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Abstract

Obtaining human-like performance in NLP is
often argued to require compositional general-
isation. Whether neural networks exhibit this
ability is usually studied by training models
on highly compositional synthetic data. How-
ever, compositionality in natural language is
much more complex than the rigid, arithmetic-
like version such data adheres to, and artificial
compositionality tests thus do not allow us to
determine how neural models deal with more
realistic forms of compositionality. In this
work, we re-instantiate three compositionality
tests from the literature and reformulate them
for neural machine translation (NMT). Our re-
sults highlight that: i) unfavourably, models
trained on more data are more compositional;
ii) models are sometimes less compositional
than expected, but sometimes more, exempli-
fying that different levels of compositionality
are required, and models are not always able
to modulate between them correctly; iii) some
of the non-compositional behaviours are mis-
takes, whereas others reflect the natural vari-
ation in data. Apart from an empirical study,
our work is a call to action: we should re-
think the evaluation of compositionality in neu-
ral networks and develop benchmarks using
real data to evaluate compositionality on natu-
ral language, where composing meaning is not
as straightforward as doing the math.1

1 Introduction

Although the successes of deep neural networks in
natural language processing (NLP) are astounding
and undeniable, they are still regularly criticised for
lacking the powerful generalisation capacities that
characterise human intelligence. A frequently men-
tioned concept in such critiques is compositionality:
the ability to build up the meaning of a complex
expression by combining the meanings of its parts
(e.g. Partee, 1984). Compositionality is assumed

1The data and code are available at https://github.
com/i-machine-think/compositionality paradox mt.
We present details concerning reproducibility in Appendix E.

to play an essential role in how humans understand
language, but whether neural networks also exhibit
this property has since long been a topic of vivid
debate (e.g. Fodor and Pylyshyn, 1988; Smolensky,
1990; Marcus, 2003; Nefdt, 2020).

Studies about the compositional abilities of neu-
ral networks consider almost exclusively models
trained on synthetic datasets, in which composi-
tionality can be ensured and isolated (e.g. Lake and
Baroni, 2018; Hupkes et al., 2020).2 In such tests,
the interpretation of expressions is computed com-
pletely locally: every subpart is evaluated indepen-
dently – without taking into account any external
context – and the meaning of the whole expression
is then formed by combining the meanings of its
parts in a bottom-up fashion. This protocol matches
the type of compositionality observed in arithmetic:
the meaning of (3 + 5) is always 8, independent of
the context it occurs in.

However, as exemplified by the sub-par perfor-
mance of symbolic models that allow only strict, lo-
cal protocols, compositionality in natural domains
is far more intricate than this rigid, arithmetic-
like variant of compositionality. Natural language
seems very compositional, but at the same time, it
is riddled with cases that are difficult to interpret
with a strictly local interpretation of composition-
ality. Sometimes, the meaning of an expression
does not derive from its parts (e.g. for idioms), but
the parts themselves are used compositionally in
other contexts. In other cases, the meaning of an
expression does depend on its parts in a composi-
tional way, but arriving at this meaning requires
a more global approach because the meanings of
the parts need to be disambiguated by information
from elsewhere. For instance, consider the mean-
ing of homonyms (“these dates are perfect for our
dish/wedding”), potentially idiomatic expressions
(“the child kicked the bucket off the pavement”),

2Apart from Raunak et al. (2019), work on compositional-
ity and ‘natural’ language considers highly structured subsets
of language (e.g. Kim and Linzen, 2020; Keysers et al., 2019).
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or scope ambiguities (“every human likes a cat”).
This paradoxical tension between local and global
forms of compositionality inspired many debates
on the compositionality of natural language. Like-
wise, it impacts the evaluation of compositionality
in NLP models. On the one hand, local composi-
tionality seems necessary for robust and reliable
generalisation. Yet, at the same time, global com-
positionality is needed to appropriately address the
full complexity of language, which makes evaluat-
ing compositionality of state-of-the-art models ‘in
the wild’ a complicated endeavour.

In this work, we face this challenge head-on. We
concentrate on the domain of neural machine trans-
lation (NMT), which is paradigmatically close to
the tasks typically considered for compositional-
ity tests, where the target represents the ‘meaning’
of the input.3 Furthermore, MT is an important
domain of NLP, for which compositional generali-
sation is important to produce more robust transla-
tions and train adequate models for low-resource
languages (see, e.g. Chaabouni et al., 2021). As an
added advantage, compositionality is traditionally
well studied and motivated for MT (Rosetta, 1994;
Janssen and Partee, 1997; Janssen, 1998).

We reformulate three theoretically grounded
tests from Hupkes et al. (2020): systematicity, sub-
stitutivity and overgeneralisation. Since accuracy –
commonly used in artificial compositionality tests –
is not a suitable evaluation metric for MT, we base
our evaluations on the extent to which models be-
have consistently, rather than correctly. In our tests
for systematicity and substitutivity, we consider
whether processing is local; in our overgeneralisa-
tion test, we consider how models treat idioms that
are assumed to require global processing.

Our results indicate that models often do not be-
have compositionally under the local interpretation,
but exhibit behaviour that is too local in other cases.
In other words, models have the ability to process
phrases both locally and globally but do not always
correctly modulate between them. We further show
that some inconsistencies reflect variation in natu-
ral language, whereas others are true compositional
mistakes, exemplifying the need for both local and
global compositionality as well as illustrating the
need for tests that encompass them both.

With our study, we contribute to ongoing ques-
tions about the compositional abilities of neural
networks, and we provide nuance to the nature of
this question when natural language is concerned:

3E.g. SCAN’s inputs are instructions (“walk twice”) with
executions as outputs (“walk walk”) (Lake and Baroni, 2018).

how local should the compositionality of models
for natural language actually be? Aside from an
empirical study, our work is also a call to action:
we should rethink the evaluation of composition-
ality in neural networks and develop benchmarks
using real data to evaluate compositionality on nat-
ural language, where composing meaning is not as
straightforward as doing the math.

2 Local and global compositionality

Tests for compositional generalisation in neural net-
works typically assume an arithmetic-like version
of compositionality, in which meaning can be com-
puted bottom up. The compositions require only
local information – they are context independent
and unambiguous: “walk twice after jump thrice”
(a fragment from SCAN by Lake and Baroni, 2018)
is evaluated similarly to (2 + 1)× (4− 5). In MT,
this type of compositionality would imply that a
change in a word or phrase should affect only the
translation of that word or phrase, or at most the
smallest constituent it is a part of. For instance, the
translation of “the girl” should not change depend-
ing on the verb phrase that follows it, and in the
translation of a conjunction of two sentences, mak-
ing a change in the first conjunct should not change
the translation of the second. While translating in
such a local way seems robust and productive, it is
not always realistic – e.g. consider the translation of
“dates” in “She hated bananas and she liked dates”.

In linguistics and philosophy of language, the
level of compositionality has been widely dis-
cussed, which led to a variety of definitions. One
of the most well-known ones is from Partee (1984):

“The meaning of a compound expres-
sion is a function of the meanings of its
parts and of the way they are syntacti-
cally combined.”4

This definition hardly places restrictions on the
relationship between expressions and their parts.
The type of function that relates them is unspeci-
fied and could take into account the global syntac-
tic structure or external arguments, and the parts’
meanings can depend on global information. Par-
tee’s definition is therefore called weak, global,
or open compositionality (Szabó, 2012; Garcı́a-
Ramı́rez, 2019). When, instead, the meaning of
a compound depends only on the meanings of its
largest parts, regardless of their internal structure
(similar to arithmetic), that is strong, local or closed

4This straightforwardly extends to translation, by replacing
meaning with translation (Rosetta, 1994).
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n Template

1 The Npeople V the Nsl
people .

2 The Npeople Adv V the Nsl
people .

3 The Npeople P the Nsl
vehicle V the Nsl

people .
4 The Npeople and the Npeople V the Nsl

people .
5 The Nsl

quantity of Npl
people P the Nsl

vehicle V the Nsl
people .

6 The Npeople V that the Npl
people V.

7 The Npeople Adv V that the Npl
people V .

8 The Npeople V that the Npl
people V Adv .

9 The Npeople that V V the Nsl
people .

10 The Npeople that V Pro V the Nsl
people .

(a) Synthetic templates

n Template
1,2,3 The Npeople VP1,2,3 .

The men are gon na have to move off-camera .
4,5 The Npeople read(s) an article about NP1,2 .

The man reads an article about the development
of ascites in rats with liver cirrhosis .

