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Abstract

Encoder-decoder architecture is widely adopted

for sequence-to-sequence modeling tasks. For

machine translation, despite the evolution from

long short-term memory networks to Trans-

former networks, plus the introduction and de-

velopment of attention mechanism, encoder-

decoder is still the de facto neural network ar-

chitecture for state-of-the-art models. While

the motivation for decoding information from

some hidden space is straightforward, the strict

separation of the encoding and decoding steps

into an encoder and a decoder in the model ar-

chitecture is not necessarily a must. Compared

to the task of autoregressive language model-

ing in the target language, machine translation

simply has an additional source sentence as con-

text. Given the fact that neural language mod-

els nowadays can already handle rather long

contexts in the target language, it is natural to

ask whether simply concatenating the source

and target sentences and training a language

model to do translation would work. In this

work, we investigate the aforementioned con-

cept for machine translation. Specifically, we

experiment with bilingual translation, transla-

tion with additional target monolingual data,

and multilingual translation. In all cases, this

alternative approach performs on par with the

baseline encoder-decoder Transformer, suggest-

ing that an encoder-decoder architecture might

be redundant for neural machine translation.

1 Introduction

Sequence-to-sequence modeling is often ap-

proached with Neural Networks (NNs), promi-

nently encoder-decoder NNs, nowadays. For the

task of Machine Translation (MT), which is by

definition also a sequence-to-sequence task, the

default choice of NN topology is also an encoder-

decoder architecture. For example, in early works

like Kalchbrenner and Blunsom (2013), the authors

already make the distinction between their convo-

lutional sentence model (encoder) and recurrent

language model (decoder) conditioned on the for-

mer. In follow-up works like Sutskever et al. (2014)

and Cho et al. (2014a,b), the concept of encoder-

decoder network is further developed. While ex-

tensions such as attention (Bahdanau et al., 2014),

multi-task learning (Luong et al., 2015), convo-

lutional networks (Gehring et al., 2017) and self-

attention (Vaswani et al., 2017) are considered for

sequence-to-sequence learning, the idea of encod-

ing information into some hidden space and decod-

ing from that hidden representation sticks around.

Given the success and wide popularity of the

Transformer network (Vaswani et al., 2017), many

works focus on understanding and improving indi-

vidual components, e.g. positional encoding (Shaw

et al., 2018), multi-head attention (Voita et al.,

2019), and an alignment interpretation of cross

attention (Alkhouli et al., 2018). In works that go

a bit further and make bigger changes in terms of

modeling, e.g. performing round-trip translation

(Tu et al., 2017) and going from autoregressive to

non-autoregressive (Gu et al., 2017), the encoder-

decoder setup itself is not really questioned. In

the mean time, it is not to say that the field is

completely dominated by one approach. Because

works like the development of direct neural hidden

Markov model (Wang et al., 2017, 2018, 2021b), in-

vestigation into dropping attention and separate en-

coding and decoding steps (Press and Smith, 2018)

and going completely encoder-free (Tang et al.,

2019) do exist, where the default encoder-decoder

regime is not directly applied.

Meanwhile, in the field of language modeling,

significant progress is achieved with the wide ap-

plication of NNs. With the progress from early

feedforward language models (LMs) (Bengio et al.,

2000), to the successful long short-term memory

network LMs (Sundermeyer et al., 2012), and to

the more recent Transformer LMs (Irie et al., 2019),

the modeling capacity of LMs nowadays is much

more than their historic counterparts. This is es-
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pecially true when considering some of the most

recent extensions, such as large-scale modeling

(Brown et al., 2020), modeling very long context

(Dai et al., 2019) and going from autoregressive

modeling to non-autoregressive modeling (Devlin

et al., 2019). Because MT can be thought of as

a contextualized language modeling task with the

source sentence being additional context, one natu-

ral question is if simply concatenating the source

and target sentences and train an LM to do transla-

tion would work (Irie, 2020). This idea is simple

and straightforward, but special care needs to be

taken about the attention mechanism and source

reconstruction. In this work, we explore this alter-

native approach and conduct experiments in bilin-

gual translation, translation with additional target

monolingual data and multilingual translation. Our

results show that dropping the encoder-decoder ar-

chitecture and simply treating the task of MT as

contextualized language modeling is sufficient to

obtain state-of-the-art results in translation. This re-

sult has several subtleties and implications, which

we discuss in Sec.5, and opens up possibilities for

more general interfaces for multimodal modeling.

