PERFECT: Prompt-free and Efficient Few-shot Learning with Language Models

Rabeeh Karimi Mahabadi'** Luke Zettlemoyer'*

Marzieh Saeidi' Lambert Mathias'
Meta Al 2University of Washington
{rabeeh.karimi,

James Henderson*
Veselin Stoyanov! Majid Yazdani'
SEPFL “Idiap Research Institute

james.henderson}@idiap.ch

lsz@cs.washington.edu
{marzieh,mathiasl, ves,myazdani}@fb.com

Abstract

Current methods for few-shot fine-tuning of
pretrained masked language models (PLMs)
require carefully engineered prompts and
verbalizers for each new task to convert examples
into a cloze-format that the PLM can score. In
this work, we propose PERFECT, a simple and
efficient method for few-shot fine-tuning of
PLMs without relying on any such handcrafting,
which is highly effective given as few as 32
data points. PERFECT makes two key design
choices: First, we show that manually engineered
task prompts can be replaced with task-specific
adapters that enable sample-efficient fine-tuning
and reduce memory and storage costs by roughly
factors of 5 and 100, respectively. Second, instead
of using handcrafted verbalizers, we learn new
multi-token label embeddings during fine-tuning,
which are not tied to the model vocabulary and
which allow us to avoid complex auto-regressive
decoding. These embeddings are not only
learnable from limited data but also enable nearly
100x faster training and inference. Experiments
on a wide range of few shot NLP tasks demon-
strate that PERFECT, while being simple and
efficient, also outperforms existing state-of-the-
art few-shot learning methods. Our code is
publicly available at https://github.com/
facebookresearch/perfect.git.

1 Introduction

Recent methods for few-shot language model
tuning obtain impressive performance but require
careful engineering of prompts and verbalizers to
convert inputs to a cloze-format (Taylor, 1953) that
can be scored with pre-trained language models
(PLMs) (Radford et al., 2018; Radford et al.; Brown
et al., 2020; Schick and Schiitze, 2021a,b). For
example, as Figure 1 shows, a sentiment classifier can
be designed by inserting the input text « in a prompt
template “x It was [MASK]” where verbalizers (e.g.,
‘great’ and ‘terrible’) are substituted for the [MASK]
to score target task labels (‘positive’ or ‘negative’).
In this paper, we show that such engineering is

{ +<4——— MLM Head

Pretrained Language Model

R !

[CLS] The restaurant had excellent foods. It was [MASK] [SEP]

Figure 1: Existing few-shot fine-tuning methods require
manual engineering to reduce new tasks to masked lan-
guage modeling. PERFECT does not rely on any handcraft-
ing, removing both patterns and verbalizers (see Figure 3).

not needed for few-shot learning and instead can
be replaced with simple methods for data-efficient
fine-tuning with as few as 32 end-task examples.

More specifically, we propose PERFECT, a
Prompt-free and Efficient paRadigm for FEw-shot
Cloze-based fine-Tuning. To remove handcrafted
patterns, PERFECT uses fask-specific adapter layers
(Houlsby et al., 2019; Pfeiffer et al., 2020) (§3.1).
Freezing the underlying PLM with millions or billions
of parameters (Liu et al., 2019; Raffel et al., 2020),
and only tuning adapters with very few new param-
eters saves on memory and storage costs (§4.2), while
allowing very sample-efficient tuning (§4). It also
stabilizes the training by increasing the worst-case
performance and decreasing variance across the
choice of examples in the few shot training sets (§4.3).

To remove handcrafted verbalizers (with variable
token lengths), we introduce a new multi-token
fixed-length classifier scheme that learns task label
embeddings which are independent from the language
model vocabulary during fine-tuning (§3.2). We
show (§4) that this approach is sample efficient
and outperforms carefully engineered verbalizers
from random initialization (§4). It also allows us
to avoid previously used expensive auto-regressive
decoding schemes (Schick and Schiitze, 2021b), by
leveraging prototypical networks (Snell et al., 2017)
over multiple tokens. Overall, these changes enable
up to 100x faster learning and inference (§4.2).

3638

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3638 - 3652
May 22-27, 2022 (©)2022 Association for Computational Linguistics

https://github.com/facebookresearch/perfect.git
https://github.com/facebookresearch/perfect.git

PERFECT has several advantages: It avoids
engineering patterns and verbalizers for each new
task, which can be cumbersome. Recent work has
shown that even some intentionally irrelevant or
misleading prompts can perform as well as more
interpretable ones (Webson and Pavlick, 2021).
Unlike the zero-shot or extreme few-shot case, where
prompting might be essential, we argue in this paper
that all you need is tens of training examples to avoid
these challenges by adopting PERFECT or a similar
data-efficient learning method. Experiments on a
wide variety of NLP tasks demonstrate that PERFECT
outperforms state-of-the-art prompt-based methods
while being significantly more efficient in inference
and training time, storage, and memory usage (§4.2).
To the best of our knowledge, we are the first to
propose a few-shot learning method using the MLM
objective in PLMs that provide state-of-the-art results
while removing all per-task manual engineering.

2 Background

Problem formulation: We consider a general
problem of fine-tuning language models in a few-shot
setting, on a small training set with K unique classes
and N examples per class, such that the total number
of examples is [D| =N x K. Let D=UX_ Dy, be the
given training set, where Dy, = {(z%,y%)} | shows
the set of examples labeled with class & and v}, €)
is the corresponding label, where |Y| = K. We
additionally assume access to a development set with
the same size as the training data. Note that larger val-
idation sets can grant a substantial advantage (Perez
et al., 2021), and thus it is important to use a limited
validation size to be in line with the goal of few-shot
learning. Unless specified otherwise, in this work, we
use 16 training examples (/N = 16) and a validation
set with 16 examples, for a total of 32-shot learning.

2.1 Adapters

Recent work has shown that fine-tuning all param-
eters of PLMs with a large number of parameters
in low-resource datasets can lead to a sub-optimal
solution (Peters et al., 2019; Dodge et al., 2020). As
shown in Figure 2, Rebuffi et al. (2018) and Houlsby
et al. (2019) suggest an efficient alternative, by
inserting small task-specific modules called adapters
within layers of a PLMs. They then only train the
newly added adapters and layer normalization, while
fixing the remaining parameters of a PLM.

Each layer of a transformer model is composed
of two primary modules: a) an attention block,

(0000000
|

Feed forward
up projection

Adapter
Feed forward

Layer norm

Nonlinearity

Feed forward down
projection

[Multi-head attention] I

7 (0c000000]
A

Transformer Layer Adapter Layer

Figure 2: Left: Adapter integration in a PLM. Right: An
adapter architecture. Adapters are usually inserted after the
feed-forward and self-attention modules. During training,
we only optimize the green components

and b) a feed-forward block, where both modules
are followed by a skip connection. As depicted in
Figure 2, adapters are normally inserted after each
of these blocks before the skip connection.