6,7 An article about NP3,4 is read by Npeople .
An article about the criterion on price stability ,
which was 27 % , is read by the child .

8,9,10 Did the Npeople hear about NP5,6,7 ?
Did the teacher hear about the march on
Employment which happened here on Sunday ?

(b) Semi-natural templates

Table 1: The synthetic and semi-natural templates, with POS tags of the lexical items varied shown in blue with
the plurality as superscript and the subcategory as subscript. The OPUS-extracted NP and VP fragments are red.

compositionality (Jacobson, 2002; Szabó, 2012).
Under the local interpretation, natural language
can hardly be considered compositional – many
frequent phenomena such as homonyms, idioms
and scope ambiguities cannot be resolved locally
(Pagin and Westerståhl, 2010; Pavlick and Callison-
Burch, 2016). The global interpretation handles
such cases straightforwardly but does not match
up with many a person’s intuitions about the com-
positionality of language. After all, how useful
is compositionality if composing the meanings of
parts requires the entire rest of the sentence? This
paradox inspired debates on the compositionality
of natural language and is also highly relevant in
the context of evaluating compositionality in neural
models.

Previous compositionality tests (§6) considered
only the local interpretation of compositionality,
but to what extent is that relevant given the type of
compositionality actually required to model natural
language? Here, we aim to open up the discus-
sion about what it means for computational models
of language to be compositional by considering
properties that require composing meaning locally
as well as globally and evaluating them in models
trained on unadapted natural language corpora.

3 Setup

3.1 Model and training
We focus on English-Dutch translation, for which
we can ensure good command for both languages.
We train Transformer-base models (Vaswani et al.,
2017) using Fairseq (Ott et al., 2019). Our training
data consists of a collection of MT corpora bundled
in OPUS (Tiedemann and Thottingal, 2020), of
which we use the English-Dutch subset provided
by Tiedemann (2020), which contains 69M sen-
tence pairs.5 To examine the impact of the amount

5Visit the Tatoeba challenge for the OPUS training data.

of training data – a dimension that is relevant be-
cause compositionality is hypothesised to be more
important when resources are scarcer – we train
one setup using the full dataset, one using 1

8 of the
data (medium), and one using one million source-
target pairs in the small setup. For each setup, we
train models with five seeds and average the results.

To evaluate our trained models, we adopt
FLORES-101 (Goyal et al., 2021), which contains
3001 sentences from Wikinews, Wikijunior and
WikiVoyage, translated by professional translators,
split across three subsets. We train the models until
convergence on the ‘dev’ set. Afterwards, we com-
pute SacreBLEU scores on the ‘devtest’ set (Post,
2018), using beam search (beam size = 5), yielding
scores of 20.6±.4, 24.4±.3 and 25.8±.1 for the
small, medium and full datasets, respectively.6

3.2 Evaluation data
While all our models are trained on fully natural
data, for evaluation we use different types of data:
synthetic, semi-natural and natural data.

Synthetic data For our synthetic evaluation
data, we consider the data generated by Lakretz
et al. (2019), previously used to probe for hierarchi-
cal structure in neural language models. This data
consist of sentences with a fixed syntactic structure
and diverse lexical material. We extend the vocabu-
lary and the templates used to generate the data and
generate 3000 sentences for each of the resulting
10 templates (see Table 1a).

Semi-natural data In the synthetic data, we
have full control over the sentence structure and
lexical items, but the sentences are shorter (9 to-
kens vs 16 in OPUS) and simpler than typical in
NMT data. To obtain more complex yet plausible
test sentences, we employ a data-driven approach

6All training details are listed in Appendix E.
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(b) S1 → S3
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(c) NP → NP′
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(d) VP → VP′

Figure 1: Systematicity results for setup S → S CONJ S (a and b) and S → NP VP (c and d). Consistency scores are
shown per evaluation data type (x-axis) and training dataset size (colours). Data points represent templates (◦) and
means over templates (�).

The girl sees that the men cry

The girl sees that the men cry , and the poet criticises the king

S→S CONJ S

NP→NP'
 

The painter avoids the mayor , and the poet criticises the king

S→NP VP
 

The baker sees that the men cry The girl sees that the aunts cry

The girl sees that the men cry

VP→VP'
 

Figure 2: Illustration of the systematicity experiments
S→ S CONJ S (S1 → S3 is shown) and S→ NP VP
(both versions are shown). Each experiment involves
extracting translations before and after the replacement
of the blue part, and then comparing the translation of
the underlined words.

to generate semi-natural data. Using the tree sub-
stitution grammar Double DOP (Van Cranenburgh
et al., 2016), we obtain noun and verb phrases (NP,
VP) whose structures frequently occur in OPUS.
We then embed these NPs and VPs in ten synthetic
templates with 3000 samples each (see Table 1b).
See Appendix A for details on the data generation.

Natural data Lastly, we extract natural data di-
rectly from OPUS, as detailed in the subsections
of the individual tests (§4).

4 Experiments and results

In our experiments, we consider systematicity
(§4.1) and substitutivity (§4.2), to test for local
compositionality, and idiom translation to probe
for a more global type of processing (§4.3).

4.1 Systematicity
One of the most commonly tested properties of
compositional generalisation is systematicity – the
ability to understand novel combinations made up
from known components (most famously, Lake and
Baroni, 2018). In natural data, the number of poten-
tial recombinations to consider is infinite. We chose
to focus on recombinations in two sentence-level
context-free rules: S→ NP VP and S→ S CONJ S.

4.1.1 Experiments
Test design The first setup, S→ NP VP, concerns
recombinations of noun and verb phrases. We ex-
tract translations for input sentences from the tem-
plates from §3.2, as well as versions of them with
the (1) noun (NP→ NP’) or (2) verb phrase (VP
→ VP’) adapted. In (1), a noun from the NP in the
subject position is replaced with a different noun
while preserving number agreement with the VP.
In (2), a noun in the VP is replaced. NP→ NP’ is
applied to both synthetic and semi-natural data; VP
→ VP’ only to synthetic data. We use 500 samples
per template per condition per data type.

The second setup, S→ S CONJ S, involves
phrases concatenated using “and”, and tests
whether the translation of the second sentence is
dependent on the first sentence. We concatenate
two sentences (S1 and S2) from different templates,
and we consider again two different conditions.
First, in condition S1 → S′

1, we make a minimal
change to S1 yielding S′

1 by changing the noun
in its verb phrase. In S1 → S3, instead, we re-
place S1 with a sentence S3 that is sampled from a
template different from S1. We compare the trans-
lation of S2 in all conditions. For consistency, the
first conjunct is always sampled from the synthetic
data templates. The second conjunct is sampled
from synthetic data, semi-natural data, or from nat-
ural sentences sampled from OPUS with similar
lengths and word-frequencies as the semi-natural
inputs. We use 500 samples per template per condi-
tion per data type. Figure 2 provides an illustration
of the different setups experimented with.

Evaluation In artificial domains, systematicity is
evaluated by leaving out combinations of ‘known
components’ from the training data and using them
for testing purposes. The necessary familiarity of
the components (the fact that they are ‘known’) is
ensured by high training accuracies, and system-
aticity is quantified by measuring the test set accu-
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(a)

0.0 0.25 0.5 0.75 1.0
consistency

m(o)ustache
ladybird / ladybug
holiday / vacation

football / soccer
f(o)etus

fl(a)utist
do(ugh)nut

aubergine /
eggplant

alumin(i)um
a(e|i)r(o)plane

0.0 0.25 0.5 0.75 1.0
consistency

yog(h)urt
whisk(e)y

veterinarian /
veterinary surgeon

tumo(u)r
theat(re|er)
sul(ph|f)ate

shopping trolley /
shopping cart

sail(ing )boat
p(y|a)jamas

postcode / zip code

synonym consistency
consistency

(b)

Figure 3: (a) Consistency scores of synonyms (averaged �, and per synonym ◦) for substitutivity per evaluation
data type, for three training set sizes. (b) Consistency per synonym, measured using full sentences (in dark blue)
or the synonym’s translation only (in green), averaged over training dataset sizes and data types.

racy. If the training data is a natural corpus and the
model is evaluated with a measure like BLEU in
MT, this strategy is not available. We observe that
being systematic requires being consistent in the
interpretation assigned to a (sub)expression across
contexts, both in artificial and natural domains.
Here, we, therefore, focus on consistency rather
than accuracy, allowing us to employ a model-
driven approach that evaluates the model’s system-
aticity as the consistency of the translations when
presenting words or phrases in multiple contexts.

