) 59.8(0.8) 47.4(2.6) 62.1(1.1)

Table 4: The performance of UDGN after removing different components. “- Gates” means removing the gate g
in gated heads. “- Competition” means using a non-competitive sigmoid function to replace the softmax in the
competitive controller. “- relative pos bias” means removing the relative positional bias. “Chu-Liu” means that we
use the Chu-Liu algorithm to extract the maximum directed spanning tree. “Argmax” means that we take the word
at the maximum p value as the dependency head. This could result in non-tree structures, but we believe that this
metric gives a better indication of how often the parser predicts the right head of each word.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Transformer 76.17 61.48 73.97 74.35 53.72 64.26 80.00 69.14
UDGN (Freeze parser) 77.71 71.17 78.71 82.30 66.04 70.13 82.17 75.46
UDGN 80.51 75.02 80.54 82.16 64.73 72.49 81.94 76.77

Table 5: Sentence embedding performance on STS tasks. All models are pretrained on BLLIP-LG, and finetuned
on STS. Freeze parser means that the parameters for the parser are not updated during finetuning.

marginal improvement after the number of heads
reaching 8. The second most significant parsing
performance decrease is caused by removing the
gating mechanism. This change forces each head to
always extract the same information from a given
key node hj , regardless of the query node hi. This
has a similar effect as the previous change, reduc-
ing the diversity of different functions that can be
modeled by heads. These two observations may
suggest that the diversity of information propaga-
tion function (multiple heads) is essential to induce
a meaningful structure.

The competitive controller also has an impor-
tant influence on parsing performance. Its non-
competitive version is the sigmoid controller used
in StructFormer. If we replace it with the non-
competitive controller, the DDA decreases to 44.7
which is similar to the result of StructFormer (46.2).
Another interesting observation is that removing
relative position bias has the least influence on pars-
ing and language modeling. This may suggest that
the dependency structure already encoded certain
positional information. More ablation experiment
results can be found in Appendix A.3.

4.5 Fine-tuning

In this experiment, the goal was to determine if a
better representation of semantics can be encoded
if the model was constrained for structure. We
pretrain a UDGN model on the BLLIP-XL dataset,
and then finetune it on the STS-B (Cer et al., 2017)

dataset. For a controlled experiment, we compare
the results we attain with the previously mentioned
Transformer model. We then evaluate the resulting
classifier on the STS 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), the SICK-Relatedness
(Marelli et al., 2014) dataset, and STS-B (Cer et al.,
2017). We then report the Spearman correlation
score for each dataset (the ‘all’ setting in Gao et al.
2021).

We find that the UDGN model performs better
overall than the transformer model. While these are
not state-of-the-art results for these tasks, our com-
parison aimed to examine the benefit of the UDGN
model over the Transformer architecture. It’s also
interesting to notice that if parameters in the parser
are frozen during the finetuning, the model will get
worse performance. This result suggests that fine-
tuning on STS forces pretrained language models
to learn more task-oriented trees. Dai et al. (2021)
observed similar results with finetuned RoBERTa
on Aspect-Based Sentiment Analysis tasks.

5 Conclusion

In this paper, we proposed the Unsupervised De-
pendency Graph Network (UDGN), a novel archi-
tecture to induce and accommodate dependency
graphs in a transformer-like framework. The model
is inspired by linguistic theories. Experiment re-
sults show that UDGN achieves state-of-the-art de-
pendency grammar induction performance. The
competitive gated heads show a strong correlation

4774



to human-annotated dependency types. We hope
these interesting observations will build new con-
nections between classic linguistic theories and
modern neural network models. Another interest-
ing future research direction is exploring how the
newly proposed components can help large-scale
pretrained languages models.