Adapters are bottleneck architectures. By keeping
input and output dimensions the same, they introduce
no additional architectural changes. Each adapter,
A(.) € RH, consists of a down-projection, D(.) €
RH*B 2 non-linearity, such as GeLU (Hendrycks and
Gimpel, 2016), and an up-projection U (.) € REXH
where H is the dimension of input hidden states ,
and B is the bottleneck size. Formally defined as:

A(z)=U(GeLU(D(x)))+, (1)

2.2 Prompt-based Fine-tuning

Standard Fine-tuning: In standard fine-tuning
with PLMs (Devlin et al., 2019), first a special [CLS]
token is appended to the input x, and then the PLM
maps it to a sequence of hidden representations
h = (hy,...,hs) with h; € R¥, where H is the
hidden dimension, and S’ is the maximum sequence
length. Then, a classifier, softmax(W T hjcs)), using
the embedding of the classification token (RjcLs)),
is trained end-to-end for each downstream task. The
main drawback of this approach is the discrepancy
between the pre-training and fine-tuning phases since
PLMs have been trained to predict mask tokens in a
masked language modeling task (Devlin et al., 2019).

Prompt-based tuning: To address this discrepancy,
prompt-based fine-tuning (Schick and Schiitze,

3639

2021a,b; Gao et al., 2021) formulates tasks in a cloze-
format (Taylor, 1953). This way, the model can predict
targets with a masked language modeling (MLM)
objective. For example, as shown in Figure 1, for a
sentiment classification task, inputs are converted to:

Zprompt = [CLS] z . It was [MASK] . [SEP]

pattern

Then, the PLM determines which verbalizer (e.g.,
‘great’ and ‘terrible’) is the most likely substitute for
the mask in the Zpromp. This subsequently determines
the score of targets (‘positive’ or ‘negative’). In detail:

Training strategy: Let M:) —) be a mapping
from target labels to individual words in a PLM’s
vocabulary. We refer to this mapping as verbalizers.
Then the input is converted to Tpompt = 7 () by
appending a pattern and a mask token to x so that it
has the format of a masked language modeling input.
Then, the classification task is converted to a MLM
objective (Tam et al., 2021; Schick and Schiitze,
2021a), and the PLM computes the probability of the
label y as:

p(ylx) =p(IMASK] =M ()| Zprompt)

exp(W /\T/l(y)h[MASK])
= T :)
> wevexp(W,, hpvask))

where hyvask] is the last hidden representation of the
mask, and W,, shows the output embedding of the
PLM for each verbalizer v € V. For many tasks, ver-
balizers have multiple tokens. Schick and Schiitze
(2021b) extended (2) to multiple mask tokens by
adding the maximum number of mask tokens M
needed to express the outputs (verbalizers) for a task.
In that case, Schick and Schiitze (2021b) computes
the probability of each class as the summation of the
log probabilities of each token in the corresponding
verbalizer, and then they add a hinge loss to ensure a
margin between the correct verbalizer and the incor-
rect ones.

Inference strategy: During inference, the model
needs to select which verbalizer to use in the given
context. Schick and Schiitze (2021b) predicts the
verbalizer tokens in an autoregressive fashion. They
first trim the number of mask tokens from M to each
candidate verbalizer’s token length and compute the
probability of each mask token. They then choose
the predicted token with the highest probability and
replace the corresponding mask token. Conditioning

e

e

©

£ Wi]
= Q

N © 1

wa

3o :

3 mMAask)...[WMAsk

§ § Embedding, Embeddingy

S
]
>
)
4
=
-
o
Adapter
[Multi-head Attention |
EmbeddingLayer
CLs][T0K1 TOKN] MASK; - - - MASKy SEPI

Input Masks'

Figure 3: We remove handcrafted patterns and verbalizers.
We replace patterns using task-specific adapters and design
label embeddings for the classes. We only train the green
blocks (the label embeddings, adapters, and layer norms).

on this new token, the probabilities of the remaining
mask positions are recomputed. They repeat this
autoregressive decoding until they fill all mask
positions. This inference strategy is very slow, as the
number of forward passes increases with the number
of classes and the number of verbalizer’s tokens.
This formulation obtained impressive few-shot
performance with PLMs. However, the success of this
approach heavily relies on engineering handcrafted
patterns and verbalizers. Coming up with suitable
verbalizers and patterns can be difficult (Mishra et al.,
2022b,a). Additionally, the performance is sensitive to
the wording of patterns (Zhao et al., 2021; Perez et al.,
2021; Schick and Schiitze, 2021a; Jiang et al., 2020) or
to the chosen verbalizers (Webson and Pavlick, 2021).
In addition, handcrafted verbalizers cause problems
for efficient training: a) they require updating the
PLM embedding layer, causing large memory
overhead; b) fine-tuning PLMs also requires a very
small learning rate (usually 105), which slows
down tuning the parameters of the verbalizers;
¢) modeling verbalizers as one of the tokens of

3640

the PLM vocabulary (perhaps unintentionally)
impacts the input representation during tuning; d)
verbalizers have variable token lengths, complicating
the implementation in a vectorized format, thereby
making it challenging to efficiently fine-tune PLMs.

3 Method

We propose PERFECT, a verbalizer and pattern free
few-shot learning method. We design PERFECT to
be close to the pre-training phase, similar to the PET
family of models (Schick and Schiitze, 2021b; Gao
et al., 2021), while replacing handcrafted patterns and
verbalizers with new components that are designed
to describe the task and learn the labels. As shown
in Figure 3, we first convert each input &y to its
masked language modeling (MLM) input containing
M mask tokens [MASK]! with no added patterns,
denoted as Tpaged = T(winput).z PERFECT then
trains a classifier per-token and optimizes the average
multi-class hinge loss over each mask position.

Three main components play a role in the success
of PERFECT: a) a pattern-free task description, where
we use task-specific adapters to efficiently tell the
model about the given task, replacing previously
manually engineered patterns (§3.1), b) multi-token
label-embedding as an efficient mechanism to learn
the label representations, removing manually designed
verbalizers (§3.2). c) an efficient inference strategy
building on top of the idea of prototypical networks
(Snell et al.,, 2017) (§3.4), which replaces prior
iterative autoregressive decoding methods (Schick
and Schiitze, 2021b).

As shown in Figure 3, we fix the underlying PLM
model and only optimize the new parameters that
we add (green boxes). This includes the task-specific
adapters to adapt the representations for a given task
and the multi-token label representations. We detail
each of these components below.

3.1 Pattern-Free Task Description

We use task-specific adapter layers to provide

the model with learned, implicit task descriptions.

Adapters additionally bring multiple other benefits:
a) fine-tuning all weights of PLMs with millions or
billions of parameters is sample-inefficient, and can
be unstable in low-resource settings (Dodge et al.,

"We discuss the general case with inserting multiple masks;
for some datasets this improves performance (§4.3.1).

>We insert mask tokens after the input string in single-
sentence benchmarks, and after the first sentence in the case
of sentence-pair datasets and encode both sentences as a single
input, which we found to perform the best (Appendix C).