We measure consistency as the equality of
two translations after accounting for anticipated
changes. For instance, in the S→ NP VP setup,
two translations are consistent if they differ in one
word only, after accounting for determiner changes
in Dutch (“de” vs “het”). In the evaluation of
S→ S CONJ S, we measure the consistency of the
translations of the second conjunct.

4.1.2 Results
Figure 1 shows the results for the S→ NP VP and
S→ S CONJ S setups (numbers available in Ap-
pendix B). The average performance for the natural
data closely resembles the performance on semi-
natural data, suggesting that the increased degree
of control did not severely impact the results ob-
tained using this generated data.7 In general, the
consistency scores are low, illustrating that mod-
els are prone to changing their translation of a
(sub)sentence after small (unrelated) adaptations
to the input. It hardly matters whether that change
occurs in the sentence itself (S→ NP VP), or in the
other conjunct (S→ S CONJ S), suggesting that the
processing of the models is not local as assumed in
strong compositionality. Models trained on more
data seem more locally compositional, a somewhat
contradictory solution to achieving compositional-

7In our manual analysis (§5), however, we did observe a
slightly different distribution of changes between these setups.

ity, which, after all, is assumed to underlie the abil-
ity to generalise usage from few examples (Lake
et al., 2019). This trend is also at odds with the
hypothesis that inconsistencies are a consequence
of the natural variation of language, which models
trained on more data are expected to better capture.

4.2 Substitutivity

Under a local interpretation of the principle of
compositionality, synonym substitutions should be
meaning-preserving: substituting a constituent in
a complex expression with a synonym should not
alter the complex expression’s meaning, or, in the
case of MT, its translation. Here, we test to what
extent models’ translations abide by this principle,
by performing the substitutivity test from Hupkes
et al. (2020), that measures whether the outputs
remain consistent after synonym substitution.

4.2.1 Experiments

To find synonyms – source terms that translate into
the same target terms – we exploit the fact that
OPUS contains texts both in British and American
English. Therefore, it contains synonymous terms
that are spelt different – e.g. “doughnut” / “donut” –
and synonymous terms with a very different form –
e.g. “aubergine” / “eggplant”. We use 20 synonym
pairs in total (see Figure 3b).

Test design Per synonym pair, we select natural
data from OPUS in which the terms appear and
perform synonym substitutions. Thus, each sample
has two sentences, one with the British and one
with the American English term. We also insert
the synonyms into the synthetic and semi-natural
data using 500 samples per synonym pair per tem-
plate, through subordinate clauses that modify a
noun – e.g. “the king that eats the doughnut”. In
Appendix C, Table 6, we list all clauses used.

4158



Evaluation Like systematicity, we evaluate sub-
stitutivity using the consistency score, expressing
whether the model translations for a sample are
identical. We report both the full sentence consis-
tency and the consistency of the synonyms’ trans-
lations only, excluding the context. Cases in which
the model omits the synonym from both transla-
tions are labelled as consistent if the rest of the
translation is the same for both input sequences.

4.2.2 Results
In Figure 3a, we summarise all substitutivity con-
sistency scores (tables are in Appendix C). We
observe trends similar to the systematicity results:
models trained on larger training sets perform bet-
ter and synthetic data yields more consistent trans-
lations compared to (semi-)natural data. We fur-
ther observe large variations across synonyms, for
which we further detail the performance aggregated
across experimental setups in Figure 3b. The three
lowest scoring synonyms – “flautist”, “aubergine”
and “ladybug” – are among the least frequent syn-
onyms (see Appendix C), which stresses the im-
portance of frequency for the model to pick up on
synonymy.

In Figure 3b, we show both the regular consis-
tency and the consistency of the synonym trans-
lations, illustrating that a substantial part of the
inconsistencies are due to varying translations of
the context rather than the synonym itself, stressing
again the non-local processing of the models.

4.3 Global compositionality
In our final test, we focus on exceptions to composi-
tional rules. In natural language, typical exceptions
that constitute a challenge for local composition-
ality are idioms. For instance, the idiom “raining
cats and dogs” should be treated globally to arrive
at its meaning of heavy rainfall. A local approach
would yield an overly literal, non-sensical trans-
lation (“het regent katten en honden”). When a
model’s translation is too local, we follow Hup-
kes et al. (2020) in saying that it overgeneralises,
or, in other words, it applies a general rule to an
expression that is an exception to this rule. Over-
generalisation indicates that a language learner has
internalised the general rule (e.g. Penke, 2012).

4.3.1 Experiments
We select 20 English idioms for which an accurate
Dutch translation differs from the literal translation
from the English MAGPIE corpus (Haagsma et al.,
2020). Because acquisition of idioms is dependent
on their frequency in the corpus, we use idioms
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Figure 4: Visualisation of overgeneralisation for idioms
throughout training, with a line per idiom and the over-
all mean. Overgeneralisation occurs early on in train-
ing and precedes memorisation of idioms’ translations.
The colours indicate different training dataset sizes.

with at least 200 occurrences in OPUS based on
exact matches, for which over 80% of the target
translations does not contain a literal translation.

Test design Per idiom, we extract natural sen-
tences containing the idiom from OPUS. For the
synthetic and semi-natural data types, we insert the
idiom in 500 samples per idiom per template, by
attaching a subordinate clause to a noun – e.g. “the
king that said ‘I knew the formula by heart’”. The
clauses used can be found in Appendix D, Table 7.

Evaluation Per idiom, we assess how often a
model overgeneralises and how often it translates
the idiom globally. To do so, we identify keywords
that indicate that a translation is translated locally
(literal) instead of globally (idiomatic). If the key-
words’ literal translations are present, the transla-
tion is labelled as an overgeneralised translation.
For instance, for “by heart”, the presence of “hart”
(“heart”) suggests a literal translation. An adequate
paraphrase would say “uit het hoofd” (“from the
head”). See Appendix D, Table 7, for the full list
of keywords. We evaluate overgeneralisation for
ten intermediate training checkpoints.
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4.3.2 Results
In Figure 4, we report our results.8 For all eval-
uation data types and all training set sizes, three
phases can be identified. Initially, the translations
do not contain the idiom’s keyword, not because
the idiom’s meaning is paraphrased in the transla-
tion, but because the translations consist of high-
frequency words in the target language only. After-
wards, overgeneralisation peaks: the model emits
a very literal translation of the idiom. Finally, the
model starts to memorise the idiom’s translation.
This is in accordance with results from Hupkes
et al. (2020), and earlier results presented in the
past tense debate by – among others – Rumelhart
and McClelland (1986).

Although the height of the overgeneralisation
peak is similar across evaluation data types and
training set sizes, overgeneralisation is more promi-
nent in converged models trained on smaller
datasets than it is in models trained on the full
corpus.9 In addition to training dataset size, the
type of evaluation data used also matters: there
is more overgeneralisation for synthetic and semi-
natural data compared to natural data, stressing the
impact of the context in which an idiom is embed-
ded. The extreme case of a context unsupportive
of an idiomatic interpretation is a sequence of ran-
dom words. To evaluate the hypothesis that this
yields local translations, we surround the idioms
with ten random words. The results (Appendix D,
Table 7) indicate that, indeed, when the context pro-
vides no support at all for a global interpretation,
the model provides a local translation for nearly
all idioms. Overall, the results of this test provide
an interesting contrast with our substitutivity and
systematicity results: where in those tests, we saw
processing that was less local than we expected,
here, the behaviour shown by the models is instead
not global enough.

5 Manual analysis

Our systematicity and substitutivity results demon-
strate that models are not behaving compositional
according to a strict definition of compositionality.
However, we ourselves have argued that strict com-
positionality is not always appropriate to handle
natural language. A reasonable question to ask is
thus: are the inconsistencies we marked as non-
compositional actually incorrect?

8Note that epochs consist of different numbers of samples:
1M, 8.6M and 69M for small, medium and full. Appendix D
further details numerical results per idiom.

9Convergence is based on BLEU scores for validation data.

0 25 50 75 100
%

synonyms
substitutivity
systematicity

errors rephrasing ambiguities formattingsynonyms

1 untranslated 1 mistranslated 2 mistranslated different translations

Figure 5: Relative frequencies of manually labelled in-
consistencies in translations, averaged over data types
and training set sizes. The ‘synonyms’ distribution fur-
ther details the category ‘synonyms’ from row two.

