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Abstract

Detection of toxic spans - detecting toxicity of
contents in the granularity of tokens - is crucial
for effective moderation of online discussions.
The baseline approach for this problem using
the transformer model is to add a token classi-
fication head to the language model and fine-
tune the layers with the token labeled dataset.
One of the limitations of such a baseline ap-
proach is the scarcity of labeled data. To im-
prove the results, We studied leveraging ex-
isting public datasets for a related but differ-
ent task of entire comment/sentence classifica-
tion. We propose two approaches: the first ap-
proach fine-tunes transformer models that are
pre-trained on sentence classification samples.
In the second approach, we perform weak su-
pervision with soft attention to learn token
level labels from sentence labels. Our experi-
ments show improvements in the F1 score over
the baseline approach. The implementation
has been released publicly.1

1 Introduction

The growth of social media platforms has led to an
increase in hate speech and abusive language in on-
line communities, primarily due to the anonymity
provided on such platforms (Mollas et al., 2020).
Since manual moderation is not feasible for the
gigantic amount of textual data, automated tox-
icity detection has received significant attention
with numerous datasets being released in recent
years (Pavlopoulos et al., 2020). However, most of
the existing work on toxicity detection labels the
entire comment as toxic or non-toxic and does not
provide information about which specific part of
the comment is toxic. In practice, human moder-
ators (e.g., news portals moderators) can benefit
from information on which character indices of the

1https://github.com/vaibhav29498/Toxi
c-Spans-Detection

part of the comment that is toxic instead of just a
system-generated unexplained toxicity score per
post. Designing models that can accurately locate
toxic spans within a text is thus a crucial step to-
wards successful semi-automated moderation. This
is challenging because of the scarcity of datasets
that are labeled on a segment or token level.

This paper explains our approaches for the
SemEval-2021 Task 5 which requires us to identify
the character offsets for the toxic spans within a
comment (Pavlopoulos et al., 2021). We explore
possible techniques for improving the results of
the vanilla transformer model by leveraging several
available public datasets.

2 Related Work and Background

Sequential adaptation Using pre-trained lan-
guage models has recently proved to be effective
for language understanding tasks (Phang et al.,
2018). The supplementary training is particularly
beneficial when labeled data is scarce (Phang et al.,
2018). A popular transfer learning technique in
Natural Language Processing (NLP) has been to
pre-train sentence encoder neural networks, such
as BERT (Devlin et al., 2019), on unsupervised
tasks and then fine-tune the encoders for the target
supervised learning task. However, this approach
can be found inadequate if the input distribution
for the target task is considerably different from
that of the corpus used for pre-training. Phang et al.
(2019) suggested that training on related data-rich
supervised tasks as an intermediate step can help
in making the final trained model more robust and
effective. This approach is called Supplementary
Training on Intermediate Labeled-data Tasks. This
can also help the model in learning the domain
knowledge when in-domain data is available.

Weakly Supervised Learning Zhou (2018) de-
fined inexact supervision as a type of weakly super-

https://github.com/vaibhav29498/Toxic-Spans-Detection
https://github.com/vaibhav29498/Toxic-Spans-Detection
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vised learning in which coarse-grained labels are
used to train for a more specific problem. Rei and
Søgaard (2018) used this approach for inferring
token-level labels by training a sentence classifi-
cation model. They used a bidirectional LSTM to
get a contextual representation h̃i ∈ Rm for ev-
ery token wi, and pass it through a fully-connected
layer with hyperbolic tangent activation to obtain
hi ∈ Rn:

hi = tanh(Whh̃i + bh) (1)

where Wi ∈ Rn×m and bi ∈ Rn.
They then used a two-layer feed forward neural

network followed by a soft-attention layer to get a
single-valued attention score ai for each token:

ei = tanh(Wchi + bc) (2)

ẽi =Wc̃ei + bc̃ (3)