2020); adapters allow sample-efficient fine-tuning, by
keeping the underlying PLM fixed, b) adapters reduce
the storage and memory footprints (§4.2), c) they
also increase stability and performance (§4), making
them an excellent choice for few-shot fine-tuning.
To our knowledge, this is the first approach for using
task-specific adapters to effectively and efficiently
remove patterns in few-shot learning. Experimental
results in §4 show its effectiveness compared to
handcrafted patterns and soft prompts (Li and Liang,
2021; Lester et al., 2021).

3.2 Multi-Token Label Embeddings

We freeze the weights of the PLM’s embedding
layer and introduce a separate label embedding
L e REXMXH "which is a multi-token label represen-
tation where M is the number of tokens representing
each label, K indicates the number of classes, H is
the input hidden dimension. Using a fixed number of
tokens M for each label, versus variable-token length
verbalizers used in prior work (Schick and Schiitze,
2021a,b) substantially simplifies the implementation
and accelerates the training (§4.2).

3.3 Training PERFECT

As shown in Figure 3, we optimize label embeddings
so that the PLM predicts the correct label, and
optimize adapters to adapt the PLM for the given task.
For label embeddings, PERFECT trains a classifier
per token and optimizes the average multi-class
hinge loss over all mask positions. Given Zmaskeds
let hymask), be the embedding of its 4-th mask token
from the last layer of the PLM encoder. Additionally,
let f(.) : R — RX be a per-token classifier that
computes the predictions by multiplying the mask
token embedding with its corresponding label
embedding. Formally defined as:

t;=f(himask),) =L himask],

where L; € RE*H shows the label embedding for
the ¢-th mask position. Then, for each mask position,
we optimize a multi-class hinge loss between their
scores t; and labels. Formally defined as:

- Zf:l,k;ﬁymax(oam —tiy k)

E(a;?yvl) - K I

where t;5 shows the k-th element of t;, representing
the score corresponding to class k, and m is the
margin, which we fix to the default value of m =1.
Then, the final loss is computed by averaging the loss

3641

over all mask tokens and training samples:

1 <l .
L= W(S L) 3)

3.4 Inference with PERFECT

During evaluation, instead of relying on the prior
iterative autoregressive decoding schemes (Schick
and Schiitze, 2021b), we classify a query point by
finding the nearest class prototype to the mask token
embeddings:

_ fd(hg,ciy)>

Y arggjl}axie{q?f(M} (exp , @
where d is squared euclidean distance,’ h indicates
the embedding of the ¢-th mask position for the
query sample g, and c¢;, € RP is the prototype
representation of the ¢-th mask token with class label
Y, 1.e., the mean embedding of ¢-th mask position in

all training samples with label y:

1 b
c’i?l:mzhi’ o)

Y1 pep,

where hg shows the embedding of ¢-th mask position
for training sample b, and D, is the training instances
with class y. This strategy closely follows prototypical
networks (Snell et al., 2017), but applied across
multiple tokens. We choose this form of inference
because prototypical networks are known to be
sample efficient and robust (Snell et al., 2017),
and because it substantially speeds up evaluation
compared to prior methods (§4.2).

4 Experiments

We conduct extensive experiments on a variety of
NLP datasets to evaluate the performance of PERFECT
and compare it with state-of-the-art few-shot learning.

Datasets: We consider 7 tasks and 12 datasets: 1)
the sentiment analysis datasets SST-2 (Socher et al.,
2013), SST-5 (Socher et al., 2013), MR (Pang and
Lee, 2005), and CR (Hu and Liu, 2004), 2) the
subjectivity classification dataset SUBJ (Pang and
Lee, 2004), 3) the question classification dataset
TREC (Voorhees and Tice, 2000), 4) the natural
language inference datasets CB (De Marneffe et al.,
2019) and RTE (Wang et al., 2019a), 5) the question
answering dataset QNLI (Rajpurkar et al., 2016), 6)
the word sense disambiguation dataset WiC (Pilehvar

3We also tried with cosine similarity but found a slight
improvement with squared Euclidean distance (Snell et al., 2017).

and Camacho-Collados, 2019), 7) the paraphrase
detection datasets MRPC (Dolan and Brockett, 2005)
and QQP* See datasets statistics in Appendix A.

For MR, CR, SST-5, SUBIJ, and TREC, we test on
the original test sets, while for other datasets, since test
sets are not publicly available, we test on the original
validation set. We sample 16 instances per label from
the training set to form training and validation sets.

Baselines We compare with the state-of-the-art
few-shot learning of PET and fine-tuning:

PET (Schick and Schiitze, 2021a,b) is the state-
of-the-art few-shot learning method that employs
carefully crafted verbalizers and patterns. We report
the best (PET-best) and average (PET-average) results
among all patterns and verbalizers.’

FINETUNE The standard fine-tuning (Devlin et al.,
2019), with adding a classifier on top of the [CLS]
token and fine-tuning all parameters.

Our method We study the performance of
PERFECT and perform an extensive ablation study
to show the effectiveness of our design choices:

PERFECT-rand We randomly initialize the label
embedding L from a normal distribution A/(0,0') with
o =10 (chosen based on validation performance,
see Appendix D) without relying on any handcrafted
patterns and verbalizers. As an ablation, we study
the following two variants:

PERFECT-init We initialize the label embedding
with the token embeddings of manually designed
verbalizers in the PLM’s vocabulary to study the
impact of engineered verbalizers.

prompt+mte To compare the impact of adapters
versus soft prompt-tuning for few-shot learning, we
append trainable continuous prompt embeddings to
the input (Lester et al., 2021). Then we only tune the
soft prompt and multi-token label embeddings (mte).

bitfit+mte Following Cai et al. (2020) and Rav-
fogel et al. (2021), we tune biases as an alternative
to adapters. We additionally tune multi-token label
embeddings.

Logan IV et al. (2021) Following Logan IV et al.
(2021), we remove patterns and tune the biases in the
PET.

Experimental details: We use the RoBERTa large
model (Liu et al., 2019) (355M parameters) as the un-
derlying PLM for all methods. We use the Hugging-
Face PyTorch implementation (Wolf et al., 2020). For

*https://quoradata.quora.com/
3For a controlled study, we use the MLM variant shown in
(2), which has been shown to perform the best (Tam et al., 2021).

