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NLP Keynote by Prof. Vincent Ng

Event Coreference Resolution: Successes and Future

Challenges

Speaker: Prof. Vincent Ng

Professor, The University of Texas at Dallas

Time: Friday, October 15, 2021, 09:10 - 10:10

Biography
Vincent Ng is a Professor in the Computer Science Department at the University of
Texas at Dallas. He is also the director of the Machine Learning and Language
Processing Laboratory in the Human Language Technology Research Institute at UT
Dallas. He obtained his B.S. from Carnegie Mellon University and his Ph.D. from
Cornell University. His research is in the area of Natural Language Processing,
focusing on the development of computational methods for addressing key tasks in

information extraction and discourse processing.

Abstract

Recent years have seen a gradual shift of focus from entity-based tasks to event-based
tasks in information extraction research. This talk will focus on event coreference
resolution, the event-based counterpart of the notoriously difficult entity coreference

resolution task. Specifically, I will examine the major milestones made in event



coreference research since its inception more than two decades ago, including the
recent successes of neural event coreference models and their limitations, and discuss

possible ways to bring these models to the next level of performance.



Speech Keynote by Dr. Jinyu Li

Advancing end-to-end automatic speech recognition

Speaker: Dr. Jinyu Li

Partner Applied Scientist and Technical Lead,
Microsoft Corporation, Redmond, USA

Time: Saturday, October 16, 2021, 09:00 - 10:00

Biography
Jinyu Li received the Ph.D. degree from Georgia Institute of Technology, Atlanta, in
2008. From 2000 to 2003, he was a Researcher in the Intel China Research Center and
Research Manager in iFlytek, China. Currently, he is a Partner Applied Scientist and
Technical Lead in Microsoft Corporation, Redmond, USA. He leads a team to design
and improve speech modeling algorithms and technologies that ensure industry state-
of-the-art speech recognition accuracy for Microsoft. His major research interests
cover several topics in speech recognition, including end-to-end modeling, deep
learning, noise robustness, etc. He is the leading author of the book "Robust
Automatic Speech Recognition -- A Bridge to Practical Applications", Academic
Press, Oct, 2015. He is the member of IEEE Speech and Language Processing
Technical Committee since 2017. He also served as the associate editor of IEEE/ACM

Transactions on Audio, Speech and Language Processing from 2015 to 2020.

Abstract
Recently, the speech community is seeing a significant trend of moving from deep

neural network based hybrid modeling to end-to-end (E2E) modeling for automatic



speech recognition (ASR). While E2E models achieve the state-of-the-art results in
most benchmarks in terms of ASR accuracy, hybrid models still dominate the
commercial ASR systems at current time. There are lots of practical factors that affect
the production model deployment decision. Traditional hybrid models, being
optimized for production for decades, are usually good at these factors. Without
providing excellent solutions to all these factors, it is hard for E2E models to be
widely commercialized. In this talk, I will overview the recent advances in E2E
models with the focus on technologies addressing those challenges from the
perspective of industry. Specifically, I will describe methods of 1) building high-
accuracy low-latency E2E models, 2) building a single E2E model to serve all
multilingual users, 3) customizing and adapting E2E models to a new domain 4)
extending E2E models for multi-talker ASR etc. Finally, I will conclude the talk with

some challenges we should address in the future.
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Universal Recurrent Neural Network Grammar

Chinmay Choudhary
National University of Ireland
Newcastle, Galway
c.choudharyl@nuigalway.ie

Abstract
Modern approaches to Constituency
Parsing are mono-lingual supervised

approaches which require large amount
of labelled data to be trained on, thus
limiting their utility to only a handful
of high-resource languages. To address
this issue of data-sparsity for low-resource
languages we propose Universal Re-
current Neural Network Grammars
(UniRNNG) which is a multi-lingual
variant of the popular Recurrent Neural
Network  Grammars (RNNG) model
for constituency parsing. UniRNNG
involves Cross-lingual Transfer Learning
for Constituency Parsing task. The
architecture of UniRNNG is inspired by
Principle and Parameter theory proposed
by Noam Chomsky. UniRNNG utilises the
linguistic typology knowledge available as
feature-values within WALS database, to
generalize over multiple languages. Once
trained on sufficiently diverse polyglot
corpus UniRNNG can be applied to
any natural language thus making it
Language-agnostic constituency parser.
Experiments reveal that our proposed
UniRNNG outperform state-of-the-art
baseline approaches for most of the target
languages, for which these are tested.