ãi = σ(ẽi) (4)

where Wc ∈ Rp×n, bc ∈ Rp, Wc̃ ∈ R1×p,
bc̃ ∈ R, and ãi is the normalized attention score.
These scores indicate the importance of the to-
kens towards predicting the sentence class and
can be considered as the token-level predictions.
Their normalized forms are used for constructing a
weighted average sentence representation c, which
is used to compute the prediction score y with a
value higher than 0.5 indicating a positive class:

ai =
ãi∑N

k=1 ãk
(5)

c =

N∑
i=1

aihi (6)

d = tanh(Wdc+ bd) (7)

y = σ(Wyd+ by) (8)

where Wd ∈ Rq×n, bc ∈ Rq, Wy ∈ R1×q, and
by ∈ R. The authors used a modified loss function
to ensure that the model learns high-quality token
labels:

L =
∑
j

[(y(j) − ỹ(j))2 + λ(mini(ãi)
2+

(maxi(ãi)− ỹ(j))2)]
(9)

where y(j) is the predicted score, ỹ(j) is the
ground-truth, mini(ãi) and maxi(ãi) are the low-
est and highest attention scores respectively for the
jth sentence.

Karamanolakis et al. (2019) used a modified ver-
sion of this approach to generate segment labels for
text review classification problems. The segment
embeddings are generated by feeding the word em-
beddings into a convolutional neural network. The
output of the convolution neural network is passed
through a single layer with softmax activation to
get the segment-level prediction. Additionally, the
word embeddings are passed through a bidirec-
tional GRU network with sigmoid attention to find
the attention weights. These weights are used to ag-
gregate the segment-level predictions into a single
prediction for the entire review.

3 Methodology and Experimental Setup

In this section, we will present our two solutions.
Both of our approaches are using BERT pre-trained
language model. In the first approach, we first fine-
tune the BERT model with additional labeled data
explained in Subsection 3.1 and then perform an-
other round of fine-tuning using token classifica-
tion head with task training data. In the second
approach, we apply weak supervision to learn to-
ken labels for the additional dataset. We then use
the augmented labeled token dataset to fine-tune
the token classifier head and use it to predict labels
for the task test data set.

3.1 Datasets

As the main data source for training our models,
we used SemEval-2021 Task 5 data. Additionally,
we used five publicly available English-language
datasets for sentence classification to improve our
results.

3.1.1 Token-level Labelled Data
We used two token-level labeled datasets, the first
being the one provided by the SemEval-2021 Task
5 organizers which are composed of 9,939 English
posts along with their toxic spans. The span for
a single post is a possible-empty list of character
indices that have been marked as toxic by crowd-
annotators. The dataset has been divided into train-
ing and test sets with 2,000 samples in the latter.

The second dataset used is HateXplain (Mathew
et al., 2020) which is composed of 20,148 tweets
and Gab posts, each of which is classified as hateful,
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offensive, or normal, by three annotators. If an an-
notator masks a post as either hateful or offensive,
they are also asked to mark the span (rationale)
which influenced their decision. We considered a
token to be toxic if it was included in at least one
annotator’s rationale, and excluded all posts with
no toxic token, which left us with 11,415 posts.

3.1.2 Sentence-level Labelled Data
We used five other datasets which consisted of only
sentence-level labels:

• Jigsaw/Conversation AI toxic comment clas-
sification challenge dataset2 - Composed of
Wikipedia’s talk page edits, it labels 223,549
posts into zero or more categories of toxicity
(toxic, severely toxic, obscene, threat, insult,
and identity hate). We bundled each of them
into a single category, and 22,468 posts were
categorized as toxic.

• Hate speech and offensive language
dataset (Davidson et al., 2017) - 24,783
tweets categorized to hate speech, offensive
language, or neither. We labeled 20,620
belonging to the former two categories as
toxic.

• Online harassment dataset (Golbeck et al.,
2017) - Composed of 20,360 tweets out of
which 5,285 have been labeled as harassing.

• Impermium dataset for detecting insults in
social commentary3 - 6,594 comments from
online forums, out of which 1,742 were iden-
tified as insulting to at least one of the partici-
pants.

• OffensEval-2020 subtask-A extended test
dataset - 5,993 tweets out of which 3,002 have
been labeled as offensive.

Merging these five datasets resulted in a collec-
tion of 281,279 comments out of which 53,117
were labeled as toxic.