3642

https://quoradata.quora.com/

Method SST-2 CR MR SST-5 Subj TREC |Avg
Single-Sentence Benchmarks
FINETUNE 81.4m00m0 80.1m941 77766846 392534325 90284118 87.6r75.853.7|76.0667.33.4
PET-Average 89.781024 88.4/68830 85.9m9001 45.9m0324 88.1/m9624 85.0r706/4580.5/60.92.8
PET-Best 89.181.0n26 88.885819 86.4/52.0n6 46.0141224 88.78461n18 85.8/70.614.4|80.817421.4
Logan IV et al. (2021)(89.84.111.7 89.98721.1 84.916232 45.7u1.623 81.8/73.5/4.0 84.71818/16/79.5174.1123
PERFECT-rand ‘90.7/88.2/1.2 90.085511.4 86.38141.6 42.735129 89.1/8282.1 90.60/81.6/3.2|81.6/75872.1
Ablation
PERFECT-init 90987615 89.7874n12 85.4175833 42.8535935 87.6m81628 90.4186.61.8/81.1/75824
prompt+mte 70.656083 T1.0555882 60.6/49673 32.2n65532 82769639 79.6/668/6.5|67.1/54.0i6.2
bitfit+mte 89.581730 90.1587.81.0 85.6/80519 42336833 89.1/824n4 90.4s85.01.4|81.2/75702
Method |CB RTE QNLI MRPC QQP WiC |Avg
Sentence-Pair Benchmarks
FINETUNE 72961925 56.850235 62.7514r70 T0ds627m7 65.059836 52.4146.1/3.7|163.3/56.4/4.2
PET-Average 86.913.255.1 60.119.547 66.5555762 62.15382068 63.444779 51.06.1/26|65.0/51.25.6
PET-Best 90.0r78639 623551345 T70.557964 63.41m9365 70. 755258 51.6/47.2123|168.1/56.6/4.9
Logan IV et al. (2021)(91.087527 64.4ss8539 71266526 63.9553753 704162734 52.4148.41.8/68.9/62.933
PERFECT-rand ‘90.3/83.9/3.5 60.4/53.147 7411603146 67.8554757 T12642535 53.8/47.03.0)169.6/60.5/4.2
Ablation

PERFECT-init 87.9r501m9 60.7/527145 T2.8/56.768 6591566060 T1.15.6535 51.7/146.62.8|68.4/58.9/4.8
prompt+mte 73.0m250.1 56.91507141 55.4750216 60.0551.558 543162556 51.3146.712.8/58.5/51.3/4.8
bitfit+mte 89.6i82.143 61.3153852 70.6551.959 08.5574551 69.4/63.039 52.9147.82.7|68.7/59.3/4.5

Table 1: Performance of all methods on single-sentence and sentence-pair benchmarks. We report average/worst-case
accuracy/standard deviation. PERFECT obtains the state-of-the-art results. Bold fonts indicate the best results.

the baselines, we used the carefully manually designed
patterns and verbalizers in Gao et al. (2021), Min et al.
(2021), and Schick and Schiitze (2021b) (usually 5
different options per datasets; see Appendix B).

We evaluate all methods using 5 different random
samples to create the training/validation sets and 4
different random seeds for training. Therefore, for
PET-average, we report the results on 20 x 5 (number
of patterns and verbalizers) = 100 runs, while for
PET-best and our method, we report the results over
20 runs. The variance in few-shot learning methods is
usually high (Perez et al., 2021; Zhao et al., 2021; Lu
et al., 2021). Therefore, we report average, worst-case
performance, and standard deviation across all runs,
where the last two values can be important for
risk-sensitive applications (Asri et al., 2016).

4.1 Experimental Results

Table 1 shows the performance of all methods.
PERFECT obtains state-of-the-art results, improving
the performance compared to PET-average by +1.1

and +4.6 points for single-sentence and sentence-pair
datasets respectively. It even outperforms PET-best,
where we report the best performance of PET across
multiple manually engineered patterns and verbalizers.
Moreover, PERFECT generally improves the mini-
mum performance and reduces standard deviation
substantially. Finally, PERFECT is also significantly
more efficient: reducing the training and inference
time, memory usage, and storage costs (see §4.2).

PET-best improves the results over PET-average
showing that PET is unstable to the choice of patterns
and verbalizers; this difference is more severe for
sentence-pair benchmarks. This might be because the
position of the mask highly impacts the results, and
the patterns used for sentence-pair datasets in Schick
and Schiitze (2021b) exploits this variation by putting
the mask in multiple locations (see Appendix B).

Removing patterns and tuning biases in Logan IV
et al. (2021) is not expressive enough and performs
substantially worse than PERFECT on average.

As an ablation, even if we initialize the label

3643

Metric PET PERFECT A%
Trained params (M) 355.41 3.28 -99.08 %
Peak memory (GB) 20.93 16.34 -21.93%
Training time (min) 23.42 0.65 -97.22%
+PET in batch 0.94 0.65 -30.85%
Inference time (min) 9.57 0.31 -96.76 %

Table 2: Percentage of trained parameters, average peak
memory, training, and inference time. A% is the relative
difference with respect to PET. Lower is better.

embedding with handcrafted verbalizers in PER-
FECT-init, it consistently obtains lower performance,
demonstrating that PERFECT is able to obtain state-of-
the-art performance with learning from pure random
initialization. We argue that initializing randomly
close to zero (with low variance o =10~%), as done
in our case, slightly improves performance, which
perhaps is not satisfied when initializing from the
manually engineered verbalizers (see Appendix D).

As a second ablation, when learning patterns with
optimizing soft prompts in prompt+mte, we observe
high sensitivity to learning rate, as also confirmed
in Li and Liang (2021) and Mahabadi et al. (2021a).
We experimented with multiple learning rates but
performance consistently lags behind PERFECT-rand.
This can be explained by the low flexibility of such
methods as all the information regarding specifying
patterns needs to be contained in the prefixes. As a
result, the method only allows limited interaction with
the rest of the model parameters, and obtaining good
performance requires very large models (Lester et al.,
2021). In addition, increasing the sequence length
leads to memory overhead (Mahabadi et al., 2021a),
and the number of prompt tokens is capped by the
number of tokens that can fit in the maximum input
length, which can be a limitation for tasks requiring
large contexts.

As a third ablation, tuning biases with optimizing
soft prompts in bitfit+mte obtains lower performance
compared to PERFECT, showing that adapters are a
better alternative compared to tuning biases to learn
task descriptions for few-shot learning.

We include more ablation results on design choices
of PERFECT in Appendix E.

4.2 Efficiency Evaluation

In this section, we compare the efficiency of PERFECT
with the state-of-the-art few-shot learning method,
PET. To this end, we train all methods for ten epochs
on the 500-sampled QNLI dataset. We select the

largest batch size for each method that fits a fixed
budget of the GPU memory (40 GB).

Due to the auto-regressive inference strategy of
PET (Schick and Schiitze, 2021b), all prior work
implemented it with a batch size of 1 (Perez et al.,
2021; Schick and Schiitze, 2021b; Tam et al., 2021).
Additionally, since PET deals with verbalizers of
variable lengths, it is hard to implement their training
phase in batch mode. We specifically choose QNLI
to have verbalizers of the same length and enable
batching for comparison purposes (referred to as
PET in batch). However, verbalizers are still not of
fixed-length for most other tasks, and this speed-up
does not apply generally to PET.

In Table 2, for each method we report the
percentage of trained parameters, memory usage,
training time, and inference time. PERFECT reduces
the number of trained parameters, and therefore the
storage requirement, by 99.08%. It additionally re-
duces the memory requirement by 21.93% compared
to PET. PERFECT speeds up training substantially, by
97.22% relative to the original PET’s implementation,
and 30.85% to our implementation of PET. This is
because adapter-based tuning saves on memory and
allows training with larger batch sizes. In addition,
PERFECT is significantly faster during inference time
(96.76% less inference time relative to PET).