Keywords: Constituency Parsing, Cross-
lingual Transfer-learning

1 Introduction

Noam Chomsky proposed the hypothesis of
Universal Grammar (UG) (Chomsky,
1986; Cook and Newson, 2014) which states
that all human languages, while being su-
perficially as diverse as they are, share some
fundamental similarities. Thus he argues that
deep down the specific grammars of various
natural languages, there exists a Universal

Colm O’riordan
National University of Ireland
Newecastle, Galway
colm.oriordan@nuigalway.ie

Grammar. Since then many linguists (Baker,
2008; Fodor and Sakas, 2004; Tomasello,
2005; Pinker, 1995; Fodor, 2001) attempted
to outline the principles and parameters of
this Universal Grammar manually, but with
very limited success. If it is nearly impossible
to identify and outline UG manually due
to its anticipated large size and complexity
(Roberts and Holmberg, 2005; Kayne, 2012;
Cinque and Rizzi, 2010; Shlonsky, 2010),
we can use a neural network to learn these
automatically.

Recently Recurrent Neural Network based
models for parsing (eg: Recurrent Neural
Network Grammars (RNNG)(Dyer et al.,
2016)) are proven to do excellent job in
automatically learning and encoding (as
model-parameters) the grammar of any
language directly from its tree-bank corpus.
This inspires us to make following assumption:

A Recurrent Neural Network based
multi-lingual parser trained on a di-
verse polyglot treebank corpus would
learn and encode the Universal Gram-
mar as its model-parameters.

Based on this assumption, we propose
Universal Recurrent Neural Network
Grammar (UniRNNG) which is a multi-
lingual variant of Dyer’s RNNG model (Dyer
et al., 2016). The architecture of UniRNNG
is indeed inspired by the Principle and Param-
eter framework (Chomsky, 1993) advocated
by linguists Noam Chomsky and Howard
Lasnik.  Hence unlike Dyer’s RNNG, our
proposed model comprises of two sets of
model-parameters « and 8. « would encode
Universal Principles which are shared by all
the languages and 8 would encode Parameters
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which are tuned to specific language of the
sentence being parsed during run-time.

Our proposed model involves Cross-lingual
Transfer Learning (CLT) from a polyglot
corpus of high-resource source-languages to
a low-resource target language. CLT has
extensively been applied to numerous NLP-
tasks including Dependency Parsing (Daniel
et al.,, 2017a; Zeman et al., 2018a), Natural
Language Inference (Conneau et al., 2018;
Singh et al., 2019; Huang et al., 2019; Doval
et al., 2019), Question Answering (Liu et al.,
2019; Lee and Lee, 2019; Lewis et al., 2019),
Text-classification (Bel et al., 2003; Shi et al.,
2010; Mihalcea et al., 2007; Prettenhofer and
Stein, 2010; Xu et al., 2016; Chen et al.,
2018) etc. However, as far as we are aware,
this is the first paper which evaluates the
performance of CLT on Constituency Parsing
task.

In order to generalize a mono-lingual con-
stituency parsing model to multi-lingual
settings, we utilize the knowledge of Lan-
guage typology which is available as various
typological feature-values in World Atlas of
Language System (WALS) (Haspelmath,
2009) database.

It is observed that CLT based approaches
do not perform well if the source and target
languages are typologically very distinct
(Ruder et al., 2019a). But since UniRNNG
explicitly models over the typological features
(as inputs) and is trained on a sufficiently
diverse polyglot corpus, it is comparatively
more robust to the typological differences
between source and target languages. In other
words, once being trained on sufficiently large
and typologically diverse corpus it can be
applied to any natural-language thus making
it Language-Agnostic.

Section 2 provides a brief description of
Recurrant Neural Network Grammar (RNNG)
proposed by Dyer’ et. al as background work.
In section 3 we outline the architecture and
intuition behind our proposed UniRNNG.
Sections 4 and 5 describe the experiments
performed and results obtained during the
evaluation of proposed model.