2 Related Work

In the literature, few but interesting works exist

which closely relate to the idea mentioned above.

In Mikolov and Zweig (2012), the authors mention

the possibility to use source sentence as context

for contextualized language modeling. In He et al.

(2018), with the intuition to coordinate the learning

of Transformer encoder and decoder layer by layer,

the authors share the encoder and decoder parame-

ters and learn a joint model on concatenated source

and target sentences. However, no explicit source

side reconstruction loss is included. Similarly, in

Irie (2020), a small degradation in translation qual-

ity is observed when a causal mask is used and

no source reconstruction is included. Because the

masking is critical for correctly modeling the de-

pendencies regarding the concatenated sequence,

in Raffel et al. (2020), the authors put special fo-

cus on discussing the differences and implications

of three types of attention masks. In Wang et al.

(2021a), the authors expand upon the idea and pro-

pose a two-step decaying learning rate schedule to

reconstruct the source sentence to regularize the

training process. In that work, the authors show

competitive performance compared to Transformer

baselines in several settings. More recently, in

Zhang et al. (2022), the authors also use a language-

modeling-style source side reconstruction loss to

regularize the model, and additionally explore the

model scaling cross-lingual transfer capabilities.

Another work that explores the long-context mod-

eling potential of LMs is Hawthorne et al. (2022),

where data from domains other than translation is

included in model training. Hao et al. (2022) is a

more recent addition to this direction of research,

where LM as a general interface for multimodal

data is investigated. Because our focus is in MT,

we refer to such a model, where encoder-decoder

architecture is dropped and an LM is used to model

the concatenation of source and target sentence, as

Translation Language Models (TLMs1).

The work by Wang et al. (2021a) is proba-

bly the most directly related work compared to

our work, therefore we believe it is important

to highlight the similarities and differences be-

tween their work and ours. The core concept

of dropping encoder-decoder architecture is sim-

ilar between Wang et al. (2021a) and our work,

and competitive performance of TLMs compared

to encoder-decoder models in various settings

is achieved in both works. However, we ad-

ditionally explore the task of autoencoding in

the source side, adding Bidirectional-Encoder-

Representations-from-Transformers-style (BERT)

noise (Devlin et al., 2019), using alternative learn-

ing rate schedules, training MT models with back-

translated (BT) data and doing multilingual train-

ing. Further, we discuss subtleties and implications

associated with the TLM.

3 Methodology

The core concept of TLM is to concatenate the

source and the target sentences and treat the trans-

lation task as a language modeling task during train-

ing. The two majors points of concern are the atten-

tion mechanism and the source-side reconstruction

loss. In this section, we explain the details related

to these two points, and additionally discuss the im-

plications when additional target-side monolingual

data or multilingual data is available.

3.1 Translation Language Model

Denoting the source words/subwords as f and the

target words/subwords as e, with running indices

1To be differentiated from TLMs in Conneau and Lample
(2019), where the pretraining objective is cloze task at both
source and target side, using bilingual context.
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j in J and i in I respectively, the usual way to ap-

proach the translation problem in encoder-decoder

models is to directly model the posterior probabili-

ties via a discriminative model P (eI
1
|fJ

1
). This is

used in the Transformer and can be expressed as:

P (eI1|f
J
1 ) =

I∏

i=1

P (ei|e
i−1

0
, fJ

1 ).

The model is usually trained with the cross en-

tropy criterion (often regularized with label smooth-

ing (Gao et al., 2020b)), and the search aims to find

the target sentence êÎ
1

with the highest probability

(often approximated with beam search):

LMT = −

I∑

i=1

logP (ei|e
i−1

0
, fJ

1 ),

êÎ1 = argmax
eI
1
,I

{logP (eI1|f
J
1 )}.