Note that although prompt+mte and bitfit+mte can
also reduce the storage costs, by having 0.02M and
0.32 M trainable parameters respectively, they are not
expressive enough to learn task descriptions, and their
performance substantially lags behind PERFECT (see
Table 1).

Overall, given the size of PLMs with millions
and billions of parameters (Liu et al., 2019; Raffel
et al., 2020), efficient few-shot learning methods are
of paramount importance for practical applications.
PERFECT not only outperforms the state-of-the-art in
terms of accuracy and generally improves the stability
(Table 1), but also is significantly more efficient in
runtime, storage, and memory.

4.3 Analysis

Can task-specific adapters replace manually
engineered patterns? PERFECT is a pattern-free
approach and employs adapters to provide the PLMs
with task descriptions implicitly. In this section, we
study the contribution of replacing manual patterns
with adapters in isolation without considering our
other contributions in representing labels, training,
and inference. In PET (Schick and Schiitze, 2021a,b),

3644

Dataset | PET-Average

Pattern-Free

SST-2 [89.7/81.02.4 90.5/87.8/1.2
CR 88.4/68.8/3.0 89.8/87.0/1.4
MR 85.9/79.0/2.1 86.4/83.0/1.8
SST-5 | 45.9/40.3/2.4 44.8/40.0/2.4
SUBJ |88.1/79.6/24 85.3/74.7/3.8
TREC |85.0/70.6/4.5 87.9/84.6/1.8
CB 86.9/73.2/5.1 93.0/89.3/1.9
RTE 60.1/49.5/4.7 63.7/56.3/4.1
QNLI |66.5/55.7/6.2 71.3/65.8/2.5
MRPC |62.1/38.2/6.8 66.0/54.4/5.6
QQP |63.4/447/79 71.8/64.3/3.7
WiC 51.0/46.1/2.6 53.7/50.3/2.0
Avg ‘ 72.8/60.6/4.2 75.4/69.8/2.7

Dataset \ PERFECT

-Adapters

SST-2 90.7/88.2/1.2 88.2/81.9/2.3
CR 90.0/85.5/1.4 89.2/83.1/1.7
MR 86.3/81.4/1.6 82.5/78.2/2.5
SST-5 |42.7/35.1/2.9 40.6/33.6/3.3
SUBJ |89.1/82.8/2.1 89.7/85.0/1.9
TREC |90.6/81.6/3.2 89.8/74.2/4.3
CB 90.3/83.9/3.5 89.6/83.9/2.8
RTE 60.4/53.1/4.7 61.7/53.8/5.1
QNLI | 74.1/60.3/4.6 73.2/56.3/5.8
MRPC | 67.8/54.7/5.7 68.0/54.2/6.1
QQP 71.2/64.2/3.5 71.0/62.0/3.7
WiC 53.8/47.0/3.0 52.5/46.9/3.0
Avg ‘ 75.6/68.1/3.1 74.7/66.1/3.5

Table 3: Average performance of PET with five different
patterns vs. Pattern-Free that replaces handcrafted patterns
with task-specific adapters. We report the average/worst-
case performance/and the standard deviation.

we replace the handcrafted patterns with task-specific
adapters (Pattern-Free) while keeping the verbalizers
and the training and inference intact® and train it
with a similar setup as in §4. Table 3 shows the
results. While PET is very sensitive to the choice of
prompts, adapters provide an efficient alternative to
learn patterns robustly by improving the performance
(average and worst-case) and reducing the standard
deviation. This finding demonstrates that task-specific
adapters can effectively replace manually engineered
prompts. Additionally, they also save on the training
budget by at least 1/number of patterns (normally
1/5) by not requiring running the method for different
choices of patterns, and by freezing most parameters,
this saves on memory and offers additional speed-up.

4.3.1 Ablation Study

Impact of Removing Adapters To study the
impact of adapters in learning patterns, we remove
adapters, while keeping the label embedding.
Handcrafted patterns are not included and we
tune all parameters of the model. Table 4 shows
the results. Adding adapters for learning patterns
contributes to the performance by improving the
average performance, and making the model robust by
improving the minimum performance and reducing
the standard deviation. This is because training PLMs
with millions of parameters is sample-inefficient
and unstable on resource-limited datasets (Dodge

®Since we don’t have patterns, in the case of multiple sets of
verbalizers, we use the first set of verbalizers as a random choice.

Table 4: Performance of PERFECT w/o adapters, -Adapters.
We report the average performance/worst-case perfor-
mance/and the standard deviation.

et al., 2020; Zhang et al., 2020; Mosbach et al., 2021).
However, by using adapters, we substantially reduce
the number of trainable parameters, allowing the
model to be better tuned in a few-shot setting.

Impact of the number of masks In Table 1, to
compare our design with PET in isolation, we fixed
the number of mask tokens as the maximum number
inserted by PET. In table 5, we study the impact of
varying the number of inserted mask tokens for a
random selection of six tasks. For most tasks, having
two mask tokens performs the best, while for MR and
RTE, having one, and for MRPC, inserting ten masks
improves the results substantially. The number of
required masks might be correlated with the difficulty
of the task. PERFECT is designed to be general,
enabling having multiple mask tokens.

5 Related Work

Adapter Layers: Mahabadi et al. (2021b) and
Ustiin et al. (2020) proposed to generate adapters’
weights using hypernetworks (Ha et al., 2017), where
Mahabadi et al. (2021b) proposed to share a small
hypernetwork to generate conditional adapter weights
efficiently for each transformer layer and task. Ma-
habadi et al. (2021a) proposed compacter layers by
building on top of ideas of parameterized hyper-
complex layers (Zhang et al., 2021) and low-rank
methods (Li et al., 2018; Aghajanyan et al., 2021), as
an efficient fine-tuning method for PLMs. We are
the first to employ adapters to replace handcrafted
patterns for few-shot learning.

3645

Datasets 1 2 5 10

CR 90.1 90.2 89.0 878
MR 869 86.1 854 856
MRPC 674 682 701 723
QNLI 7377 739 73.0 65.1
RTE 600 573 562 560
TREC 90.0 909 889 88.8
Avg 780 778 771 759

Table 5: Test performance for the varying number of mask
tokens. Bold fonts indicate the best results in each row.

Few-shot Learning with PLMs: Le Scao and Rush
(2021) showed that prompting provides substantial im-
provements compared to fine-tuning, especially in
low-resource settings. Subsequently, researchers con-
tinuously tried to address the challenges of manually
engineered patterns and verbalizers: a) Learning the
patterns in a continuous space (Li and Liang, 2021;
Qin and Eisner, 2021; Lester et al., 2021), while freez-
ing PLM for efficiency, has the problem that, in most
cases, such an approach only works with very large
scale PLMs (Lester et al., 2021), and lags behind full
fine-tuning in a general setting, while being ineffi-
cient and not as effective compared to adapters (Ma-
habadi et al., 2021a). b) Optimizing patterns in a
discrete space (Shin et al., 2020; Jiang et al., 2020;
Gao et al., 2021) has the problem that such methods
are computationally costly. c) Automatically find-
ing verbalizers in a discrete way (Schick et al., 2020;
Schick and Schiitze, 2021a) is computationally ex-
pensive and does not perform as well as manually
designed ones. d) Removing manually designed pat-
terns (Logan IV et al., 2021) substantially lags behind
the expert-designed ones. Our proposed method, PER-
FECT, does not rely on any handcrafted patterns and
verbalizers.