2 Background

2.1 Cross-lingual Parsing

Cross-lingual Model-transfer approaches to
Dependency Parsing such as (Daniel et al.,
2017a; Zeman et al., 2018a; Duong et al., 2015;
Guo et al., 2016; Vilares et al., 2015; Falen-
ska and Cetinoglu, 2017; Mulcaire et al., 2019;
Vania et al., 2019; Shareghi et al., 2019) in-
volve training a model on high-resource lan-
guages and subsequently adapting it to low-
resource languages. Participants of CoNLL
2017 shared-task (Daniel et al., 2017b) and
CoNLL 2018 shared task (Zeman et al.,
2018b) also provide numerous approaches to
dependency parsing of low-resource languages.
Some approaches such as (Naseem et al., 2012;
Téckstrom et al., 2013; Barzilay and Zhang,
2015; Wang and Eisner, 2016a; Rasooli and
Collins, 2017; Ammar, 2016; Wang and Eisner,
2016b) used typological information to facili-
tate cross-lingual transfer. However all these
approach utilise cross-lingual transfer learn-
ing for depndency-parsing task while our ap-
proach is for the cross-lingual Constituency-
parsing/Phrase-parsing.

2.2 Recurrent Neural Network
Grammar

RNNGs is a transition based approach to con-
stituency parsing. Transition based parsing
approaches reformulate the parsing problem as
the task of prediction of best possible action-
sequence.

A typical transition-based parser (Jurafsky
and Martin, 2019) consists of a Stack S which
stores the incomplete parse-tree, Buffer B
which stores the sentence tokens and the set
of all possible actions A. At every time-step t,
the algorithm chooses the best action a; € A,
given the current state of stack Sy, buffer By
and history of actions a<;. Depending upon
the chosen action as, the Stack and Buffer are
updated accordingly. The process is continued
until the Buffer becomes empty and Stack con-
sists of completed parse-tree.

(Dyer et al., 2016) proposed two variants of
RNNGs namely Discriminative and Genera-
tive model. The Discriminative model com-
putes most probable parse-tree y given the cor-
responding sentence x whereas the Generative
RNNG is a language-model that generates sen-
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Action Description
NT(X) Opens a non-terminal node "X’ and puts it on top of Stack. eg: NT(VP)==>(VP
SHIFT Removes topmost token from the Buffer B and pushes onto Stack
REDUCE | Repeatedly pops completed sub-trees or terminal symbols from the stack until an
open non-terminal is encountered, and then this open NT is popped and used as
the label of a new constituent that has the popped sub-trees as its children. This
new completed constituent is pushed onto the stack as a single composite item.
Table 1: Action Set for Discriminative RNNG (Dyer et al., 2016)
a. RNNG b. UniRNNG
W, c r. b b
Tanh M Softmax T Softmax
—_—— Feed-forward network S, Stack RED a model-parameters
L] Concatenation = Buffer GREEN B model-parameters
Pre Probabilities of all a., Action-history z Typology Vector

actionsattime t

Figure 1: a. Recurrent Neural Network Grammar (RNNG) architecture. b.Universal Recurrent Neural

Network Grammar (UniRNNG) architecture.

tence z and y simultaneously. Our proposed
UniRNNG is a multi-lingual variant of the
Discrimantive RNNG.

2.2.1 Discrimative RNNG

Table 1 describes the actions within action-set
A for the Discriminative RNNG (DiscRNNG).
At any time-step t, RNNGs use a stack-LSTM
(Dyer et al., 2015) to encode the current state
of Stack Sy and use simple RNN to encode the
current state of Buffer B; and action-history
a<¢. Given S, By and a<¢, the probability
vector P, comprising probabilities of all actions
within A being the appropriate action to be
taken at time-step t is computed by applying
equation 1.

P = softmax(rTu; + b) (1)

Vector wu; is vector representing the entire
model-state at time t. u; is computed by ap-

plying equation 2.
up = tanh(W[S; By act] + ¢) (2)

Figure la depicts the neural-architecture for
the entire action-prediction process at any
time-step t by the RNNGs.

Given a sentence (token-sequence) z° and its
respective parse-tree yi as a training example,
the action-sequence that generated y* from
can be extracted by depth-first, left-to-right
traversal of 3’. The model-parameters are
learnt by maximizing the likelihood of this ex-
tracted action-sequence for each training ex-
ample.

3 UniRNNG Model

This section describes our proposed Univer-
sal Recurrent Neural Network Gram-
mar (UniRNNG). As being a multi-lingual
variant of DiscRNNG (section 2.2.1), the
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UniRNNG is also a transition based parser
consisting of a Stack S, Buffer B and action-
set A. At any time-step, the Stack stores in-
complete parse-tree and Buffer stores token-
sequence. At each time-step t, model pre-
dicts best action a; € A given current state
of Stack (S;), Buffer (B;) and Action-history
(a<t). Subsequently Stack and Buffer are up-
dated as S;11 and Biy1, according to action
Q.