Alternatively, one can model the joint probability

of the source and target sentences via a generative

model P (fJ
1
, eI

1
) and it can be expressed as:

P (fJ
1 , e

I
1) =

J∏

j=1

P (fj |f
j−1

0
)

I∏

i=1

P (ei|e
i−1

0
, fJ

1 ).

Here, because fJ
1

is given at search time, and

argmaxeI
1
,I P (fJ

1
, eI

1
) = argmaxeI

1
,I P (eI

1
|fJ

1
),

the search stays the same as in the baseline case.

But the training criterion has an additional loss

term on the source sentence, which we refer to as

reconstruction loss (LRE), the learning rate λ of

which can be controlled by some schedule:

LRE = −
J∑

j=1

logP (fj |f
j−1

0
),

LTLM = λLRE + LMT.

One can think of the reconstruction loss (decom-

posed in an autoregressive manner here, but it does

not have to be) as a second task in addition to the

translation task, or simply a regularization term for

better learning of the source hidden representations.

Although this formulation is simple and straightfor-

ward, there could be variations in how the source

side dependencies are defined.

3.1.1 On the Attention Mechanism

In the original Transformer (Vaswani et al., 2017)

model, the attention mechanism is used in three

J I

J

I A

C

B

D

(a) source-side triangular mask

J I

J

I A

C

B

D

(b) source-side full mask

Figure 1: Attention masks in TLM with (a) a triangular

mask, and (b) a full mask, at the source side. The hori-

zontal direction is the query direction and the vertical

direction is the key direction. Shaded areas mean that

the attention is valid and white areas mean that the atten-

tion is blocked. The matrices C, B, and D correspond to

the encoder self attention, the decoder self attention and

encoder-decoder cross attention in Transformer, respec-

tively. The matrix A is whitened in both cases because

we should not allow the source positions attend to future

target positions.

places, namely, a J × J encoder self attention ma-

trix, a I × I decoder self attention matrix and a

J × I encoder-decoder cross attention matrix. As

shown in Fig.1, they correspond to matrices C, B

and D respectively. The attention masks in B and D

are straightforward. The triangular attention mask

in the B matrix needs to be causal by definition,

because otherwise target positions may attend to

future positions and cheat. The attention mask in

D needs to be full, because we want each target

position to be able to look at each source position

so that there is no information loss. However, the

attention mask in C is how some of the previous

works differ. For example, a triangular attention

mask like in Fig.1a is used in Irie (2020), while a

full attention mask like in Fig.1b is used in He et al.
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LRE

f0 f1 ... fJ </s> <t> e0 e1 ... eI </t>

<s> f0 <m> ... fJ </s> <t> e0 e1 ... eI

Transformer Encoder

LMT

(a) source-side shift in TLM

LRE

<s> f0 f1 ... fJ </s> e0 e1 ... eI </t>

<s> f0 <m> ... fJ </s> <t> e0 e1 ... eI

Transformer Encoder

LMT

(b) no source-side shift in TLM

Figure 2: Shifting versus no shifting of the output at the source side in TLM. The output at the target side is

shifted in both cases. <s>, </s>, <t> and </t> are artificial start and end of sentence symbols at the source and

target side respectively2. <m> denotes BERT-style (Devlin et al., 2019) randomly masked tokens. When matrix

C in Fig.1 is triangular, (a) corresponds to a language modeling objective. When C is full, (b) corresponds to an

auto-encoding objective. During search, <s>, f0, ..., fJ , </s>, <t> is presented to the model, and beam search is

done by minimizing LMT.

(2018). Raffel et al. (2020) and Zhang et al. (2022)

also discuss the differences in masking patterns in

the matrix C similar to what we do here. Wang et al.

(2021a) do not make clear what type of attention

masks is used in C in their paper, and we do not

find a public repository associated with their paper

to further investigate it.

In our case, we consider both the triangular and

full attention mask patterns for C, because both

have good intuitions. The triangular mask is closer

to the original objective of learning the joint dis-

tribution P (fJ
1
, eI

1
), while the full mask enables

better information flow because early source posi-

tions also have access to future source positions to

come up with better hidden representations. That

said, later we show through experiments, that for

the task of MT, it is clearly better to use a full

attention mask for C in TLM.