Annotation setup To address this question, we
perform a manual analysis. We annotate 900 in-
consistent translation pairs of the systematicity and
substitutivity tests to establish whether the incon-
sistencies are benign or concerning. We consider
four different types of changes:

1. cases of rephrasing, where both translations
are equally (in)correct;

2. changes reflecting different interpretations of
source ambiguities;

3. cases in which one of the two translations
contains an error;

4. formatting (mostly punctuation) changes.
For substitutivity samples, we also annotate
whether the changes are related to the translation
of the synonym, where we distinguish cases where

i. one of the synonym translations is incorrect;
ii. both are incorrect but in a different manner;

iii. both are correct but translated differently;
iv. one synonym remains untranslated.

We annotate all changes observed per pair and re-
port the relative frequency per class. We summarise
the results, aggregated over different training set
sizes and the three data types, in Figure 5. For a
more elaborate analysis and a breakdown per model
and data type, we refer to Appendix F.

Results In the systematicity test, 40% of the
marked inconsistencies reflects wrongfully trans-
lated parts in one of the two sentences, whereas
38% contains examples of rephrasing, 16% re-
flects ambiguities in the source sentences and 6%
is caused by formatting differences. For substitu-
tivity, most inconsistencies are similar to the ones
observed in systematicity: only 24% involves the
synonyms’ translations, where one of them being
untranslated was the most frequent category. The
distribution of these types of inconsistencies differ
strongly per training data type. For models trained
on less data, inconsistencies are more likely to rep-
resent errors, whereas models trained on more data
rephrase more often. This result emphasises that
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for lower-resource settings, being compositional
is particularly relevant. Another demonstration
of this relevance comes from the observation that
although models can emit correct translations for
nearly all synonyms,10 they do not always do so,
depending on the context. To give a peculiar ex-
ample: in “The child admires the king that eats the
{doughnut, donut}”, the snack was occasionally
translated as “ezel” (“donkey”).

Robustness and predictability Finally, we
would like to stress that while rephrasing often
might seem benign rather than concerning from the
perspective of emitting adequate translations, its
harmlessness still deserves some thought. There is
a fine line between rephrasing and mistranslating:
whether “the single largest business establishment”
is referred to as “de grootste” (“the largest”) or “de
enige grootste” (“the only largest”) may make or
break a translation. Furthermore, if changes are
unrelated to the contextual change (e.g. replac-
ing “soccer” with “football”), this can be unde-
sirable from a robustness and reliability perspec-
tive. This point becomes even more pronounced
in cases where both translations are correct but
have a different meaning. To analyse the extent
to which inconsistencies are actually unmotivated,
we investigated if we could trace them back to
the contextual change, in particular focusing on
whether changing synonyms from British to Amer-
ican spelling or vice versa might trigger a change
in style or tone. We could not find evidence of such
motivations, indicating that even correct cases of
rephrasing were not caused by contextual changes
that were necessary to take into account.

6 Related work

In previous work, a variety of artificial tasks have
been proposed to evaluate compositional general-
isation using non-i.i.d. test sets that are designed
to assess a specific characteristic of compositional
behaviour. Examples are systematicity (Lake and
Baroni, 2018; Bastings et al., 2018; Hupkes et al.,
2020), substitutivity (Mul and Zuidema, 2019; Hup-
kes et al., 2020), localism (Hupkes et al., 2020;
Saphra and Lopez, 2020), productivity (Lake and
Baroni, 2018) or overgeneralisation (Korrel et al.,
2019; Hupkes et al., 2020; Dankers et al., 2021).
Generally, neural models struggle to generalise in
such evaluation setups.

10Apart from the model with the small training dataset that
cannot translate “flautist” and “ladybug”.

There are also studies that consider composi-
tional generalisation on more natural data. Such
studies typically focus on either MT (Lake and Ba-
roni, 2018; Raunak et al., 2019; Li et al., 2021)
or semantic parsing (Finegan-Dollak et al., 2018;
Keysers et al., 2019; Kim and Linzen, 2020; Shaw
et al., 2021). Most of these studies consider small
and highly controlled subsets of natural language.

Instead, we focus on models trained on fully nat-
ural MT datasets, which we believe to be the setup
for compositionality evaluation that does most jus-
tice to the complexity of natural language: contrary
to semantic parsing, where the outputs are struc-
tures created by expert annotators, in translation
both inputs and outputs are fully-fledged natural
language sentences. To the best of our knowledge,
the only attempt to explicitly measure composi-
tional generalisation of NMT models trained on
large natural MT corpora is the study presented
by Raunak et al. (2019). They measure produc-
tivity – generalisation to longer sentence lengths –
of an LSTM-based NMT model trained on a full-
size, natural MT dataset. Other studies using NMT,
instead, consider toy datasets generated via tem-
plating (Lake and Baroni, 2018) or focus on short
sentences excluding more complex constructions
that contribute to the complexity of natural lan-
guage for compositional generalisation, such as
polysemous words or metaphors (Li et al., 2021).

7 Discussion

Whether neural networks can generalise composi-
tionally is often studied using artificial tasks that
assume strictly local interpretations of composition-
ality. We argued that such interpretations exclude
large parts of language and that to move towards
human-like productive usage of language, tests
are needed that assess how compositional models
trained on natural data are.11 We laid out reformu-
lations of three compositional generalisation tests –
systematicity, substitutivity and overgeneralisation
– for NMT models trained on natural corpora, and
assessed models trained on different amounts of
data. Our work provides an empirical contribution
but also highlights vital hurdles to overcome when
considering what it means for models of natural
language to be compositional. Below, we reflect on
these hurdles and our results.

11Dupoux (2018) makes a similar point for models of lan-
guage acquisition, providing several concrete examples where
using less than fully complex data proved problematic.
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The proxy-to-meaning problem Composition-
ality is a property of the mapping between the form
and meaning of an expression. Since translation is a
meaning-preserving mapping from form in one lan-
guage to form in another, it is an attractive task to
evaluate compositionality: the translation of its sen-
tence can be seen as a proxy to its meaning. How-
ever, while expressions are assumed to have only
one meaning, translation is a many-to-many map-
ping: the same sentence can have multiple correct
translations. This does not only complicate eval-
uation – MT systems are typically evaluated with
BLEU because accuracy is not a suitable option – it
also raises questions about how compositional the
desired behaviour of an MT model should be. On
the one hand, one could argue that for optimal gen-
eralisation, robustness, and accountability, we like
models to behave systematically and consistently:
we expect the translations of expressions to be inde-
pendent of unrelated contextual changes that do not
affect their meaning (e.g. swapping out a synonym
in a nearby sentence). Additionally, model perfor-
mance could be improved if small changes do not
introduce errors in unrelated parts of the translation.
On the other hand, non-compositional behaviour
is not always incorrect – it is one of the main ar-
guments in our plead to test compositionality ‘in
the wild’ – and we observe that indeed, not all non-
compositional changes alter the correctness of the
resulting translations. Changing a translation from
“atleet” (“athlete”) to “sporter” (“sportsman”) based
on an unrelated word somewhat far away may not
be (locally) compositional, but is it a problem? And
how do we separate such ‘harmful’ mistakes from
helpful ones?

The locality problem Inextricably linked to the
proxy-to-meaning problem is the locality problem.
In our tests we see that small, local source changes
elicit global changes in translations. For instance,
in our systematicity tests, changing one noun in
a sentence elicited changes in the translation of a
sentence that it was conjoined with. In our substi-
tutivity test, even synonyms that merely differed
in spelling (e.g. “doughnut” and “donut”) elicited
changes to the remainder of the sentence. This
counters the idea of compositionality as a means of
productively reusing language: if a phrase’s trans-
lation depends on (unrelated) context that is not in
its direct vicinity, this suggests that more evidence
is required to acquire the translation of this phrase.

Tests involving synthetic data present the models
with sentences in which maximally local behaviour
is possible, and we argue that it is, therefore, also

desirable. Our experiments show that even in such
setups, models do not translate in a local fashion:
with varying degrees of correctness, they frequently
change their translation when we slightly adapt the
input. On the one hand, this well-known volatility
(see also Fadaee and Monz, 2020) might be essen-
tial for coping with ambiguities for which mean-
ings are context-dependent. On the other hand,
our manual analysis shows that the observed non-
compositional behaviour does not reflect the incor-
poration of necessary contextual information and
that oftentimes it is even altering the correctness of
the translations. Furthermore, this erratic behaviour
highlights a lack of default reasoning, which can,
in some cases, be problematic or even harmful, es-
pecially if faithfulness (Parthasarathi et al., 2021)
or consistency is important.