3.1 Architecture

Figure 1b depicts the architecture of the
UniRNNG. At each time-step t the pro-
posed model computes the Stack-encoding Sy,
Buffer encoding B; and action-sequence encod-
ing a<; using stack-LSTM and RNN respec-
tively, in similar way as DiscRNNG. (Section
2.2.1). However for UniRNNG Cross-lingual
Word-Embeddings are used instead of Word-
Identifier vectors during encoding of Stack and
Buffer.
Once having computed S;, B; and a<
the model computes two distinct vector-
representations of the entire model-state at
time t namely a-vector (u®;) and [-vector
(uPy), unlike DiscRNNG which computes sin-
gle representation u; (equation 2). The u®
and u?, are computed through equations 3 and
4.

u®y = tanh(W[Sy; Bi;act] + %) (3)

u?, = t(mh(WB [St; By;acy] + cﬁ) (4)

A typology aware version of B-vector ﬁf is com-

puted by applying equation 5 (computation
simply involves concatenation and dimension
reduction through feed-forward network).

Al = tanh(WuPy; Z) + ¢) (5)

Here Z € R4l is a Linguistic-typology vec-
tor. Each value within Z represents a single
typology-feature from WALS (Haspelmath,
2009) database having specific value as inte-
ger for the language being parsed. Both u?;
and @, have same dimensions i.e. RY. Fi-
nal state-representation at time ¢ is given as
concatenation of a-vector (u®;) and typology
aware version of B-vector (ﬁtﬁ) as equation 6.
Missing features for any language is assigned
zero indicating no dominant value for it.

e = [u®s; @7 (6)

To summarize UniRNNG is very similar to
Dyer’s DiscRNNG 2.2.1 with following mod-
ifications.

1. Cross-lingual Word-embeddings are used
instead of unique word-identifiers

2. At each time-step t, two distinct
model-state representations are computed

namely «a-vector u®; and [-vector ub,.

3. Final model-state representation wu; is
computed as concatenation of «-vector
and typology aware version of [-vector.
This is unlike original DiscRNNG where
uz is computed directly from S;, B; and

A<t

4. Model is trained on a typologically diverse
polyglot corpus.

The proposed architecture is inspired by the
Principle and Parameter framework (Chom-
sky, 1993) framework proposed by linguists
Noam Chomsky and Howard Lasnik. (Chom-
sky, 1993). The central idea behind the PP
framework is that a person’s syntactic knowl-
edge can be modelled with two formal at-
tributes namely a finite set of fundamental
Principles that are shared by all languages
(e.g.: A sentence must always have a subject)
and a finite set of Parameters whose values
characterize syntactic variability amongst var-
ious languages (eg: Subject-Verb-Object (S-V-
O) order within a sentence).

Inspired by this PP theory, our proposed
UniRNNG architecture comprises of distinct «
(W,c*) and 8 (W5 cP) parameters to encode
the universal and language specific features.

4 Experiments

This section describes the experiments con-
ducted to evaluate the performance of pro-
posed UniRNNG. Each experiment com-
prises of a set of source languages L and a
single target language [;.

4.1 Experimental Settings

We evaluated the performance of UniRNNG
under two experimental setups namely Few-
shot learning and Zero-shot learning setups.

Few-shot Learning (Wang et al., 2019) is ap-
plied when only few training examples are
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Language Tree-bank Family
English Penn tree-bank (Marcus et al., 1993) Germanic
Swedish (sd) Talbanken05 (Nivre et al., 2006) Germanic
French (fr) FrenchTreebank (Abeillé et al., 2003) Romance
Spanish (es) Spanish UAM Treebank (Moreno et al., 1999) Romance
Japanese (jp) Tiba-J/S (Kawata and Bartels, 2000) Altic
Arabic (ab) Arabic PENN Treebank (Bies and Maamouri, 2003) | Afro-asiatic
Hungarian (hg) Hungarian Szeged Treebank (Treebank) Uralic

Table 2: List of source languages and their corpra used during experimentation. corpra are used to train

both Word-Embeddings and Parsers

Language Tree-bank Family
German (de) Negra Treebank (Skut et al., 1997) Germanic
Danish (da) Arboretum Treebank (Bick, 2003) Germanic
Italian (it) ISST Treebank (Montemagni et al., 2003) Romance
Catalan (ct) Catalan AnCora Treebank (Taulé et al., 2008) Romance
Korean (kr) Korean Penn Treebank (Han et al., 2002) Altic
Heberew (hb) (Sima  an et al., 2001) Afro-asiatic
Estonian (est) Estonian Arborest Treebank (Bick et al.) Uralic
Hindi (hi)* Hindi-Urdu Treebank (Bhat et al., 2017) Indo-aryan
Vietnamese (vt)* | Vietnamese Treebank (Nguyen et al., 2009) | Austroasiatic