The matrix A in Fig.1 is whitened throughout

this work, because we do not allow the source posi-

tions attend to target positions. However, theoret-

ically, when decoding position i, one could allow

all source positions 1, 2, ..., J to attend to all pre-

vious target positions 1, 2, ..., i − 1. This can be

done by using a (J + I) × (J + I) × I attention

mask tensor. The extended I dimension is target-

position-dependent, providing a different view of

the (J + I)× (J + I) matrix for each target posi-

2The exact format of the tags is not important so long
as uniquely identifiable translation direction tags are used,
be it source and target tags like <s>, </s>, <t>, </t>, or
direction tags like <s2t>, or even only the target language tag
<t>. While the later two reduce the total sequence length, the
former is more versatile when data from multiple languages
or multiple modalities is considered.

tion. Intuitively, this has the potential to serve as

an implicit fertility model.

3.1.2 On the Reconstruction Loss

In the paper by Wang et al. (2021a), the source side

reconstruction is formulated as an autoregressive

language modeling task. However, that does not

have to be the case. For example, one can make

the distinction to shift or not shift the output at the

source side, as shown in Fig.2. When the source

output is shifted, LRE is a normal language model-

ing cross entropy loss. When the source output is

not shifted, LRE is an auto-encoding loss. Addition-

ally considering the matrix C in Fig.1, assuming

no source input noise is introduced, then when C is

full, or when C is triangular but the source output is

not shifted, the source-side reconstruction becomes

a trivial copying task.

On top of the reconstruction loss formulation,

one can also apply noises to the source side input.

This can be viewed as a regularization or a data

augmentation trick, such that the source side infor-

mation is corrupted to a certain degree to help the

generalization ability of the model. In this work,

we consider the BERT-style (Devlin et al., 2019)

noises, where 15% of source positions are picked

at random, and 80%, 10% and 10% of the tokens

in this positions are replaced with <m>, a random

token or unchanged, respectively. Different to the

BERT paper though, in addition to the cloze task

in the masked positions, we also keep the cross en-

tropy losses in the unmasked positions. One can of

course go over the 15% (Wettig et al., 2022) limit

or apply softer noises (Gao et al., 2019, 2020a), but
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we do not further expand in this direction because

it is beyond our initial goal to verify the necessity

of the encoder-decoder architecture.

One more thing that can be tuned for the recon-

struction loss is the learning rate schedule. In Wang

et al. (2021a), a two-step linear decaying function

is used, where λ linearly decays to 0.1 until a cer-

tain number of gradient update steps τ , and decays

with a smaller rate after τ . Here, we additionally

consider schedules where the learning rate λ: (a) is

constant at zero, (b) is constant at one, (c) two-step

linearly decays like in Wang et al. (2021a) and (d)

decays exponentially as λt = exp(− ln 0.1t/τ).
Similar to (c), the schedule (d) decays to 0.1 at

gradient update step τ as well.

3.2 Bilingual and Monolingual Training

For MT, target-side monolingual data is often avail-

able in large quantities and is shown to be helpful

for the main task of translation when used in one

way or another (Koehn et al., 2007; Wuebker et al.,

2012; Freitag et al., 2014; Sennrich et al., 2016a;

Gulcehre et al., 2017a; Domhan and Hieber, 2017;

Stahlberg et al., 2018; Edunov et al., 2018; Graça

et al., 2019). Broadly speaking, they can be cate-

gorized into three approaches: 1. ensembling with

an external language model, 2. multi-task training

with additional language modeling objective and

3. training with back-translated data with artifi-

cial source and true target. Evidence so far is that

back-translation works the best among the three

(Barrault et al., 2021).