6 Conclusion

We proposed PERFECT, a simple and efficient method
for few-shot learning with pre-trained language
models without relying on handcrafted patterns
and verbalizers. PERFECT employs task-specific
adapters to learn task descriptions implicitly, replacing
previous handcrafted patterns, and a continuous
multi-token label embedding to represent the output
classes. Through extensive experiments over 12 NLP
benchmarks, we demonstrate that PERFECT, despite
being far simpler and more efficient than recent
few-shot learning methods, produces state-of-the-art

results. Overall, the simplicity and effectiveness of
PERFECT make it a promising approach for few-shot
learning with PLMs.

Acknowledgements

The authors would like to thank Sebastian Ruder
and Marius Mosbach for their comments on drafts
of this paper. This research was partly supported by
the Swiss National Science Foundation under grant
number 200021_178862.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta.
2021. Intrinsic dimensionality explains the effectiveness
of language model fine-tuning. In ACL.

Hiba Asri, Hajar Mousannif, Hassan Al Moatassime,
and Thomas Noel. 2016. Using machine learning
algorithms for breast cancer risk prediction and
diagnosis. Procedia Computer Science.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, and
Danilo Giampiccolo. 2006. The second pascal recognis-
ing textual entailment challenge. Second PASCAL Chal-
lenges Workshop on Recognising Textual Entailment.

Luisa Bentivogli, I[do Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The fifth
pascal recognizing textual entailment challenge. In TAC.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language models are few-shot
learners. In NeurIPS.

Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020.
Tinytl: Reduce memory, not parameters for efficient
on-device learning. In NeurIPS.

Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005.
The pascal recognising textual entailment challenge. In
Machine Learning Challenges Workshop.

Marie-Catherine De Marneffe, Mandy Simons, and
Judith Tonhauser. 2019. The commitmentbank:
Investigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding.
In NAACL.

3646

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight
initializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

William B Dolan and Chris Brockett. 2005. Automatically
constructing a corpus of sentential paraphrases. In /WP.

Tianyu Gao, Adam Fisch, and Danqgi Chen. 2021. Making
pre-trained language models better few-shot learners.
In ACL.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing tex-
tual entailment challenge. In ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing.

David Ha, Andrew Dai, and Quoc V. Le. 2017. Hypernet-
works. In ICLR.

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error
linear units (gelus). arXiv preprint arXiv:1606.08415.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In /CML.

Minging Hu and Bing Liu. 2004. Mining and summarizing
customer reviews. In SIGKDD.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? In TACL.

Teven Le Scao and Alexander M Rush. 2021. How many
data points is a prompt worth? In NAACL.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP.

Quentin Lhoest, Albert Villanova del Moral, Patrick
von Platen, Thomas Wolf, Mario §a§k0, Yacine
Jernite, Abhishek Thakur, Lewis Tunstall, Suraj Patil,
Mariama Drame, Julien Chaumond, Julien Plu, Joe
Davison, Simon Brandeis, Victor Sanh, Teven Le
Scao, Kevin Canwen Xu, Nicolas Patry, Steven Liu,
Angelina McMillan-Major, Philipp Schmid, Sylvain
Gugger, Nathan Raw, Sylvain Lesage, Anton Lozhkov,
Matthew Carrigan, Théo Matussiere, Leandro von
Werra, Lysandre Debut, Stas Bekman, and Clément
Delangue. 2021a. huggingface/datasets: 1.15.1.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite,
Abhishek Thakur, Patrick von Platen, Suraj Patil,
Julien Chaumond, Mariama Drame, Julien Plu, Lewis
Tunstall, Joe Davison, Mario Sasko, Gunjan Chhablani,
Bhavitvya Malik, Simon Brandeis, Teven Le Scao,
Victor Sanh, Canwen Xu, Nicolas Patry, Angelina
McMillan-Major, Philipp Schmid, Sylvain Gugger,
Clément Delangue, Théo Matussiere, Lysandre Debut,
Stas Bekman, Pierric Cistac, Thibault Goehringer,
Victor Mustar, Francois Lagunas, Alexander Rush, and
Thomas Wolf. 2021b. Datasets: A community library
for natural language processing. In EMNLP.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason
Yosinski. 2018. Measuring the intrinsic dimension of
objective landscapes. In ICLR.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Robert L Logan IV, Ivana BalaZevi¢, Eric Wallace, Fabio
Petroni, Sameer Singh, and Sebastian Riedel. 2021.
Cutting down on prompts and parameters: Simple
few-shot learning with language models. arXiv preprint
arXiv:2106.13353.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming

few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Rabeeh Karimi Mahabadi, James Henderson, and
Sebastian Ruder. 2021a. Compacter: Efficient low-rank
hypercomplex adapter layers. In NeurIPS.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021b. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In ACL.

George A Miller. 1995. Wordnet: a lexical database for
english. In Communications of the ACM.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. 2021. Noisy channel language model
prompting for few-shot text classification. arXiv
preprint arXiv:2108.04106.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin
Choi, and Hannaneh Hajishirzi. 2022a. Reframing
instructional prompts to gptk’s language. In Findings
of ACL.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Han-
naneh Hajishirzi. 2022b. Cross-task generalization via
natural language crowdsourcing instructions. In ACL.

Marius Mosbach, Maksym Andriushchenko, and Dietrich
Klakow. 2021. On the stability of fine-tuning bert:
Misconceptions, explanations, and strong baselines. In
ICLR.

Bo Pang and Lillian Lee. 2004. A sentimental education:
sentiment analysis using subjectivity summarization
based on minimum cuts. In ACL.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In ACL.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In
NeurlIPS.

3647

https://doi.org/10.5281/zenodo.5639822

Matthew E Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. In Repl 4NLP.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rﬁckfe, Cho
Kyunghyun, and Iryna Gurevych. 2021. AdapterFusion:
Non-destructive task composition for transfer learning.
In EACL.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya
Kamath, Ivan Vuli¢, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020. Adapterhub: A
framework for adapting transformers. In EMNLP:
System Demonstrations.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. Wic: the word-in-context dataset for evaluating
context-sensitive meaning representations. In NAACL.

Guanghui Qin and Jason Eisner. 2021. Learning how to ask:
Querying Ims with mixtures of soft prompts. In NAACL.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. 2018. Improving language understanding
by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. JMLR.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Shauli Ravfogel, Elad Ben-Zaken, and Yoav Goldberg.
2021. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked languagemodels.
arXiv:2106.10199.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2018. Efficient parametrization of multi-
domain deep neural networks. In CVPR.

Timo Schick, Helmut Schmid, and Hinrich Schiitze. 2020.
Automatically identifying words that can serve as labels
for few-shot text classification. In COLING.

Timo Schick and Hinrich Schiitze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In EACL.

Timo Schick and Hinrich Schiitze. 2021b. It’s not just size
that matters: Small language models are also few-shot
learners. In NAACL.