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, et al. 2015. Semeval-2015 task 2: Seman-
tic textual similarity, english, spanish and pilot on
interpretability. In Proceedings of the 9th interna-
tional workshop on semantic evaluation (SemEval
2015), pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th international workshop on semantic evaluation
(SemEval 2014), pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona
Diab, Aitor Gonzalez Agirre, Rada Mihalcea, Ger-
man Rigau Claramunt, and Janyce Wiebe. 2016.
Semeval-2016 task 1: Semantic textual similar-
ity, monolingual and cross-lingual evaluation. In
SemEval-2016. 10th International Workshop on Se-
mantic Evaluation; 2016 Jun 16-17; San Diego, CA.
Stroudsburg (PA): ACL; 2016. p. 497-511. ACL (As-
sociation for Computational Linguistics).

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In * SEM 2012:
The First Joint Conference on Lexical and Compu-
tational Semantics–Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pages 385–
393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. * sem 2013 shared
task: Semantic textual similarity. In Second joint
conference on lexical and computational semantics
(* SEM), volume 1: proceedings of the Main confer-
ence and the shared task: semantic textual similar-
ity, pages 32–43.

Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei
Chang. 2021. Gate: Graph attention transformer en-
coder for cross-lingual relation and event extraction.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 12462–12470.

He Bai, Peng Shi, Jimmy Lin, Yuqing Xie, Luchen Tan,
Kun Xiong, Wen Gao, and Ming Li. 2021. Segatron:

Segment-aware transformer for language modeling
and understanding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12526–12534.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities
and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965a. On the
shortest arborescence of a directed graph. Science
Sinica.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965b. On the
shortest arborescence of a directed graph. Science
Sinica, 14:1396–1400.

Caio Corro and Ivan Titov. 2018. Differentiable
perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder. arXiv preprint
arXiv:1807.09875.

Junqi Dai, Hang Yan, Tianxiang Sun, Pengfei Liu, and
Xipeng Qiu. 2021. Does syntax matter? a strong
baseline for aspect-based sentiment analysis with
roberta. arXiv preprint arXiv:2104.04986.

Hal Daumé III. 2009. Unsupervised search-based
structured prediction. In Proceedings of the 26th
Annual International Conference on Machine Learn-
ing, pages 209–216.

Ralph Debusmann. 2000. An introduction to depen-
dency grammar. Hausarbeit fur das Hauptseminar
Dependenzgrammatik SoSe, 99:1–16.

Hiroyuki Deguchi, Akihiro Tamura, and Takashi Ni-
nomiya. 2019. Dependency-based self-attention for
transformer nmt. In Proceedings of the Interna-
tional Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 239–
246.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17.

4775



Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv e-prints, pages arXiv–2104.

Jennifer Gillenwater, Kuzman Ganchev, João Graça,
Fernando Pereira, and Ben Taskar. 2010. Sparsity
in dependency grammar induction. ACL 2010, page
194.

Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kar-
tikeya Badola, Nan Rosemary Ke, Nasim Rahaman,
Jonathan Binas, Charles Blundell, Michael Mozer,
and Yoshua Bengio. 2021. Coordination among
neural modules through a shared global workspace.
arXiv preprint arXiv:2103.01197.

Wenjuan Han, Yong Jiang, Hwee Tou Ng, and Kewei
Tu. 2020. A survey of unsupervised dependency
parsing. arXiv preprint arXiv:2010.01535.

Junxian He, Graham Neubig, and Taylor Berg-
Kirkpatrick. 2018. Unsupervised learning of syntac-
tic structure with invertible neural projections. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
1292–1302.

William P Headden III, Mark Johnson, and David Mc-
Closky. 2009. Improving unsupervised dependency
parsing with richer contexts and smoothing. In Pro-
ceedings of human language technologies: the 2009
annual conference of the North American chapter of
the association for computational linguistics, pages
101–109.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R Bowman. 2019. Do attention heads in
bert track syntactic dependencies? arXiv preprint
arXiv:1911.12246.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger P Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. arXiv preprint arXiv:2005.03692.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Yong Jiang, Wenjuan Han, Kewei Tu, et al. 2016. Un-
supervised neural dependency parsing. Association
for Computational Linguistics (ACL).

Roni Katzir. 2014. A cognitively plausible model
for grammar induction. Journal of Language Mod-
elling, 2.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M Rush. 2017. Structured attention networks.
arXiv preprint arXiv:1702.00887.