In linguistics, it has been discussed how to ex-
tend the syntax and semantics such that ‘problem
cases’ can be a part of a compositional language
(Westerståhl, 2002; Pagin and Westerståhl, 2010).
In such formalisations, global information is used
to disambiguate the problem cases, while other
parts of the language are still treated locally. In
our models, global behaviour appears in situations
where a local treatment would be perfectly suitable
and where there is no clear evidence for ambiguity.
We follow Baggio (2021) in suggesting that we
should learn from strategies employed by humans,
who can assign compositional interpretations to ex-
pressions but can for some inputs also derive non-
compositional meanings. For human-like linguistic
generalisation, it is vital to investigate how mod-
els can represent both these types of processing,
providing a locally compositional treatment when
possible and deviating from that when needed.

Conclusion In conclusion, with this work, we
contribute to the question of how compositional
models trained on natural data are, and we argue
that MT is a suitable and relevant testing ground
to ask this question. Focusing on the balance be-
tween local and global forms of compositionality,
we formulate three different compositionality tests
and discuss the issues and considerations that come
up when considering compositionality in the con-
text of natural data. Our tests indicate that models
show both local and global processing, but not nec-
essarily for the right samples. Furthermore, they
underscore the difficulty of separating helpful and
harmful types of non-compositionality, stressing
the need to rethink the evaluation of compositional-
ity using natural language, where composing mean-
ing is not as straightforward as doing the math.
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Appendix A Semi-natural templates

The semi-natural data that we use in our test sets is generated with the library DiscoDOP,12 developed for
data-oriented parsing (Van Cranenburgh et al., 2016). We generate the data with the following seven step
process:

Step 1. Sample 100k English OPUS sentences.
Step 2. Generate a treebank using the disco-dop library and the discodop parser en ptb command.
The library was developed for discontinuous data-oriented parsing. Use the library’s --fmt bracket to
turn off discontinuous parsing.
Step 3. Compute tree fragments from the resulting treebank (discodop fragments). These tree frag-
ments are the building blocks of a Tree-Substitution Grammar.
Step 4. We assume the most frequent fragments to be common syntactic structures in English. To
construct complex test sentences, we collect the 100 most frequent fragments containing at least 15
non-terminal nodes for NPs and VPs.
Step 5. Selection of three VP and five NP fragments to be used in our final semi-natural templates. These
structures are selected through qualitative analysis for their diversity.
Step 6. Extract sentences matching the eight fragments (discodop treesearch).
Step 7. Create semi-natural sentences by varying one lexical item and varying the matching NPs and VPs
retrieved in Step 6.

In Table 2, we provide examples for each of the ten templates used, along with the internal structure of
the complex NP or VP that is varied in the template. In Table 3, we provide some additional examples for
our ten synthetic templates.

n Template

1 The Npeople (VP (TO ) (VP (VB ) (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP )))))))
E.g. The woman wants to use the Internet as a means of communication .

2 The Npeople (VP (VBP ) (VP (VBG ) (S (VP (TO ) (VP (VB ) (S (VP (TO ) (VP )))))))))
E.g. The men are gon na have to move off-camera .

3 The Npeople (VP (VB ) (NP (NP ) (PP (IN ) (NP ))) (PP (IN ) (NP (NP ) (PP (IN ) (NP )))))
E.g. The doctors retain 10 % of these amounts by way of collection costs .

4 The Npeople reads an article about (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP )))))))
E.g. The friend reads an article about the development of ascites in rats with liver cirrhosis .

5 The Npeople reads an article about (NP (NP (DT ) (NN )) (PP (IN ) (NP (NP ) (SBAR (S (WHNP (WDT )) (VP )))))) .
E.g. The teachers read an article about the degree of progress that can be achieved by the industry .

6 An article about (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP ))))))) is read by the Npeople .
E.g. An article about the inland transport of dangerous goods from a variety of Member States is read by the lawyer .

7 An article about (NP (NP ) (PP (IN ) (NP (NP ) (, ,) (SBAR (S (WHNP (WDT )) (VP )))))) , is read by the Npeople .
E.g. An article about the criterion on price stability , which was 27 % , is read by the child .

8 Did the Npeople hear about (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP (NP ) (PP (IN ) (NP ))))))) .
E.g. Did the friend hear about an inhospitable fringe of land on the shores of the Dead Sea ?

9 Did the Npeople hear about (NP (NP (DT ) (NN )) (PP (IN ) (NP (NP ) (SBAR (S (WHNP (WDT )) (VP )))))) ?
E.g. Did the teacher hear about the march on Employment which happened here on Sunday ?

10 Did the Npeople hear about (NP (NP ) (SBAR (S (VP (TO ) (VP (VB ) (NP (NP ) (PP (IN ) (NP )))))))) ?
E.g. Did the lawyers hear about a qualification procedure to examine the suitability of the applicants ?

Table 2: Semi-natural data templates along with their identifiers (n). The syntactic structures for noun and verb
phrases in purple are instantiated with data from the OPUS collection. Generated data from every template contains
varying sentence structures and varying tokens but the predefined tokens in black remain the same.

12https://github.com/andreasvc/disco-dop
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n Template

1 The Npeople Vtransitive the Nsl
people .

E.g. The poet criticises the king .
2 The Npeople Adv Vtransitive the Nsl

people .
E.g. The victim carefully observes the queen .

3 The Npeople P the Nsl
vehicle Vtransitive the Nsl

people .
E.g. The athlete near the bike observes the leader .

4 The Npeople and the Npeople Vpl
transitive the Nsl

people .
E.g. The poet and the child understand the mayor .

5 The Nsl
quantity of Npl

people P the Nsl
vehicle Vsl

transitive the Nsl
people .

E.g. The group of friends beside the bike forgets the queen .
6 The Npeople Vtransitive that the Npl

people Vpl
intransitive.

E.g. The farmer sees that the lawyers cry .
7 The Npeople Adv Vtransitive that the Npl

people Vpl
intransitive .

E.g. The mother probably thinks that the fathers scream .
8 The Npeople Vtransitive that the Npl

people Vpl
intransitive Adv .

E.g. The mother thinks that the fathers scream carefully .
9 The Npeople that Vintransitive Vtransitive the Nsl

people .
E.g. The poets that sleep understand the queen .

10 The Npeople that Vtransitive Pro Vsl
transitive the Nsl

people .
E.g. The mother that criticises him recognises the queen .

Table 3: Synthetic sentence templates similar to Lakretz et al. (2019), along with their identifiers (n).

Appendix B Systematicity

Table 4 provides the numerical counterparts of the results visualised in Figure 1.

Data Condition Model
small medium full

S → NP VP
synthetic NP .73 .84 .84
synthetic VP .76 .87 .88
semi-natural NP .63 .66 .64

S → S CONJ S
synthetic S′

1 .81 .90 .92
synthetic S3 .53 .76 .82
semi-natural S′

1 .65 .73 .76
semi-natural S3 .29 .49 .49
natural S′

1 .58 .67 .72
natural S3 .25 .39 .47

(a) Per models’ training set size

Template
1 2 3 4 5 6 7 8 9 10

.86 .74 .85 .87 .75 .89 .85 .85 .70 .68

.92 .73 .90 .91 .84 .88 .85 .82 .77 .74

.66 .63 .65 .70 .64 .69 .63 .63 .60 .58

.91 .82 .88 .88 .86 .95 .90 .91 .84 .79

.75 .54 .72 .66 .73 .88 .74 .81 .66 .55

.73 .75 .75 .80 .75 .73 .66 .68 .64 .64

.50 .50 .51 .58 .52 .43 .35 .31 .28 .29

.67 .74 .65 .64 .63 .64 .62 .66 .63 .66

.39 .49 .35 .35 .34 .37 .33 .38 .34 .38

(b) Per template

Table 4: Consistency scores for the systematicity experiments, detailed per experimental setup and evaluation data
type. We provide scores (a) per models’ training set size, and (b) per template of our generated evaluation data.
For natural data, the template number is meaningless, apart from the fact that it determines sentence length and
word frequency.

Appendix C Substitutivity

Synonyms employed In Table 5, we provide some information about the synonymous word pairs used
in the substitutivity test, including their frequency in OPUS and their most common Dutch translation.
The last column of the table contains the subordinate clauses that we used to include the synonyms in the
synthetic and semi-natural data. We include them as a relative clause behind nouns representing a human,
such as “The poet criticises the king that eats the doughnut”.

Detecting synonym translations To find the span of text in the translation which is the translation of
the synonym, we apply a relatively simple heuristic. We generate a number of short sentences such as
“This is the NOUN”, feed those to all our trained models, and extract the top-5 answers in the beam. We
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then use the list of all words resulting from this protocol – which we manually checked – to find synonym
translations in the model output.