Karin Kipper Schuler. 2005. Verbnet: A broad-coverage,
comprehensive verb lexicon. PhD Thesis.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric
Wallace, and Sameer Singh. 2020. Eliciting knowledge
from language models using automatically generated
prompts. In EMNLP.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Pro-
totypical networks for few-shot learning. In NeurIPS.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In EMNLP.

Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank
Srivastava, and Colin Raffel. 2021. Improving and
simplifying pattern exploiting training. arXiv preprint
arXiv:2103.11955.

Wilson L Taylor. 1953. “cloze procedure’: A new tool for
measuring readability. Journalism quarterly.

Ahmet Ustiin, Arianna Bisazza, Gosse Bouma, and Gertjan
van Noord. 2020. Udapter: Language adaptation for
truly universal dependency parsing. In EMNLP.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In SIGIR.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. 2019a. Superglue: a stickier
benchmark for general-purpose language understanding
systems. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. 2019b. GLUE: A
multi-task benchmark and analysis platform for natural
language understanding. In ICLR.

Albert Webson and Ellie Pavlick. 2021. Do prompt-based
models really understand the meaning of their prompts?
arXiv preprint arXiv:2109.01247.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transformers:
State-of-the-art natural language processing. In
EMNLP: System Demonstrations.

Aston Zhang, Yi Tay, SHUAI Zhang, Alvin Chan,
Anh Tuan Luu, Siu Hui, and Jie Fu. 2021. Beyond fully-
connected layers with quaternions: Parameterization
of hypercomplex multiplications with 1/n parameters.
In ICLR.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Revisiting few-sample
bert fine-tuning. In /CLR.

Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improving
few-shot performance of language models. ICML.

3648

Dataset Task #Train #Test K

Single-Sentence Benchmarks

MR Sentiment analysis 8662 2000 2
CR Sentiment analysis 1774 2000 2
SST-2 Sentiment analysis 6920 872 2
SST-5 Sentiment analysis 8544 2210 5
SUBJ Subjectivity classification 8000 2000 2
TREC Question classification 5452 500 6

Sentence-Pair Benchmarks

CB Natural language inference 250 56
RTE Natural language inference 2490 277
WiC Word sense disambiguation 5428 638
MRPC Paraphrase detection 3668 408
QNLI Question answering 104743 5463
QQP Paraphrase detection 363846 40430

DN NN W

Table 6: Statistics of datasets used in this work. We sample
N x|Y)| instances (with multiple seeds) from the original
training set to form the few-shot training and validation
sets. The test column shows the size of the test set.

A Experimental Details

Datasets Table 6 shows the stastistics of the
datasets used. We download SST-2, MR, CR, SST-5,
and SUBJ from Gao et al. (2021), while the rest of
the datasets are downloaded from the HuggingFace
Datasets library (Lhoest et al., 2021b,a). RTE, CB,
WiC datasets are from SuperGLUE benchmark (Wang
et al., 2019a), while QQP, MRPC and QNLI are from
GLUE benchmark (Wang et al., 2019b) with Creative
Commons license (CC BY 4.0). RTE (Wang et al.,
2019a) is a combination of data from RTE1 (Dagan
et al., 2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Gi-
ampiccolo et al., 2007), and RTES (Bentivogli et al.,
2009). For WiC (Pilehvar and Camacho-Collados,
2019) sentences are selected from VerbNet (Schuler,
2005), WordNet (Miller, 1995), and Wiktionary.

Computing infrastructure We run all the exper-
iments on one NVIDIA A100 with 40G of memory.

Training hyper-parameters We set the maximum
sequence length based on the recommended values
in the HuggingFace repository (Wolf et al., 2020)
and prior work (Min et al., 2021; Schick and Schiitze,
2021b), i.e., we set it to 256 for SUBJ, CR, CB, RTE,
and WiC, and 128 for other datasets. For all methods,
we use a batch size of 32. For FINETUNE and PET,
we use the default learning rate of 1075, while for
our method, as required by adapter-based methods
(Mahabadi et al., 2021a), we set the learning rate to

a higher value of 10=*.7 Through all experiments,
we fix the adapter bottleneck size to 64. Following
Pfeiffer et al. (2021), we experimented with keeping
one of the adapters in each layer for better training
efficiency and found keeping the adapter after the
feed-forward module in each layer to perform the best.
For tuning label embedding, we use the learning rate
of {1071,1072,1073,107%,107°} and choose the
one obtaining the highest validation performance. For
PERFECT-prompt, we tune the continuous prompt
for learning rate of {10~%,1072,10~3}.8Following
Lester et al. (2021), for PERFECT-prompt, we set
the number of prompt tokens to 20, and initialize
them with a random subset of the top 5000 token’s
embedding of the PLM. We train all methods for
6000 steps. Based on our results, this is sufficient to
allow the models to converge. We save a checkpoint
every 100 steps for all methods and report the results
for the hyper-parameters performing the best on the
validation set for each task.

B Choice of Patterns and Verbalizers

For SST-2, MR, CR, SST-5, and TREC, we used
4 different patterns and verbalizers from Gao et al.
(2021). For CB, WiC, RTE datasets, we used the
designed patterns and verbalizers in Schick and
Schiitze (2021b). For QQP, MRPC, and QNLI, we
wrote the patterns and verbalizers inspired by the ones
in Schick and Schiitze (2021b). The used patterns
and verbalizers are as follows:

* For sentiment analysis tasks (MR, CR, SST-2,
SST-5), given a sentence s:

r

s A <MASK> one.

\.

7

s It was <MASK>.

s All in all <MASK>.

s A <MASK> piece.

with "great" as a verbalizer for positive, "terrible"
for negative. In case of SST-5 with five labels,

non

we expand it to "great", "good", "okay", "bad",
and "terrible".

"We have also tried to tune the baselines with the learning
rate of 10™* but it performed worst.

8We also tried tuning prompts with learning rates of
{107*,107°} but it performed worst, as also observed in prior
work (Mahabadi et al., 2021a; Min et al., 2021).

3649

» For SUBJ, given a sentence s:

s This is <MASK>.

s It’s all <KMASK>.

s It’'s <MASK>.

s Is it <MASK>?

\. J

with "subjective" and "objective" as verbalizers.

* For TREC, given a question g, the task is to
classify the type of it:

q <MASK>:

q Q:<MASK>:

q why<MASK>?

q Answer: <MASK>.

. J

with "Description”, "Entity", "Expression”,
"Human", "Location", "Number" as verbalizers
for question types of "Description", "Entity",
"Abbreviation", "Human", "Location", and
"Numeric".

* For entailment task (RTE) given a premise p
and hypothesis h:

"h" 7 | <MASK>, "p"

h? | <MASK>, p

"h" 71 <MASK>. p

with "Yes" as a verbalizer for entailment, "No"
for contradiction.

p question: h True or False? answer: <MASK>]

with "true" as a verbalizer for entailment, "false"
for contradiction.