Yoon Kim, Chris Dyer, and Alexander M Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385.

Dan Klein and Christopher D Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd annual meeting of the association for computa-
tional linguistics (ACL-04), pages 478–485.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction mod-
els via the matrix-tree theorem. In Proceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 141–150.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic structure distillation pre-
training for bidirectional encoders. arXiv preprint
arXiv:2005.13482.

Alex Lamb, Di He, Anirudh Goyal, Guolin Ke, Chien-
Feng Liao, Mirco Ravanelli, and Yoshua Ben-
gio. 2021. Transformers with competitive ensem-
bles of independent mechanisms. arXiv preprint
arXiv:2103.00336.

Pengfei Liu, Youzhang Ning, King Keung Wu,
Kun Li, and Helen Meng. 2021. Open in-
tent discovery through unsupervised semantic clus-
tering and dependency parsing. arXiv preprint
arXiv:2104.12114.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

David Marecek. 2016. Twelve years of unsupervised
dependency parsing. In ITAT, pages 56–62.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, Roberto Zamparelli,
et al. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In Lrec,
pages 216–223. Reykjavik.

4776

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010


Igor Aleksandrovic Mel’cuk et al. 1988. Dependency
syntax: theory and practice. SUNY press.

Arthur Mensch and Mathieu Blondel. 2018. Differen-
tiable dynamic programming for structured predic-
tion and attention. In International Conference on
Machine Learning, pages 3462–3471. PMLR.

Tomáš Mikolov et al. 2012. Statistical language mod-
els based on neural networks. Presentation at
Google, Mountain View, 2nd April, 80:26.

Noriki Nishida and Hideki Nakayama. 2020. Unsuper-
vised discourse constituency parsing using viterbi
em. Transactions of the Association for Computa-
tional Linguistics, 8:215–230.

Yutaro Omote, Akihiro Tamura, and Takashi Ninomiya.
2019. Dependency-based relative positional encod-
ing for transformer nmt. In Proceedings of the In-
ternational Conference on Recent Advances in Natu-
ral Language Processing (RANLP 2019), pages 854–
861.

John K Pate and Sharon Goldwater. 2013. Unsuper-
vised dependency parsing with acoustic cues. Trans-
actions of the Association for Computational Lin-
guistics, 1:63–74.

Max B Paulus, Dami Choi, Daniel Tarlow, Andreas
Krause, and Chris J Maddison. 2020. Gradient
estimation with stochastic softmax tricks. arXiv
preprint arXiv:2006.08063.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE transactions on
neural networks, 20(1):61–80.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. arXiv preprint arXiv:1803.02155.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2018. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
International Conference on Learning Representa-
tions.

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald
Metzler, and Aaron Courville. 2020. Structformer:
Joint unsupervised induction of dependency and con-
stituency structure from masked language modeling.
arXiv preprint arXiv:2012.00857.

Zach Solan, Eytan Ruppin, David Horn, and Shimon
Edelman. 2002. Automatic acquisition and efficient
representation of syntactic structures. Advances
in Neural Information Processing Systems, 15:107–
114.

Valentin I Spitkovsky, Hiyan Alshawi, Angel Chang,
and Dan Jurafsky. 2011. Unsupervised dependency
parsing without gold part-of-speech tags. In Pro-
ceedings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1281–
1290.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. arXiv preprint arXiv:1804.08199.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-infused
transformer and bert models for machine translation
and natural language understanding. arXiv preprint
arXiv:1911.06156.

Hao Tang, Donghong Ji, Chenliang Li, and Qiji
Zhou. 2020. Dependency graph enhanced dual-
transformer structure for aspect-based sentiment
classification. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6578–6588.

Kewei Tu and Vasant Honavar. 2012. Unambiguity reg-
ularization for unsupervised learning of probabilis-
tic grammars. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 1324–1334.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Jiangnan Xia, Liwei Peng, and Luo Si. 2019a.
Structbert: Incorporating language structures into
pre-training for deep language understanding. arXiv
preprint arXiv:1908.04577.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019b. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1060–1070.