Results In the main paper, Figures 3a and 3b provided the consistency scores for the substitutivity
tests. Here, Table 6 further details the results from the figure, by presenting the average consistency per
evaluation data type and training set size, and per evaluation data type and synonym pair.

Synonym pair Dutch translation Subordinate clause
British Freq. American Freq.

aeroplane 6728 airplane 5403 vliegtuig that travels by . . .
aluminium 17982 aluminum 5700 aluminium that sells . . .
doughnut 2014 donut 1889 donut that eats the . . .
foetus 1943 fetus 1878 foetus that researches the . . .
flautist 112 flutist 101 fluitist that knows the . . .
moustache 1132 mustache 1639 snor that has a . . .
tumour 7338 tumor 6348 tumor that has a . . .
pyjamas 808 pajamas 1106 pyjama that wears . . .
sulphate 3776 sulfate 1143 zwavel that sells . . .
yoghurt 1467 yogurt 2070 yoghurt that eats the . . .
aubergine 765 eggplant 762 aubergine that eats the . . .
shopping trolley 217 shopping cart 13366 winkelwagen that uses a . . .
veterinary surgeon 941 veterinarian 6995 dierenarts that knows the . . .
sailing boat 5097 sailboat 1977 zeilboot that owns a . . .
football 33125 soccer 6841 voetbal that plays . . .
holiday 125430 vacation 23532 vakantie that enjoys the . . .
ladybird 235 ladybug 303 lieveheersbeestje that caught a . . .
theatre 19451 theater 13508 theater that loves . . .
postcode 479 zip code 1392 postcode with the same . . .
whisky 3604 whiskey 4313 whisky that drinks . . .

Table 5: Synonyms for the substitutivity test, along with their OPUS frequency, Dutch translation, and the subor-
dinate clause used to insert them in the data.

Data Metric Model
small medium full

synthetic con. .49 .67 .76
syn. con. .67 .82 .93

semi-natural con. .34 .55 .62
syn. con. .62 .84 .93

natural con. .37 .52 .63
syn. con. .61 .75 .85

(a) Per models’ training set size

Data Metric Synonym
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synthetic con. .54 .87 .74 .82 .10 .92 .78 .64 .79 .55 .25 .40 .64 .73 .68 .81 .27 .85 .48 .88
syn. con. 1.0 1.0 .87 1.0 .10 1.0 1.0 .80 .95 1.0 .38 .48 .90 1.0 .75 1.0 .40 .99 .53 1.0

semi-natural con. .43 .59 .58 .54 .08 .85 .52 .55 .56 .42 .24 .31 .33 .73 .66 .71 .20 .62 .43 .75
syn. con. .99 .99 .83 1.0 .09 1.0 .98 .72 .90 .98 .40 .50 .77 1.0 .90 1.0 .38 .95 .58 .99

natural con. .50 .52 .53 .56 .09 .75 .50 .60 .47 .57 .23 .70 .29 .64 .55 .62 .17 .59 .61 .58
syn. con. .89 .85 .73 .91 .11 .87 .87 .82 .88 .86 .32 .92 .75 .71 .79 .81 .27 .82 .81 .80

(b) Per synonym

Table 6: Consistency scores for the substitutivity experiments, detailed per evaluation data type. We present scores
(a) per models’ training set size and (b) per synonym.
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Appendix D Global compositionality

Idioms employed Table 7 provides more information on the idioms used in our global compositionality
test. In the first column, we list all idioms we used, along with the keywords that we used to determine
if their translation is local or not. To extract the natural data, we retrieved exact matches with OPUS
source sentences. The idioms’ keywords are mostly nouns that either translate into a different word in
an accurate paraphrased translation in Dutch (e.g. “across the board” would be “over de hele linie”), or
should disappear in the translation (e.g. “do the right thing” typically translates into “het juiste doen” in
the corpus).

In the second column of Table 7, we list the subordinate clauses that we used to include idioms in the
synthetic and semi-natural data. The clauses themselves are drawn from source sentences in OPUS. To
incorporate them in synthetic and semi-natural sentences, we include them as a relative clause behind
nouns representing a human, by attaching “that said ‘[idiom]”’. For instance: “The poet criticises the
king that said ‘Have you gone out of your mind’.”

In the third column of Table 7, we show local translations of the idioms, elicited from the model
by embedding the idiom in a string of ten random nouns. Even “out of the blue”, which is rarely
overgeneralised when presented in synthetic, semi-natural or natural contexts, is locally translated. This
indicates that the idiom is not stored as one lexical unit per se but that it is only translated globally in
specific contexts.

Results In the main paper, in Figure 4, we visualised how overgeneralisation changes over the course of
training, averaged over idioms. In Table 8, we detail the maximum overgeneralisation observed per idiom.

Idiom Subordinate clause Local translation

once in a while that said “ I will play it once in a while ” eens in een tijdje
do the right thing that said “ Just do the right thing ” doen het juiste ding
out of your mind that said “ Have you gone out of your mind ” uit je hoofd
state of the art that said “ This is a state of the art, official facility ” stand van de kunst
from scratch that said “ We are cooking from scratch every day ” van kras
take stock that said “ Take stock of the lessons to be drawn ” nemen voorraad
across the board that said “ I got red lights all across the board ” aan boord
in the final analysis that said “ In the final analysis, this is what matters ” in de laatste analyse
out of the blue that said “ It just came out of the blue ” uit het blauwe
in tandem that said “ We will work with them in tandem ” in tandem
by heart that said “ I knew the formula by heart ” door hart
come to terms with that said “ I have come to terms with my evil past ” komen overeen met
by the same token that said “ By the same token I will oppose what is evil ” bij dezelfde token
at your fingertips that said “ The answer is right at your fingertips ” binnen handbereik
look the other way that said “ We cannot look the other way either ” kijken de andere manier
follow suit that said “ And many others follow suit ” volgen pak
keep tabs on that said “ I keep tabs on you ” houden tabs
in the short run that said “ In the short run it clearly must be ” in de korte lopen
by dint of that said “ We are part of it by dint of our commitment ” door de int
set eyes on that said “ I wish I had never set eyes on him ” set ogen op

Table 7: Idioms used in the overgeneralisation test. The words that are indicative of a local translation are under-
lined, we check for their presence to label a translation as an overgeneralisation. The listed subordinate clauses are
used to insert the idioms into synthetic and semi-natural templates. The local translation indicated is the translation
given by the model when the idiom is embedded in a string of ten random words.

Appendix E Reproducibility details

E.1 Data

Training data Our training data consists of the English-Dutch subset of the MT corpus OPUS (Tiede-
mann and Thottingal, 2020), provided by Tiedemann (2020). This data contains in total 69M source-target
pairs. The data can be found on https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/

README-v2020-07-28.md.
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synthetic small .98 .92 .98 1.0 .40 .75 1.0 1.0 1.0 1.0 1.0 .01 1.0 1.0 1.0 .99 1.0 .72 .20 .74
medium .99 .96 .98 1.0 .76 .73 1.0 1.0 1.0 1.0 1.0 .22 1.0 1.0 1.0 1.0 .57 .55 .38 .57
full .97 .86 .97 1.0 .50 .56 1.0 1.0 1.0 1.0 1.0 .24 1.0 .91 1.0 1.0 .74 .38 .24 .44

semi-natural small .95 .66 .98 1.0 .49 .73 1.0 1.0 1.0 .97 1.0 .08 1.0 .98 1.0 .88 .99 .56 .15 .81
medium .91 .60 .95 1.0 .78 .63 .96 1.0 1.0 .97 1.0 .31 .99 .99 1.0 .97 .74 .45 .30 .59
full .97 .55 .95 1.0 .40 .68 .99 1.0 1.0 .99 1.0 .31 1.0 .90 1.0 .97 .90 .25 .23 .47

natural small .80 .51 .80 .97 .84 .31 .75 .96 .92 .82 .88 .14 .74 .60 1.0 .40 .96 .29 .23 .87
medium .80 .50 .82 .96 .84 .32 .71 .94 .92 .68 .90 .22 .74 .63 .99 .39 .61 .33 .29 .84
full .79 .39 .83 .95 .90 .36 .83 .98 .95 .89 .90 .11 .65 .55 1.0 .65 .56 .19 .27 .76

Table 8: Maximum overgeneralisation observed over the course of training, per evaluation data type, training set
size and idiom.