3.2 Approach 1: Sequential fine tuning

In approach 1, we first fine-tune the sentence clas-
sification model with additional data. The sentence
classification model is built upon the base uncased

2www.kaggle.com/c/jigsaw-toxic-commen
t-classification-challenge/data

3www.kaggle.com/c/detecting-insults-i
n-social-commentary/data

BERT model, which maps every sentence to a vec-
tor of size 768. A two-layer sentence classifier is
added to the BERT base model. The first layer of
the head is a linear layer with leaky ReLU activa-
tion (negative slope of 0.1) that maps it to a vector
of size 64. The second layer of the head is a dense
layer that maps 64 nodes to a single-valued predic-
tion score with sigmoid activation. The model is
shown in Figure 1.
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Figure 1: Model for sentence classification

We used the pre-trained BERT language model
as the starting point for the BERT model. The lay-
ers of sentence classification head were randomly
initialized. We applied the WordPiece tokenizer
and added the special BERT tokens [CLS] and
[SEP] to each sentence. We removed 5,136 sam-
ples as their number of tokens exceeded the base
BERT model’s maximum limit (512). The model
was trained for a single epoch using the AdamW
optimizer (Loshchilov and Hutter, 2019) with a
batch size of 16.

The fine-tuned model was used to predict token
classes. To predict token classes, a token classi-
fication was used. The token classification head
architecture is similar to the sentence classification
head with two linear nodes. The first layer maps
768-dimensional inputs to 64 nodes and applies the
ReLu activation function with the negative slope of
0.1. The second layer maps input to a single token
prediction score with a sigmoid activation function.

www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
www.kaggle.com/c/detecting-insults-in-social-commentary/data
www.kaggle.com/c/detecting-insults-in-social-commentary/data
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3.3 Approach 2 : Augmenting token labels
with weak supervision

In our second approach, we first augment our train-
ing set with imperfect labels that we learn by weak
supervision. We then use the augmented training
set to fine-tune the token classifier model and use
it to predict the labels of our test data. The model
used for augmenting token labels using sentence-
level labeled dataset described in Section 3.1.2, is
loosely based upon the solution proposed by Kara-
manolakis et al. (2019). The model is shown in
Figure 2. We first obtain the initial token embed-
dings from a pre-trained BERT model and input it
to the token augmentation network shown in Fig 2.
The input is connected on one side to token labels
as well as to sentence-level predictions through
two BiGRU layers. The GRU layers generate an
attention weight for every token. These weights are
used for finding a weighted average of the token-
level predictions, which is used to calculate the
prediction for the entire sentence.

Equation 9 is used as the loss function to train
the weights of the model. The sentence labels are
calculated from token labels following equations 5
to 8. The loss function optimizes the sentence and
token labels. first, it makes sure sentence classifi-
cations are closest to the sentence labels. Second,
it optimizes token labels by considering the min-
imum values of token labels in each sentence. It
makes sure the minimum label of the tokens in
a single sentence is zero to make sure all tokens
in a sentence do not have a positive sentiment. It
makes sure the most toxic token in the sentence
has the same label as the label for the sentence. We
trained the model for five epochs using the AdamW
optimizer with a batch size of 16.

The token labels generated by the model de-
scribed above are used as additional training data.
The BERT base model is initialized with the pub-
licly available pre-trained version. Only those
artificially-generated samples in the sentences with
the correctly predicted label (prediction score ≥
0.5) are used. We used the prediction scores as
the labels for the additional dataset instead of hav-
ing discrete values of zero and one based on some
threshold. We also subtracted the value of 0.1898
from these labels to make their mean equal to that
of the labels of the contest dataset.

For generating the character offsets, we consid-
ered an entire word as toxic if any single of its
subword tokens were identified as toxic.

Static and non-contextual BERT embeddings

Size 64

Linear layer with
tanh activation

Size 1

Linear layer with
sigmoid activation

Token-level
predictions pi

Size 64

BiGRU with leaky ReLU
activation (0.1)

Size 1

BiGRU with sigmoid
activation

Normalization

Sigmoid attention values

Attention weights ai

Sentence-level
predictions yi

Size 768

Figure 2: Model for generating token labels

4 Results

Disclaimer: The section contains offensive, ob-
scene, and hateful content; however this is neces-
sary to showcase the results of this work.