For TLM, these three approaches are all appli-

cable, but with implications. First, ensembling is

not very relevant because of the additional train-

ing and storage requirements, and also it is against

the philosophy of TLM where we want to make

the encoder-decoder model more compact. Sec-

ond, the multi-task training is interesting because

while some previous work have dedicated layers

to perform the language modeling task (Gulcehre

et al., 2015, 2017b), such multi-task training on

TLM actually trains all model parameters in the

auxiliary language modeling task. Third, the back-

translation approach is worth looking at because it

delivers the best results in encoder-decoder models

so far and experiments comparing TLM with the

baseline under this setting are necessary to justify

whether or not we can throw away the encoder-

decoder architecture.

3.3 Multilingual Training

Another important setting where TLM needs to be

compared to the baseline encoder-decoder model is

when multilingual data is used in training. Broadly

speaking, multilingual models can refer to sys-

tems that translate in one-to-many, many-to-one,

many-to-many, or even source-to-target and target-

to-source manners. The major benefits of training

multilingual models (Johnson et al., 2017; Aha-

roni et al., 2019) are: more compact models via

shared parameters and transfer/zero-shot learning

capabilities due to inherit similarities in some lan-

guages. While there exist works that propose to

use language-specific sub-networks to take into

consideration the parameter capacity needed for

each language, e.g. in Lin et al. (2021), it is more

common to simply train one joint model where the

model parameters are shared across all languages.

For TLM, the task of multilingual training is

straightforwards as well. One can simply concate-

nate each translation pair into one longer sequence,

add corresponding translation direction tags, and

feed the concatenated sequence to the TLM model.

In other words, all the hidden parameters of the

model can be shared across all translation direc-

tions, and one simply needs to pay attention to the

word embeddings such that words/subwords/tokens

from different languages are mapped into the same

embedding space for further processing, similar to

what is done for encoder-decoder models.

4 Experiments

To verify the performance of TLM compared to the

baseline encoder-decoder Transformer model, we

perform experiments on four machine translation

datasets. Specifically, we experiment with the Inter-

national Conference on Spoken Language Transla-

tion (IWSLT) (Federico et al., 2014) 2014 German-

to-English (de-en), the Conference on Machine

Translation (WMT) 2016 English-to-Romanian

(en-ro) (Bojar et al., 2016), 2019 Chinese-to-

English (zh-en) (Barrault et al., 2019) datasets. Ad-

ditionally, for multilingual experiments, we create

a custom multilingual (multi.) dataset from news-

commentary v16 (Tiedemann, 2012), performing

translation among three languages, German (de),

Spanish (es), and French (fr), in six direction: de-
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es, es-de, de-fr, fr-de, es-fr, fr-es3. For the mono-

lingual data, we sample 5M sentences from the

English News crawl monolingual corpus4. To cre-

ate synthetic zh-en data, we employ our en-zh

Transformer model to do back-translation (Sen-

nrich et al., 2016a). The data is pre-processed

with the Byte Pair Encoding (BPE) (Sennrich et al.,

2016b) algorithm. We lowercase the text for de-en

and for the other language pairs, we leave the orig-

inal casing as is. The statistics of the datasets are

summarized in Tab.1.

dataset vocab. train pairs test pairs

de-en 10k 0.2M 6k

en-ro 20k 0.6M 2k

multi. 32k 1.7M 18k

zh-en 47k 17.0M 4k

Table 1: Statistics of the datasets.

We implement the Transformer model and the

TLM model with different options such as using dif-

ferent attention masks, shifting versus not shifting

the source output, adding or not adding BERT-style

(Devlin et al., 2019) noises and different learning

rate schedules, in PyTorch (Paszke et al., 2019).

The back-translation and multilingual experiments

are done by adding corresponding language tags to

the concatenation of source and target sentences.

We follow the training and search hyperparam-

eters as closely as possible to the original Trans-

former (Vaswani et al., 2017) paper. Note that,

when searching with TLM, the entire source sen-

tence until (and including) the target start of sen-

tence <t> is fed into the NN. The beam search is

then carried out only on the target outputs. We

report translation performances in BLEU (Papineni

et al., 2002) and TER (Snover et al., 2006) scores

using the MultEval tool from Clark et al. (2011).