Jinbiao Yang, Stefan L Frank, and Antal van den Bosch.
2020. Less is better: A cognitively inspired unsuper-
vised model for language segmentation. In Proceed-
ings of the Workshop on the Cognitive Aspects of the
Lexicon, pages 33–45.

Songlin Yang, Yanpeng Zhao, and Kewei Tu. 2021.
Neural bi-lexicalized pcfg induction. arXiv preprint
arXiv:2105.15021.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

4777



Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2016. Dependency parsing as head selection. arXiv
preprint arXiv:1606.01280.

Hao Zhu, Yonatan Bisk, and Graham Neubig. 2020.
The return of lexical dependencies: Neural lexical-
ized pcfgs. Transactions of the Association for Com-
putational Linguistics, 8:647–661.

4778



A Appendix

A.1 Hyperparameters

Model Hidden head/Head Dropout DropAtt lr #tags Feedforward
Size Size Size

UDGN (PTB) 512 128 0.2 0.1 0.001 6 –
UDGN (BLLIP-XS,SM) 512 128 0.2 0.1 0.001 6 –
UDGN (BLLIP-MD,LG) 512 128 0.2 0.1 0.001 6 –
Transformer 512 64 0.1 0.1 0.0003 – 2048
StructFormer 512 64 0.1 0.1 0.0003 – 2048

Table 6: Hyperparameters used in Masked Language Modeling experiments. All model has 8 layers and 8 heads
or attention heads. For UDGN, we apply dropout in front of all linear layers; dropatt randomly drops heads; the
parser is a 3-layer biLSTM model, which has 6 tag embeddings, 1 of them is a zero vector, 5 of them are trainable.
For transformer and structformer, the dropout is applied to the output of each sublayers; dropatt randomly drops
attention weights; the size of their feedforward sublayers is 2048.

A.2 Correlation between Heads and Dependency Types

Models prep pobj det compound nsubj amod dobj aux

UDGN 0.45(0.15) 0.84(0.05) 0.59(0.08) 0.38(0.03) 0.47(0.08) 0.43(0.08) 0.32(0.04) 0.45(0.08)
StructFormer 0.28(0.04) 0.43(0.13) 0.38(0.06) 0.34(0.02) 0.30(0.03) 0.27(0.01) 0.19(0.02) 0.22(0.02)
Transformer 0.44(0.03) 0.31(0.05) 0.37(0.03) 0.32(0.00) 0.16(0.01) 0.28(0.01) 0.20(0.01) 0.26(0.03)

Table 7: The pearson correlation coefficients between most frequent dependency types (the child to parent direc-
tion) and their most correlated head. Types are arrange from the highest frequency to lower frequency.

A.3 More Ablation Experiments

In this section, we evaluate UDGN’s performance after removing the nonlinear function in gated heads,
replacing relative positional bias with a standard positional encoding, and using Kirchhoff matrix tree
theorem (Koo et al., 2007) to normalize the dependency probabilities. It’s interesting to notice that,
although Kirchhoff method can produce a valid marginal distribution for dependency probabilities, adding
the normalization can’t improve the unsupervised parsing performance. We believe it’s due to the extra
optimization complexity introduced by the matrix inversion in Kirchhoff method. Another observation
is that relative position bias helps the model to achieve better perplexity and parsing performance in
comparison with positional encoding. This may suggest that the combination of dependency graphs and
relative positions is more informative than absolute positions.