Table 3: List of target languages and their corpra used during experimentation. corpra are used to train
both Word-Embeddings and Parsers. * these languages are used only in zero-shot settings

available in the target language. In this
setup, the cross-lingual models (baseline and
UniRNNG) are trained on a mixed corpus
comprising of source-language sentences (cov-
ering over 80% corpus) and few available tar-
get language sentences. Hence for Few-shot
Learning setup l; € Lg.

Zero-shot Learning (Socher et al., 2013) is ap-
plied when no labelled dataset is available in
the target language. Hence l; ¢ L.

4.2 Baselines

This section describes the baselines used to
compare the performance of our proposed
UniRNNG.

4.2.1 Mono-lingual Models trained on
Sparse Dataset

We used this baseline to compare the per-
formance of our proposed UniRNNG only
in the Few-shot learning settings. As our
UniRNNG model is intended to be applied
for low-resource languages, we compare the
performance of it with that of the state-
of-the-art mono-lingual models trained on
sparse dataset. We experiment with three

mono-lingual constituency parsers namely Dis-
cRNNG 2.2.1, (Kuncoro et al., 2016) and
Transformer (Vaswani et al., 2017).

These models provide over 95% F-Score when
trained with sufficiently large dataset. But
they would not show such high performance
when trained on sparse dataset.

4.2.2 Unsupervised Recurrant Neural
Network Grammar (URNNG)

Its a state of the art approach to unsupervised
constituency parsing. We used this baseline
to compare the performance of our proposed
UniRNNG only in the Zero-shot learning set-
tings.

4.2.3 Cross-lingual RNNG Parser
trained on single source
language (CL-RNNG-Mono)

Its the Dyer’s RNNG model (Dyer et al., 2016)
with only two modifications. Firstly the Cross-
lingual Word Embeddings (Ruder et al., 2019b)
are used rather than unique word-identifier
vectors as used by Dyer et. al. Secondly
the model is trained on a single source lan-
guage FEnglish (UniRNNGs are trained on poly-
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Hyper- Value

parameter

WE dims 768

St,Bt,(I<t dims 450

uﬁt, u%; dims 450

Dropout prob. 0.01

Bach-size 32

Number of steps | Size of training cor-
per epoch pus / 32

Epochs 150

BERT Model bert multi cased L-

12._H-768 A-12

Table 4: Hyper-parameters

glot corpus) and tested on multiple target lan-
guage. Within Few-shot learning, the training
corpus also include small number of labelled
target language sentences.

4.2.4 Cross-lingual RNNG Parser
trained of multiple source
languages (CL-RNNG-Poly)

It is the same model as described in 4.2.3, but

trained on a mixed polyglot corpus of high-

resource source languages.(CL-RNNG-Mono
is trained on a single source language English).

Similar to 4.2.3, a small number of labelled

target-language [; sentences are included as

part of the training corpus within the Few-shot
settings.

4.3 Dataset

Tables 2 and 3 list all the Source and Tar-
get languages as well as their tree-bank cor-
pra used during experimentation. We evalu-
ated our proposed UniRNNG model and all
the baseline models on each of the target lan-
guages listed in Table 3 independently.

As already explained in section 4.1, the
CL-RNNG-Mono parsers (4.2.3) are always
trained on the single source-language FEn-
glish, whereas the CL-RNNG-Poly and the
UniRNNG Parsers are always trained on a
mixed polyglot corpus (in both few-shot and
zero-shot setups). For each experiment, the
source-language training corpus size is always
fixed to 700,000 tokens to ensure controlled
experiment-settings.

We created the source-language training-
corpus for CL-RNNG-Mono parsers by ran-
domly sampling sentences from the English-

at a time), until the
token-size becomes approximately equal to
700,000. On the other hand, to create
the source-language training-corpus for CL-
RNNG-Poly and UniRNNG models, we ran-
domly sampled sentences from each of the
seven source-language corpra listed in table
2 until the token-size becomes approximately
equal 100,000, concatenated all these sam-
pled datasets and randomly shuffled the or-
der. Hence all the seven source-languages
listed in table 2 are equally represented in
the training-corpus for CL-RNNG-Poly and
UniRNNG models.