Preprocessing We tokenise the data using the tokenisation script13 from the SMT library Moses.14

Following the number of subwords suggested by Tiedemann (2020), we generate a subword vocabu-
lary applying 60k BPE merge-operations. To do so, we use the learn bpe.py script provided in the
SUBWORD NMT15 repository hosted by Rico Sennrich.

Different corpora We train models on three different sizes of corpora: SMALL, MEDIUM and FULL.
To generate these corpora, we first shuffle the OPUS training data using the bash function shuffle. To
generate the SMALL and MEDIUM corpora, we take the first 8582811 and 1072851 sentences of this
shuffled corpus, which corresponds to 1

8 th and 1
64 th of the full training corpus, respectively. For each

setting, we train models with seeds {1, 2, 3, 4, 5}.

Test and validation data Initially, we aimed to evaluate our models using the commonly used MT
test sets OPUS-10016 and the test partition of the TED talk corpus.17 However, it turned out that both
these test sets were almost fully contained in our training corpus. We, therefore, adopted the newer
FLORES-101 corpus (Goyal et al., 2021), of which we used both the ‘dev’ and the ‘devtest’ set. The data
can be downloaded from https://dl.fbaipublicfiles.com/flores101/dataset/flores101 dataset.tar.gz. To
compute BLEU scores, we tokenised the data with the Moses tokenisation script mentioned above, and
then used the commandline script fairseq-generate to compute scores.

We furthermore use several evaluation sets to assess the compositional abilities of our trained models.
The data for these tests, as well as scripts to run them and plot their results, can be found in the following
repository: https://github.com/i-machine-think/compositionality paradox mt.

E.2 Architecture and training
As reported in the main text, we focus on English-Dutch translation, and all our models are Transformer-
base models, as implemented in Fairseq (Ott et al., 2019).18 Both the encoder and the decoder of this model
have an embedding dimension of 512, 6 layers, 8 attention heads and a feed-forward layer dimension of
2048. With our vocabulary, the models have a total of around 80M trainable parameters.

To train our models, we follow the training procedure suggested by Ott et al. (2018), which can be
found at https://github.com/pytorch/fairseq/tree/master/examples/scaling nmt. To summarise, we share
all embeddings between the encoder and the decoder, use Adam as optimiser with β-values (0.9, 0.98),

13https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
14https://github.com/moses-smt/mosesdecoder
15https://github.com/rsennrich/subword-nmt/blob/master/subword nmt/learn bpe.py
16http://data.statmt.org/opus-100-corpus/v1.0/supervised/en-nl/
17https://github.com/neulab/word-embeddings-for-nmt
18We used the implementation as it was on May 12, 2021: https://github.com/pytorch/fairseq/blob/

d151f2787240cca4e3c7e47640e647f8ae028c37/fairseq/models/transformer.py
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Training set size Seed BLEU dev BLEU devtest

small 1 20.92 21.14
2 20.77 20.37
3 20.42 20.11
4 20.95 20.23
5 20.88 20.84

medium 1 24.09 24.18
2 25.05 24.71
3 24.55 24.42
4 24.09 23.93
5 24.55 24.10

full 1 26.17 25.63
2 25.71 25.63
3 25.82 25.72
4 26.19 25.84
5 25.86 25.76

Table 9: BLEU scores for the ‘dev’ and ‘devtest’ subsets of the FLORES datasets, for models trained on corpora of
three sizes, for five seeds per training set size.

starting from an initial warmup learning rate of 1e-07 for 4000 warmup updates and a learning rate of
0.0005 afterwards, using inverse square root as the learning rate scheduler. We use a clip-norm of 0.0,
dropout of 0.3, weight-decay of 0.0001, label-smoothing of 0.1. The maximum number of tokens in a
batch is 3584, we simulate larger batches by increasing the update frequency to 8. To determine early
stopping, we use a patience of 10 (i.e. we stop training if a model does not improve on the dev set anymore
for 10 epochs, and take the best checkpoint at that point). Any other hyperparameters involved follow the
Fairseq default. We provide the BLEU scores per model seed in Table 9.

E.3 Compute
All experiments were ran using Tesla V100 GPUs on an internal SLURM-based cluster. Training a
transformer-base model on our small, medium and full dataset takes on average 3.5, 17 and 113 minutes
per epoch, respectively (numbers are rounded) on 32 GPUs. This makes the total training time for these
models, which are trained for around 160, 60 and 30 epochs, 10, 17 and 56 hours, respectively (again,
spread over 32 GPUs).
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Appendix F Manual analysis

Our quantitative tests provide information on when a model behaves locally and when globally in
automated form but they do not consider whether that behaviour is incorrect or not. More simply put,
we do not know whether the changes that we observe are actually resulting in incorrect translations. We
complement these scores with an elaborate manual analysis, which provides more insight into the nature
of the non-compositional behaviour we registered.

F.1 Setup

Data sampling We randomly sample 900 examples for substitutivity (100 for each {model}×{test data
type} tuple) and 900 examples for systematicity (50 for each {model}×{test data type}×{S′

1, S3} tuple),
randomly distributed over templates. In all cases, we sample sentences randomly from the five seeds that
we trained, and from all templates. For substitutivity, we sample five examples for each synonym for
every (model, test data) pair.

Annotation procedure For each of these samples, we annotate how they differ, where we distinguish
between four general categories:

i. Rephrasing: part of the sentence is rephrased (but both phrases are equally (in)correct);
ii. Source ambiguities: there is an ambiguity in the source sentence, and the model switches its

interpretation;
iii. Errors: one of the translations contains an error that the other one does not;
iv. Formatting: minor formatting changes, consisting mostly of insertions/deletions of punctuation.

For the substitutivity data, we separately annotate changes that are related to the translation of the synonym,
where we distinguish cases in which both synonyms are correctly or incorrectly translated from cases in
which one of the translations is correct. We annotate all changes observed in a sample – one sentence may
thus contain annotations for multiple changes – and report the relative frequency of each class of errors.
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Figure 6: Distribution of error types for sentences that contain inconsistencies in systematicity, detailed per model
trained on the training set sizes in the subcaptions.

F.2 Results

We provide a summary of the results in Figure 6 for systematicity and Figure 7 for substitutivity. As a
general trend, the results reflect that in models trained on smaller datasets, more mistakes are actually
errors, rather than multiple correct alternatives. In the systematicity test, 59% of the inconsistencies for
the models trained on the smallest dataset are erroneous changes, versus 34% and 27% in the models
trained on the medium and largest dataset, when we average the percentages over the different subsets
annotated. For substitutivity, the percentage of erroneous changes unrelated to the synonyms comprises
46%, 18% and 22% for the smallest, medium and full dataset, respectively. On top of that, there were
inconsistencies related to the synonyms, that represented 26%, 26% and 21% for the three dataset sizes,
respectively. While this is expected, to some extent, it still constitutes a problem: for models trained on
smaller amounts of data, being able to translate in a compositional manner is particularly relevant. Below,
we further elaborate on the types of inconsistencies encountered per annotation category, including some
examples.
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Figure 7: Distribution of the types of inconsistencies observed in the substitutivity test, detailed per model trained
on the training set sizes in the subcaptions. The red colour scheme represents error types specific to this experiment.

F.2.1 Rephrasing
A large portion of the inconsistencies concerns pairs where one translation can be considered a rephrased
version of the other translation. A common cause of this is a reordering of words that does not impact the
grammaticality or meaning of the Dutch sentence – e.g. in sentences with adverbs (“heeft de burgemeester
zeker in de gaten” vs “heeft zeker de burgemeester in de gaten”) or relative clauses with direct objects (“die
genieten van de vakantie” vs “die van de vakantie genieten”). We could not trace these reorderings back
to the specific change made in the systematicity or substitutivity tests. Consider, for instance, Example
(1), where the reordering happens as a consequence of changing the word “king” to “father”. Note also
that while these translations both contain an error (“neemt . . . in de gaten”), this is not marked as an
inconsistency, because it is shared between the translations.

(1) a. EN: The aunts criticise the {king, father}, and the man definitely observes the mayor.
b. NL: (. . . ) en de man neemt zeker de burgemeester in de gaten.
c. NL: (. . . ) en de man neemt de burgemeester zeker in de gaten.

Another commonly occurring case of rephrasing is one where the two translations include terms that
are (nearly) synonymous terms in Dutch. Some examples are the translation of athlete (“sporter” vs
“atleet”), wish (“wensen” vs “willen”) and observe (“observeren” vs “waarnemen”). Some of them can
appear in the same context but for others the two words would typically appear in different types of texts.
For instance, the word “dokter” is used in more informal contexts than the word “arts” (both translations
of “doctor”). Again, we could not identify an interpretable pattern for when the model emits one instead
of the other – they were not understandably related to the modifications we made to the inputs.