Model MLM Argmax Chu-Liu
PPL DDA UDA DDA UDA

UDGN 60.4(0.8) 52.5(0.7) 58.8(0.9) 50.2(1.5) 61.2(0.4)
- Nonlinear 61.2(1.0) 49.5(1.1) 56.8(1.4) 45.6(2.0) 60.8(1.4)
- relative pos bias + pos encoding 65.2(3.4) 47.1(7.3) 55.4(4.1) 44.8(7.2) 58.2(5.2)
+ Kirchhoff 59.7(0.5) 50.2(2.2) 58.4(1.2) 46.5(2.1) 60.7(1.2)

Table 8: The performance of UDGN after removing different components. “- Nonlinear” means remove the tanh
activation function in gated heads. “- relative pos bias + pos enc” means using a trainable positional encoding to
replace the relative position bias. “+ Kirchhoff” means using Kirchhoff matrix tree theorem (Koo et al., 2007) to
compute the marginal probabilities of each edge, and these marginals have properties similar to a tree adjacency
matrix (sum over the marginals are equal to N-1 for example, where N is the length of the sentence).

4779



(a) PCC heat map for heads and child to parent dependency relations.

(b) PCC heat map for heads and parent to child dependency relations.

Figure 5: Pearson Correlation Coefficients heat maps. Dependency types are arranged from highest frequency to
lowest. We can observe that high frequent types have more strongly correlated heads. Strongly correlated heads
also evenly distributed across layers.

4780



Dataset #tokens MLM Argmax Chu-Liu
PPL DDA UDA DDA UDA

BLLIP-XS 1M 133.7(3.1) 51.4(2.0) 57.6(1.6) 47.9(2.7) 61.2(1.6)
BLLIP-SM 5M 40.2(0.8) 53.7(2.5) 60.7(0.6) 50.9(5.3) 65.1(1.6)
BLLIP-MD 14M 24.2(0.5) 50.5(6.1) 59.8(2.9) 47.7(8.1) 63.0(4.2)
BLLIP-LG 42M 19.7(0.3) 45.6(2.9) 61.7(1.8) 41.6(4.2) 62.5(1.6)

Table 9: The performance of UDGN after trained on different BLLIP splits. Since all BLLIP splits share the
same vocabulary and test set, results are comparable. While DDA have a high variance, UDA remain stable across
different corpus sizes. This may due to the reason that DGN only use an undirected dependency mask, the choice
of dependency direction could be arbitrary. This result may suggest that syntax can be acquired with a relatively
small amount of data. It is possible then, that where extra data helps is in terms of semantic knowledge, like
common sense.

Figure 6: Relationship between the parsing performance and the mask rate for MLM.

A.4 Mask rate
One of the more surprising findings in our experiments with this architecture was the relationship between
the word mask rate in the MLM task and how much the resulting parse trees corresponded to the ground-
truth parse trees. We trained 5 models for different word masking rates from 0.1 to 0.9, in 0.1 increments,
and computed the argmax, DDA, and undirected DDA (UDA) scores for each of these models. Figure 6
shows the plot for these results.

Firstly, we observe that the acceptable range of masking rate for achieving a decent UDA score was
fairly large: the optimal was at about 0.3, but values of 0.2 up to 0.8 worked to induce tree structures that
resulted in fairly good undirected trees. Secondly, as we move away from the optimum of 0.3-0.4, the
variance of our results increases, with the highest variance when we mask at a rate of 0.9. Finally, our
model supplies the attention mask as a symmetric matrix— the directionality of the mask is decimated
when we perform Equation 6. Consequently, we find that the variance of the DDA is higher than UDA
as the connectivity of the nodes in the tree is more important than the direction of the connection in our
architecture.

A.5 Dependency Graph Examples

gold:

commercial paper

pred:

commercial paper

4781



Gold tree:

hooker ’s philosophy was to build and sell

Induced tree:

hooker ’s philosophy was to build and sell

gold:

a few hours later the stock market dropped N points

pred:

a few hours later the stock market dropped N points

gold:

there ’s nothing rational about this kind of action

pred:

there ’s nothing rational about this kind of action

4782



gold:

it ’s turning out to be a real blockbuster mr. <unk> said

pred:

it ’s turning out to be a real blockbuster mr. <unk> said

gold:

and i think institutions are going to come in and buy

pred:

and i think institutions are going to come in and buy

4783



gold:

that <unk> <unk> quantum badly because its own plants cover only about half of its <unk> needs

pred:

that <unk> <unk> quantum badly because its own plants cover only about half of its <unk> needs

4784