PTB corpus (one

4.3.1 Short tree-bank corpra

As explained in section 4.1, within Few-
shot learning settings, only sparse target-
language dataset should be used to train both
UniRNNG and Baselines. Hence we extracted
a small subset of entire large treebank corpus
for each target language listed in table 3.

We extracted this subset by randomly sam-
pling sentences from the target-language tree-
bank corpus until the token-size becomes ap-
proximately equal to 3000. This is inspired
by (Ammar et al., 2016) who used same yard-
stick to evaluate their Multi-lingual Depen-
dency Parser (MALOPA). This small target-
language language corpus is added to the
source-language training corpus for each exper-
iment, within Few-shot Learning setup.

4.4 Universal Annotation

There are numerous tree-bank corpra for a di-
verse range of languages being developed dur-
ing the years (some listed in Tables 2 and
3). But unlike Dependency Parsing tree-banks
which are mostly annotated with the UD An-
notations (McDonald et al., 2013) (for most
languages), in case of Constituency Parsing
various existing tree-bank corpra have their
own independent tag annotations, thus mak-
ing the application of multi-lingual approaches
to it as impossible.

However, (Han et al., 2014) proposed a Univer-
sal Phrase tag-set with 9 common Phrase-tags.
Furthermore, (Han et al., 2014) also provides
a mapping table to map tags of popular con-
stituency tree-banks (including all treebanks
used by us in our experiments) to these Un-
versal Phrase Tags.
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We used this mapping table to replace all
tags within all tree-banks listed in Tables 2
and 3, with the universal tags. Subsequently
we trained and evaluated all approaches (in-
cluding baseline mono-lingual approaches) on
these Universally Tagged tree-bank versions.

4.5 Cross-Lingual Word Embedding

As our model is a polyglot, we use Cross-
lingual Word-embeddings during the encoding
of Stack and Buffer state at any time-step t.
We use a simple Linear transformation based
approach (Ruder et al., 2019b) to compute
such Cross-lingual Word-embeddings.

Given two languages [1 and ls, the simple Lin-
ear Transformation based approach first trains
the mono-lingual WE for both [; and Iy inde-
pendently. Subsequently it uses a bi-lingual
lexicon to learn a transformation matrix W2
to project embeddings of words of I to the
embedding-space of Iy (considering Iy as refer-
ence language).

To ensure that all WE are within same space,
we use English as reference language. Mono-
lingual WE of any other language [ are thus
transformed into the English space by learn-
ing the transformation matrix W€ from word-
pairs extracted from FEnglish-I bi-lingual lexi-
con.

We experiment with five common Word-
embeddings namely Skip-gram  Word2vec
(Mikolov et al., 2013), Fast-text (Grave et al.,
2018), Glove (Pennington et al., 2014), ELMo
(Peters et al., 2018) and BERT (section 4.5.1).
We use bi-lingual seed dictionaries provided by
WOLD (Haspelmath and Uri Tadmor, 2009),
ASJP (Wichmann and Brown, 2016) and IDS
(Key and Comrie, 2015) which are elaborate
multi-lingual lexical semantic databases.

4.5.1 BERT Word Embeddings

We computed language-independent BERT-
Embeddings to be fed into UniRNNG us-
ing pre-trained Multilingual BERT (mBERT)
(Wu and Dredze, 2019) model. mBERT is a
multilingual variant of original BERT model
(Devlin et al., 2018) trained on text from
Wikipedia in 104 languages.

The Embeddings are calculated in same way
as in (Kondratyuk and Straka, 2019). Given
a sentence S, we tokenised the whole sentence
using WordPiece tokeniser (Wu et al., 2016).

Subsequently we fed this token-sequence into
pre-trained mBERT provided by (Turc et al.,
2019). Embedding of any word w € S i.e. e,
is computed by taking average of mBERT out-
puts of all Wordpiece tokens corresponding to
word w.

Thus, mBERT based Word-embeddings do not

require any Linear transformation.

4.6 Typology and Hyper-parameters

Table 4 outlines hyper-permeters used during
experiments. These values are obtained by
minimizing the training loss on Development
dataset (Dev set) for Penn Treebank Corpus
(Marcus et al., 1993).

Typology vector Z includes feature-values of
all word-order and constituency features in
WALS (Haspelmath, 2009) database exclud-
ing trivially redundant features as excluded by
(Takamura et al., 2016).