4.1 An Encoder-Only Model

First, we consider the necessity of encoder-decoder

architecture by comparing our encoder-only TLM

with the baseline Transformer model, on de-en and

en-ro. Essentially, we perform a grid search over

four hyper-parameters regarding the source recon-

struction:

3The data is retrieved from https://data.statmt.

org/news-commentary/v16/. We take all bilingual
data in the six directions. For the raw data in each direction,
we take the first 3000 lines as test data and the last 3000 lines
as development data.

4https://data.statmt.org/news-crawl/

1. Language modeling (shifting source output,

Fig.2a) versus autoencoding (not shifting

source output, Fig.2b).

2. Triangular (see Fig.1a) versus full (Fig.1b)

attention mask.

3. No source input noise versus BERT-style

(Devlin et al., 2019) source input noise

(Sec.3.1.2).

4. Constant learning rate λ for LRE at zero or one,

or the two-step linear (Wang et al., 2021a) or

exponential decay (Sec.3.1.2).

Due to the limited length, we only highlight the

interesting points from our observations and ap-

pend the full grid-search table (Tab.9) in the ap-

pendix for the interested reader. For the discussions

below, we consider one hyperparameter each time

and pick the best set of other hyperparameters from

the grid search, to take into considerations of possi-

ble correlations among different hyperparameters.

4.1.1 Both Autoencoding and Language

Modeling Work

First, we see that both shifting and not shifting the

source output at the source side seem to work for

TLM. As shown in Tab.2, when picking the best set

of other hyperparameters, TLMs trained with either

of the auxiliary task can perform on par with the

encoder-decoder baseline within ±0.2% absolute

BLEU score fluctuations.

arch. task de-en en-ro

enc-dec - 34.9 26.0

enc-only
LM 34.7 26.2

AE 35.0 26.0

Table 2: BLEU scores of language modeling (LM)

versus autoencoding (AE) at the source side.

4.1.2 Full Attention Over Source Is Necessary

arch. mask de-en en-ro

enc-dec - 34.9 26.0

enc-only
triangular 34.4 25.6

full 35.0 26.2

Table 3: BLEU scores of triangular versus full attention

mask at the source side.

Looking at the source attention mask (Tab.3),

it is clear that a triangular leads to degradation in

translation performance. One interesting setup is

https://data.statmt.org/news-commentary/v16/
https://data.statmt.org/news-commentary/v16/
https://data.statmt.org/news-crawl/
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when the attention mask is triangular but the task is

autoencoding, i.e. no shift in source outputs. One

may argue that the model is allowed to cheat on

the auxiliary task LRE because the diagonals in the

attention mask is not masked out, however, for the

translation task, it is possible that source hidden

representations learned from being able to look at

future source positions is more beneficial.

4.1.3 BERT-Style Noise Is Slightly Helpful

Moving on to the source-side noise, adding BERT-

style (Devlin et al., 2019) seems to slightly boost

the translation performance. This observation

agrees with past experiences where augmenting

the training data with artificial noise regularizes the

model for better generalization (Hill et al., 2016;

Kim et al., 2018, 2019; Gao et al., 2019, 2020a).

arch. noise de-en en-ro

enc-dec - 34.9 26.0

enc-only
none 34.6 26.1

BERT 35.0 26.2

Table 4: BLEU scores with and without BERT-style

(Devlin et al., 2019) noises at the source side.

4.1.4 Loss Schedule Is Not Critical

Contrary to Wang et al. (2021a) and also to our

surprise, the learning rate schedule for λ does not

seem to be critical for obtaining good translation

performance with TLM. As shown in Tab.5, even

without the reconstruction loss LRE, i.e. when λ
is constant at zero, the BLEU score of the TLM is

still comparable with the baseline transformer. Of

course one needs to tune the other hyperparameters,

it is still interesting that the model is able to learn

decent source hidden representations even without

any auxiliary training signal.

arch. schedule de-en en-ro

enc-dec - 34.9 26.0

enc-only

0 34.9 26.2

1 34.5 26.0

lin 34.7 25.8

exp 34.8 26.1

Table 5: BLEU scores with different learning rate sched-

ules of λ. "lin" refers to the two-step learning rate decay

in Wang et al. (2021a) and "exp" refers to the exponen-

tial decay introduced in Sec.3.1.2.