F.2.2 Source ambiguities
An intriguing category that we had not anticipated were cases in which the source sentence contained
ambiguities, such as polysemous words (e.g. “director” translated to “directeur”, referring to the director
of a company, and “regisseur”, indicating the director of a movie). Other ambiguities encountered were
scope ambiguities, that were particularly prominent for the systematicity test. In that test, we concatenate
two sentences, and the ambiguity was often related to the verb in the first sentence – e.g. in Example (2):

(2) a. EN: The friend wishes that the {lawyers, directors} scream, and the victims (. . . )

While we intended this to be a conjunction of two independent sentences, there is also a reading where
“wishes” takes scope over the entire second conjunct. In Dutch, those two cases are distinguishable
because they trigger a different word order in the embedded clause (SOV), which is not grammatical for
main clauses. Such scope changes often lead to very questionable interpretations of the English sentence,
as is the case for Example (3):

(3) a. EN: The victims want that the {doctors, mayors} run, and the victims read an article about
the case of a procedure which includes a repayment plan.

b. EN: The farmers think that the {butchers, mothers} laugh, and an error can only be seen

4173



whenever we have a basic plan that is constantly compared to our real actions.
c. EN: The women wish that the {painters, victims} walk consciously, and every 2CV or Dyane

can basically be used as a donor.

Interestingly, the models sometimes also changed the order in the relative clause when a scope change was
not possible, for instance when the second conjunct was a question, or the verb in the first sentence did not
allow to take scope over the second conjunct without the presence of the word “that”. See Example (4).
We underline the incorrect part of the translation, here and in erroneous examples that follow.

(4) a. EN: The victim observes the {leader, king}, and the fathers carefully avoid the president.
b. NL: Het slachtoffer observeert de leider en de vaders de president zorgvuldig vermijden.
c. NL: Het slachtoffer observeert de koning en de vaders vermijden voorzichtig de president.

These examples indicate that the interpretation of scope change might not be applicable here and that
instead, the model is applying some heuristic where particular words trigger a relative clause order.

F.2.3 Target errors
In the category ‘target errors’, some of the errors can be easily traced to individual words, whereas others
indicate overall misinterpretations of the input.

Single word errors Errors that consist of single words are caused by words that are either missing,
wrongly translated or untranslated. Changes due to missing words can be very minor but nevertheless
render one of the sentences ungrammatical (e.g. “De tante achter de truck bewonderde de directeur”,
correct, vs “De tante achter de truck bewonderde directeur”, incorrect), or yield grammatical sentences
that have a slightly different meaning (e.g. “de arts die yoghurt eet” vs “de arts die de yoghurt eet”).
Missing words can also render translations both ungrammatical and semantically incorrect, which occured
mostly in case of missing nouns or verbs (e.g. “de bakker die ons herkent, merkt de koning op”, correct,
vs “de bakker die ons de koning herkent”, incorrect).

We also encoutered pairs where one translation contained untranslated source words. This happened
with some of the words in our synthetic templates (e.g. “ooms”/“uncles”, “butchers”/“slagers”) but also
with words from the natural sentences (e.g. “extrusion”/“extrusie”, “soils”/“bodem”). These cases mark
examples where local processing would have been helpful to the model: as evidenced by the alternative
translation in the pair, the model does have access to the correct translation.

Thirdly, we observed cases of mistranslated words, where words unrelated to the change locus
received a wrong translation in one of the two sentences but a correct one in the other, for example: “poets”
being translated as “dichters” (correct) vs “de potten” (incorrect), “general” as “generaal” (correct) vs
“wandeling” (incorrect), or “productform” as “productvorm” (correct) vs “productformulier” (incorrect).

Multi-word errors Other types of errors are less easily located to individual words but indicate an
overall misinterpretation of the input, such as the change in the tense as displayed in Example (5), and
the change in agreement displayed in Example (6). In these particular cases, the source of confusion is
explainable: in the first case, the model is combining a present tense verb with a word-order that does not
support that, even though such a word order does exist (“in het najaar van 2005 . . . en komen er al snel een
paar . . . ”). In the second case, “begrijpt” should agree with “schilder” but instead agrees with the word
“doctor”, much earlier in the sentence. In both of these cases, a more locally compositional approach to
translating would have yielded correct translations.

(5) a. EN: (. . . ) and in autumn 2005, five musicians join their forces and soon a couple of potential
songs came into being in the rehearsal room.

b. NL: (. . . ) in het najaar van 2005 voegen vijf muzikanten zich bij hun krachten en al snel
kwamen er een paar potentiële nummers in de oefenruimte.

c. NL: (. . . ) in het najaar van 2005 bundelen vijf muzikanten hun krachten en al snel komen er
een paar potentiële nummers tot stand in de oefenruimte.

(6) a. EN: The doctors that laugh admire the {president, baker}, the painter that admires her
understands the king.
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b. NL: (. . . ) de schilder die haar bewondert, begrijpen de koning.
c. NL: (. . . ) de schilder die haar bewondert begrijpt de koning.

Finally, we would like to point out an error type that relates to the semantic role assigned to agents, and
brings about a lot of other changes in the process. For instance, in Example (7), “the fathers” is removed
from the main clause and moved into the relative clause, leaving the main clause without its direct object.

(7) a. EN: The group of painters behind the truck forgets the {president, friend} and an article
about the previous EESC Opinion on alcohol related harm, which looked at f, is read by the
fathers

b. NL: (. . . ) en een artikel over het eerdere advies van het EESC over alcoholgerelateerde
schade, die door de vaders wordt onderzocht, wordt gelezen.

c. NL: (. . . ) en een artikel over het eerdere advies van het EESC over alcoholgerelateerde
schade, die naar f uitkeek, wordt door de vaders gelezen.

F.2.4 Formatting
We marked inconsistencies as formatting changes if they were related to punctuation, capitalisation,
hyphenation or differences in usage of spaces. In most cases, those cases were caused by comma’s: in
one translation, a relative clause or two conjuncts were separated by a comma, whereas the other one
was not. In the cases that were caused by spaces (“tumormassa” vs “tumor massa”), there is a slight
difference in correctness: in Dutch, compound nouns are not separated by spaces. Given how minor these
mistakes are, we did not mark them as errors. Example (6) above provides an example for inconsistent
usage of commas. Formatting changes are far from the most frequent but they do become more prominent
in models trained on larger training corpora.

F.2.5 Inconsistentcies in synonym translations
The synonym errors are subdivided into cases where synonyms are simply translated differently (we
observed this mostly for the models with larger training set sizes), cases where both translations were
incorrect, cases in which only one translation is wrong, and cases in which one synonym was not translated
but directly copied from the source. Sometimes, the changes were quite peculiar, to give some examples
from our natural corpus:

(8) a. EN: The child admires the king that eats the {doughnut, donut}.
b. NL: Het kind bewondert de koning die de donut eet.
c. NL: Het kind bewondert de koning die de ezel eet.

(9) a. EN: - Yeah, a barbecue sauce {moustache, mustache} contest.
b. NL: - Ja, een barbecue [missing ‘sauce’] met snor.
c. NL: - Ja, een barbeceu saus snor wedstrijd.

How often each of these errors occur depends on the synonym. Where some synonyms are more prone to
being untranslated (like “ladybird” and “flautist”), some simply received many different correct translations
(like “shopping trolley”) yet others received errors very specific to the synonym (like “eggplant” being
translated as “egg”+“plant”, an interesting case because it reflects processing that is too local). It should
be noted that for all synonyms – apart from the model with the small training dataset that cannot translate
“flautist” and “ladybug” – we have observed correct translations, indicating that the models did in fact
acquire their meaning.

Further, it should be noted that while our substitutivity experiment provides insight into how the
model copes with individual synonyms, the majority of the inconsistencies observed were still common
target errors, rephrasings, changes in formatting or the result of source-side ambiguities. It is vital
here to stress that the types of rephrasings, however, did not appear related to the writing style of the
sentence. For instance, considering that the synonym changes were related to British and American
spelling, and occassionally changed the tone of the sentence (e.g. “aeroplane” could be considered more
archaic compared to “airplane”), one could anticipate changes in word choice in Dutch reflecting this
change of style. However, the inconsistencies were virtually indistinguishable from those annotated for
systematicity.
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