5 Results and Inference

Tables 5 outlines results obtained from ex-
periments conducted within the Few-shot
Learning settings. Best results for CL-
RNNG-Mono, CL-RNNG-Poly and proposed
UniRNNG models are obtained with BERT
Embedding. Table 6 outlines results obtained
for experiments conducted under Zero-shot
learning settings. As we obtained best results
with BERT Embeddings within few-shot
settings, we experimented with only BERT-
embeddings 4.5.1 in Zero-shot settings indeed.
As CL-RNNG-Mono is trained on the single
source language English, it is expected to
perform comparatively better on the target
languages which are typologically closer to
English and poorer on the target languages
which are typologically apart from English.
On the other hand, CL-RNNG-Poly and
UniRNNG are expected to perform almost
uniformly on all the target languages as these
are trained on typologically diverse polyglot
corpra. These expected trends are in-fact
observed in both Few-shot and Zero-shot
learning settings as evident in Tables 5 and 6.
Hence for languages Danish (da) and German
(de), CI-RNNG-Mono outperformed both
CL-RNNG-Poly and UniRNNG as these
languages belong to the same language-family
as English namely Germanic and are indeed



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

Model de da it ct kr hb est
Transformers (Vaswani et al., 2017) | 34.34 | 33.08 | 34.71 | 33.74 | 35.58 | 35.60 | 35.57
DiscRNNG 2.2.1 34.49 | 33.52 | 35.01 | 34.15 | 36.02 | 35.74 | 35.94
(Kuncoro et al., 2016) 34.98 | 33.68 | 35.53 | 34.46 | 36.3 | 36.42 | 36.23
CL-RNNG-Mono+Skip-Gram 65.63 | 70.85 | 54.59 | 58.05 | 22.95 | 30.44 | 53.43
CL-RNNG-Mono+Fast-text 67.13 | 72.55 | 56.39 | 60.35 | 24.75 | 31.94 | 55.83
CL-RNNG-Mono+Glove 68.73 | 74.15 | 57.29 | 61.15 | 25.45 | 33.84 | 55.93
CL-RNNG-Mono+ELMo 69.13 | 74.75 | 58.49 | 61.64 | 26.65 | 33.94 | 56.73
CL-RNNG-Mono+BERT 71.03 | 77.35 | 60.39 | 63.05 | 27.75 | 39.84 | 59.93
CL-RNNG-Poly+SkipGram 61.94 | 62.89 | 64.0 | 64.53 | 61.88 | 63.19 | 62.76
CL-RNNG-Poly+Fast-text 63.57 | 64.51 | 65.78 | 66.53 | 64.3 | 64.84 | 65.55
CL-RNNG-Poly+Glove 65.1 | 66.17 | 66.5 | 67.4 | 64.72 | 66.59 | 65.51
CL-RNNG-Poly+ELMo 65.48 | 66.86 | 67.61 | 68.16 | 65.89 | 66.64 | 66.01
CL-RNNG-Poly+BERT 67.48 | 69.41 | 69.55 | 70.46 | 69.18 | 69.88 | 69.19
UniRNNG+SkipGram 64.92 | 65.95 | 66.79 | 67.35 | 65.05 | 66.24 | 65.83
UniRNNG+Fast-text 66.42 | 67.65 | 68.59 | 69.64 | 67.05 | 67.74 | 68.23
UniRNNG+Glove 68.03 | 69.25 | 69.49 | 70.45 | 67.55 | 69.64 | 68.33
UniRNNG+ELMo 68.42 | 69.85 | 70.69 | 70.94 | 68.75 | 69.74 | 69.13
UniRNNG+BERT 70.33 | 72.44 | 72.59 | 73.35 | 71.85 | 72.64 | 72.33

Table 5: F1 Score in Few-shot learning settings.

proposed UniRNNG

Top: Results for supervised approaches trained on
sparse dataset. Middle: Results for baseline Cross-lingual Transfer Parser (CLT-P). Bottom: Results for

Model de da it ct kr hb est hi vt

URNNG (Kim et al., 2019) | 11.84 11.58 10.53 12.43 9.97 10.46 8.52 | 9.36  3.12
CL-RNNG-Mono+BERT | 68.13 70.94 61.99 56.85 20.91 27.82 52.61 | 48.66 37.61
CL-RNNG-Poly+BERT 64.43 64.13 64.5 66.37 63.32 64.99 63.5 | 56.2 57.21
UniRNNG-+BERT 67.62 67.03 67.19 69.14 66.25 68.14 66.63 | 59.23 60.11

Table 6: F1 Score in Few-shot learning settings.

typologically very close to English. Whereas,
on the other five target languages which are
typologically and genealogically distinct from
the source language English namely Italian
(it), Catalan (ct), Estonian (est), Heberew
(hb) and Korean (kr), it under-performed
CL-RNNG-Poly.