4.1.5 Parameter Count Needs to Be the Same

Although the hyperparameters mentioned so far

have different degrees of influence on the final

BLEU score, one hyperparameter that governs the

overall performance of TLM is the total learnable

parameter count. Similar to Wang et al. (2021a),

the encoder-only model needs to have a similar

amount of parameters to reach the performance

of the Transformer baseline. Here, we vary the

number of Transformer encoder layers in TLM and

compare with the baseline Transformer to illustrate

this point. An autoencoding loss is used without

shifting the source outputs, noises are added to the

source inputs, and a fixed λ = 1 is used for the

encoder-only TLMs in Tab.6. It can be seen that,

when the TLM is under- or over- parametrized,

underfitting and overfitting happens respectively,

leading to worse performances.

arch. #layers #params
de-en

BLEU TER

enc-dec 6-6 36.9M 34.9 44.5

enc-only

5 15.9M 33.5 46.2

10 26.4M 34.9 44.6

15 36.9M 35.0 44.7

20 47.4M 34.8 45.1

Table 6: BLEU and TER scores of models of different

sizes. For the encoder-decoder model, 6-6 means 6

encoder layers and 6 decoder layers.

arch. devPPL
zh-en

BLEU TER

enc-dec 6.91 23.2 60.5

+ back-translation 6.21 24.6 59.4

enc-only 6.90 23.1 60.5

+ LM 6.70 23.0 61.4

+ back-translation 6.18 24.7 59.4

Table 7: Transformer versus TLM, with and without

additional monolingual target side data.

4.2 Bilingual and Monolingual Training

The streamlined architecture of TLM allows us to

easily include monolingual data during training,

without the need to create synthetic parallel data

and without having to modify the architecture in

any way. The system is simply trained jointly on

the translation and language modeling tasks. We

compare this training strategy to the most common

way of including monolingual data in MT train-
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arch. devPPL de-es es-de de-fr fr-de es-fr fr-es overall

enc-dec 6.17 25.7 19.1 21.3 16.9 24.6 26.2 22.5

enc-only 6.06 25.5 18.8 20.7 16.6 24.4 26.0 22.3

Table 8: BLEU scores of multilingual translation with encoder-decoder Transformer and encoder-only TLM. Here,

we train both the encoder-decoder baseline model as well as the encoder-only TLM until the same number of steps

and pick the best checkpoint according to the best development set perplexity. The overall score is calculated over

the concatenation of the test sets and is not the average of the previous columns.

ing, namely back-translation and experiment on

the high resource zh-en task. The results are shown

in Tab.7.

As expected, the additional synthetic data from

back-translation leads to an improvement in both,

development set perplexity (devPPL) and transla-

tion quality, for the Transformer and TLM. Includ-

ing the monolingual data directly in the TLM does

also improve perplexity, but does not improve over-

all translation quality.

4.3 Multilingual Training

The experimental results for the multilingual trans-

lation are summarized in Tab.8. Although the

encoder-only TLM actually delivers better devPPL

than the encoder-decoder Transformer baseline, the

BLEU scores are slightly worse (about −0.2% ab-

solute BLEU) across the board. This mismatch

between the development set perplexity and the

test BLEU in NMT is also reported in previous

work (Gao et al., 2020b). We believe this small

difference is within acceptable noise range and con-

clude that the TLM is also on par with the baseline

encoder-decoder model in multilingual translation.

5 Discussions

Through extensive experiments, we show that

the encoder-decoder architecture is not a must to

achieve decent translation performance, because

an encoder-only TLM is also capable of obtain-

ing comparable performance when carefully tuned.

Here, we touch upon several important implications

and subtleties that come with using TLMs.