The contest organizers used the average F1 score
as the performance metric. For a sample Si, if Ỹi
and Yi are the predicted and actual set of character
offsets, then the F1 score F i

1 is calculated as

F i
1 =

2 · P i(Ỹi, Yi) ·Ri(Ỹi, Yi)

P i(Ỹi, Yi) +Ri(Ỹi, Yi)
(10)

P i(Ỹi, Yi) =
|Ỹi ∩ Yi|
|Ỹi|

(11)

Ri(Ỹi, Yi) =
|Ỹi ∩ Yi|
|Yi|

(12)

Our best-scoring solution submitted to the con-
test achieved an F1-Score of 0.6561 and a rank of
49 amongst 91 submissions. After the contest, we
excluded the HateXplain dataset from the token-
classification training process to make the model
more suited for the contest dataset and masked out
the padding tokens while calculating mini(ãi)2 in
Equation 9. We also developed a baseline model
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which does not use any additional datasets by
training the pre-trained base BERT model with
the token-level labeled dataset described in Sec-
tion 3.1.1. The training hyper-parameters were the
same as our other approaches. The F1 scores for
the baseline model and the two approaches dis-
cussed in Sections 3.2 and 3.3, namely the sequen-
tial adaptation and the weakly supervised learning
approaches have been plotted for various thresholds
in Figure 3.
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Figure 3: F1 score plotted against threshold

The F1 score at threshold value 0.5 and the max-
imum F1 score for each approach have been men-
tioned in Table 1.

Approach F10.5 F1max

Baseline model 0.6224 0.6289
Weakly Supervised 0.6644 0.6799

Sequential adaptation 0.6678 0.6861

Table 1: F1 score metrics for various approaches

Using sentence-level labeled data to incorpo-
rate domain-specific knowledge improves the re-
sults by a considerable margin. The increase in
performance over the baseline model is more pro-
found for the higher threshold value. This can be
attributed to the comparatively higher toxicity of
the sentence-level labeled datasets when compared
with the contest dataset, which makes the models
more expert on detecting highly toxic spans. We
observe that the sequential adaptation approach out-
performs the weakly supervised learning approach.
However the latter might be more suitable for large-

scale datasets due to less training time: the sentence
classification model has to be trained on the entire
sentence-labeled dataset in which the majority of
the samples are non-toxic, whereas the model for
generating token labels is trained only on toxic
samples. In our experiments, the former took 4.25
hours for a single epoch of training and the latter
took 1.5 hours for five epochs of training. Even
though training the token classification model takes
more time in the weakly supervised approach due
to larger volume of data samples, the training time
difference was only 48 minutes. All the models
were trained on the Kaggle Notebooks4 platform
using GPUs.

The model for generating token labels (described
in Section 3.3) did not perform as we expected. Out
of the 52,640 toxic samples, only 7,629 samples
were given a toxicity score of more than 0.5, thus
greatly reducing the size of the additional dataset
for token classification. However it was successful
in correctly identifying the toxic spans. For ex-
ample, the highlighted parts were given a toxicity
score of more than 0.9 in the following sample:

admins suck!! the fucking admins suck
ass! i fucking hate the people who
delete my fucking shit!!!!!!!!5

5 Conclusion and Future Work

In this paper, we proposed two solutions to improve
the baseline transformer model fine-tuning for the
span toxicity detection task. In the first approach,
we performed sequential fine-tuning with an ad-
ditional fine-tuning of the sentence classifier with
supplemental public data. In the second approach,
we augmented the labeled token dataset with weak
supervision and then performed the fine-tuning to-
ken classification on the augmented dataset. Our ex-
perimental results show that the first approach im-
proves the baseline fine-tuning results by a 0.0572
F1 score and the second approach improves the
baseline results by a 0.051 F1 score. An interesting
future direction is to improve the weak supervision
technique - possibly using other objective functions
for relating token labels and sentence labels - and
multi-task learning.

4https://www.kaggle.com/code
5This sample is from the Jigsaw toxic comment classifi-

cation challenge dataset (id 13913f443da71ac6) and was
labelled as toxic and insult.

https://www.kaggle.com/code
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