* For entailment task (CB) given a premise p and
a hypothesis h:

3650

"R | <MASK>, upn

h? | <MASK>, p

"h" 7| <MASK>. p

with "Yes" as a verbalizer for entailment, "No"
for contradiction, "Maybe" for neutral.

p question: h true, false or neither? answer:
<MASK>

with "true" as a verbalizer for entailment, "false"
for contradiction, "neither" for neutral.

For QNLI, given a sentence s and question g:

s. Question: g? Answer: <MASK>.

with "Yes" or "true" as verbalizers for entailment
and "No" or "false" for not entailment.

[s. Based on the previous sentence, g7 <MASK>.

with "Yes" or "true" as verbalizers for entailment
and "No" or "false" for not entailment.

[Based on the following sentence, ¢?<MASK>.s

with "Yes" and "No" as verbalizers for
entailment and not entailment respectively.

For QQP, given two questions ¢; and ¢s:

[Do ¢; and g2 have the same meaning?<MASK>.

with "Yes" or "true" as verbalizers for duplicate
and "No" or "false" for not duplicate.

¢q1. Based on the previous question, g2?
<MASK>.

with "Yes" or "true" as verbalizers for duplicate
and "No" or "false" for not duplicate.

[Based on the following question, ¢ 7<MASK>.q2

with "Yes" and "No" as verbalizers for duplicate
and not duplicate respectively.

» For MRPC, given two sentences s and sa:

[Do s1 and s3 have the same meaning?<MASK>.]

with "Yes" or "true" as verbalizers for equivalent
and "No" or "false" for not equivalent.

s1. Based on the previous sentence, S2?
<MASK>.

with "Yes" or "true" as verbalizers for equivalent
and "No" or "false" for not equivalent.

Based on
S1 ?<MASK>.82

the following sentence,]

with "Yes" and "No" as verbalizers for equivalent
and not equivalent respectively.

* For WiC, given two sentences s; and sg and a
word w, the task is to classify whether w is used
in the same sense.

e D

"s1" / "s2". Similar sense of "w"? <MASK>.

s1 s2 Does w have the same meaning in both
sentences? <MASK>

With "No" and "Yes" as verbalizers for False,
and True.

w . Sense (1) (a) "s1" (KMASK>) "s5"]

With "2" and "b" as verbalizers for False, and
True.

C Impact of the Position
of Masks in Sentence-pair Datasets

We evaluate the impact of the position of mask tokens
in sentence-pair benchmarks. Given two sentences s;
and s9, we consider the following four locations for
inserting mask tokens, where in the case of encoding
as two sentences, input parts to the encoder are
separated with |:

1. | s1 53 <MASK>

2. | 51 <MASK> s5

3. | 511<MASK> s,

4. | s1 | s9<MASK>

Datasets 1 2 3 4

CB 89.8 91.6 889 86.5
RTE 0691 691 o645 653
QNLI 720 833 777 73.1
MRPC 716 695 664 720
QQP 792 828 725 702
WiC 60.3 595 602 595
Avg 737 760 71.7 71.1
Table 7: Validation performance for sentence-pair

benchmarks for different locations of mask tokens. Bold
fonts indicate the best results in each row.

Datasets 1072 1072 107* 107°

CB 90.05825 922850 91.687.5 91.6/87.5
MRPC 69.85562 70.8/562 69.55562 70.8/56.2
QNLI 83.3m19 82.7m9 83.3m9 83.1s88
QQP 82.8181 82.7m50 82.81750 83.01750
RTE 69.8/62.5 69.2/504 69.1/625 68.3/62.5
WiC 62.2/500 59.7169 59.55531 58.9500
Avg 76.369 76.2/657 76.0167.7 76.0166.7

Total Avg 71.6 71.0 71.8 713

Table 8: Validation performance for different values of
0. We show mean performance/worst-case performance
across 20 runs. The last row shows the average of mean
performance/worst-case performance.

Table 7 shows how the position of masks impact
the results. As demonstrated, pattern 2, inserting
mask tokens between the two sentences and encoding
both as a single sentence obtains the highest
validation performance. We use this choice in all the
experiments when removing handcrafted patterns.

D Impact of Initialization

We initialize the label embedding matrix with random
initialization from a normal distribution A/(0,0). In
table 8, we show the development results for different
values of 0. We choose the ¢ obtaining the highest
performance on average over average and worst case
performance, i.e., o =10"%.

E Ablation Results

To study the impact of different design choices in
PERFECT, we considered the following experiments:

* -Hinge Loss: In this variant, we replace the
hinge loss with multi-class cross entropy loss.

3651

Dataset | PERFECT -Hinge Loss +Label Emb -Prototypical
SST-2 | 90.7/88.2/1.2 90.0/859/1.7 90.6/87.6/1.1 90.4/85.2/1.6
CR 90.0/85.5/1.4 90.1/88.6/0.9 89.7/86.6/1.4 89.9/86.8/1.4
MR 86.3/81.4/1.6 85.2/78.6/2.4 85.8/82.4/1.4 85.7/78.012.0
SST-5 427135129 43.3/36.8/3.1 41.8/37.1/2.5 41.2/3592.4
SUBJ 89.1/82.8/2.1 89.4/83.1.22 90.0/86.0/1.8 89.7/86.0/1.8
TREC 90.6/81.6/3.2 89.9/76.8/4.2 89.7/71.6/6.1 89.6/76.2/4.9
CB 90.3/83.9/3.5 89.2/80.4/4.8 89.6/82.1/3.6 89.3/80.4/3.9
RTE 60.4/53.1/4.7 60.7/54.5/4.0 58.6/50.9/4.0 58.5/50.9/4.5
QNLI 74.1/60.3/4.6 72.9/64.4/3.9 74.9/66.7/3.6 74.7/67.5/3.5
MRPC | 67.8/54.7/5.7 67.0/49.8/55 68.1/56.9/48 68.1/56.9/4.8
QQP 71.2/64.2/35 69.9/63.0/4.1 70.3/62.2/4.0 70.2/62.2/4.0
WiC 53.8/47.0/3.0 53.7/46:733 53.6/50224 53.6/50.0/2.6
Avg ‘ 75.6/68.1/3.1 75.1/67.4/3.3 75.2/68.4/3.1 75.1/68.0/3.1

Table 9: Ablation results on the impact of different design choices in PERFECT. We report the average performance/worst-
case performance/and the standard deviation.

* +Label Emb: We use the trained label em-
beddings during the inference, substituting the
computed prototypes in (5).

* -Prototypical: Instead of using prototypical
networks, during inference, we use the same
objective as training, i.e., (4).

Results are shown in Table 9. Experimental results
demonstrate that PERFECT obtains the best results
on average. Using multi-class cross-entropy instead
of hinge loss, obtains substantially lower minimum
performance (67.4 versus 68.1), demonstrating that
training with hinge loss makes the model more
stable. Using the trained label embeddings (+Label
Emb) obtains very close results to PERFECT (slightly
worse on average and slightly better on the minimum
performance). Using the similar objective as training
with replacing prototypical networks (-Prototypical),
obtains lower performance on average (75.1 versus
75.6). These results confirm the design choices for
PERFECT.

3652