First, although the encoder-decoder architecture

is dropped, the cross attention is still existent in the

TLM. As shown in Fig.1, the difference compared

to the baseline is that for each target position i, the

softmax needs to normalize the attention weights

over J + i instead of J . However, because we

know the softmax is decent at zeroing out certain

positions, e.g. see Fig.1 in Alkhouli et al. (2018),

this should not be a problem. Next, although we

do not expand on search in this paper, our internal

experiments verify that the search with TLM be-

haves similarly to the baseline. Further, one may

wonder how separate source and target vocabular-

ies should be handled in case of TLMs. Here, we

note that having separate source and target word

embedding matrices is the same as concatenating

them in the vocabulary size dimension into a bigger

word embedding matrix for TLM. What could pose

as a problem is the increased length of the concate-

nated sequence. This puts extra requirements to the

model and its capabilities to model long context

dependencies. Note that, concatenation may not

be the only way to combine the source and target

contexts. For instance, in the eager model pro-

posed in Press and Smith (2018), the authors essen-

tially "stack" instead of "concatenate". Moreover,

when decoding efficiency is critical, TLM may suf-

fer because a separate decoder is not existent and

each translation query goes through the entire net-

work. Another limitation is that the source side

reconstruction loss considered in this work may

also be applied to the Transformer baseline, and

might change the picture when comparing the two.

That said, TLMs are undoubtedly exciting mod-

els opening new possibilities. For example, with

such generative models, generation of synthetic

translation pairs from scratch can be easily done.

Another worth-to-mention application is end-to-

end speech translation (ST). While previous work,

e.g. in Bahar et al. (2021), connects the encoder of

the automatic speech recognition model and the de-

coder of the MT model, effectively throwing away

50% of the pre-trained model parameters, TLMs

can retain all pre-trained parameters and result in

more compact end-to-end ST models.

6 Conclusion

In this work, we question the long-standing

encoder-decoder architecture for neural machine

translation. Through extensive experiments in
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various translation directions, considering back-

translation and multilingual translation, we find

that an encoder-only model can perform as good

as an encoder-decoder model. We further discuss

implications and subtleties of such models to mo-

tivate further research into more compact models

and more general neural network interfaces.
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Appendix A Grid Search Over Source Reconstruction Settings

architecture
source reconstruction variant IWSLT14 de-en WMT16 en-ro

task mask noise schedule BLEU TER BLEU TER

encoder-decoder - - - - 34.9 44.5 26.0 54.8

encoder-only

LM

triangular

none

0 33.5 46.0 25.4 55.5

1 34.4 45.3 25.2 55.7

lin 34.2 45.2 25.5 55.4

exp 34.6 45.2 25.3 55.7

BERT

0 33.6 45.7 25.4 55.6

1 34.4 45.1 25.2 55.8

lin 34.4 45.4 25.6 55.5

exp 34.2 45.8 25.4 55.3

full

none

0 34.5 44.9 25.8 55.4

1 34.5 44.8 25.9 55.0

lin 34.5 44.9 25.7 55.3

exp 34.4 44.8 26.1 54.8

BERT

0 34.5 45.1 26.2 54.8

1 34.4 44.9 25.6 55.3

lin 34.7 44.5 25.8 55.3

exp 34.6 44.9 25.9 54.9

AE

triangular

none

0 32.2 47.2 25.3 55.6

1 32.5 46.2 24.9 55.9

lin 32.0 46.3 25.2 55.8

exp 32.0 46.8 25.3 55.3

BERT

0 30.8 47.9 25.1 56.1

1 33.5 45.9 25.1 56.0

lin 31.5 47.5 25.2 55.7

exp 33.6 45.9 25.5 55.6

full

none

0 34.4 45.1 25.8 55.2

1 34.0 45.3 25.9 55.1

lin 33.8 45.7 25.7 55.3

exp 34.0 45.5 25.7 55.3

BERT

0 34.9 45.0 25.8 55.3

1 35.0 45.0 26.0 55.1

lin 34.7 45.0 25.7 55.4

exp 34.8 44.8 25.8 55.4

Table 9: Grid search of four source-reconstruction-related hyperparameters on de-en and en-ro. LM means to shift

the source-side outputs and the auxiliary task corresponds to autoregressive language modeling, and AE means to

not shift and corresponds to an autoencoding task. Our interpretations of the table are given in Sec.4.1