Based on these observed trends we can infer
that the polyglot training training increases
the Cross-lingual transferring ability of the
RNNG based Constituency Parser to a typo-
logically distinct and unseen target language
as it allows the model to better generalize
over a diverse set of languages.

In both Few-shot and Zero-shot settings,
UniRNNGs significant outperformed CL-
RNNG-Poly on all the seven target languages
namely Danish (da), German (de), Italian
(it), Catalan (ct), Estonian (est), Heberew
(hb) and Korean (kr) as evident in Tables

5 and 6. Hence it can be inferred inducing
linguistic typology indeed leads to further
improvement in Cross-lingual transferring
ability of the RNNG based Constituency
Parser to a typologically distinct and unseen
target language.

Furthermore, in zero-shot learning settings,
we evaluated our models on two additional tar-
get languages namely Hindi and Vietnamese
(rightmost column in table 6). Languages
Hindi and Vietnamese belong to linguistic
families Indo-aryan and Austro-asiatic respec-
tively. None of the source languages listed
in Table 2 belong to these linguistic families.
Thus languages Hindi and Vietnamese are
typologically very distant form all the source
languages in the polyglot training corpus of
UniRNNGs. Hence scores obtained on these
languages indicate true Language Agnostic
nature of UniRINING architecture.
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Although the performance of UniRNNG
for these two languages is comparatively
lower than its performance on other target
languages listed in table 3, yet this improved
performance as compared to CL-RNNG-Mono
and CL-RNNG-Poly provide even stronger
evidence that UniRNNG architecture is
more robust to typologically distinct unseen
target languages than CL-RNNG-Poly. In
other words, once trained on significantly
diverse polyglot corpus, UniRNNG is
Language-Agnostic.

6 Conclusion

In this work, we proposed and evaluated
Universal Recurrent Neural Network Gram-
mar (UniRNNG) which is a multilingual vari-
ant of Dyer’s RNNG model. The architec-
ture of UniRNNG is inspired by Principles
and Parameters theory proposed by linguist
Noam Chomsky. We evaluated the perfor-
mance of UniRNNG in both Few-shot and
Zero-shot learning settings. Results show that
the UniRNNGs outperformed all baseline ap-
proaches for most of the target languages for
which these are tested. As far as we are aware,
this is the first paper which evaluated the per-
formance of Cross-lingual Transfer Parsing for
Constituency Parsing task.

Future work, would involve exploring the
changes in performances of baseline and
UniRNNG models with the varying degree of
diversity in the training corpus.
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Abstract

The explosive growth of music libraries
has made music information retrieval and
recommendation a critical issue. Recom-
mendation systems based on music emo-
tion recognition are gradually gaining at-
tention. Most of the studies focus on au-
dio data rather than lyrics to build mod-
els of music emotion classification. In ad-
dition, because of the richness of English
language resources, most of the existing
studies are focused on English lyrics but
rarely on Chinese. For this reason, We pro-
pose an approach that uses the BERT pre-
training model and Transfer learning to im-
prove the emotion classification task of Chi-
nese lyrics. The following approaches were
used without any specific training for the
Chinese lyrics emotional classification task:
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(a) Using BERT, only can reach 50% of the
classification accuracy. (b) Using BERT
with transfer learning of CVAW, CVAP,
and CVAT datasets can achieve 71% clas-
sification accuracy.

Megs . &

7]
Keywords: Music Emotion Recognition,

Natural Language Processing, Chinese Lyrics
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Abstract

This study presents a novel QA-based se-
quence labeling (QASL) approach to nat-
urally tackle both flat and nested Named
Entity Recognition (NER) tasks on a Chi-
nese Electronic Health Records (CEHRs)
dataset. This proposed QASL approach
parallelly asks a corresponding natural lan-
guage question for each specific named en-
tity type. It then identifies those associ-
ated NEs of the same specified type with
the BIO tagging scheme. The associated
nested NEs are then formed by overlap-
ping the results of various types. Com-
pared with those pure sequence-labeling
(SL) approaches, since the given question
includes significant prior knowledge about
the specified entity type and the capabil-
ity of extracting NEs with different types,
the nested NER task is thus improved, ob-
taining 90.70% of Fl-score. Besides, com-
pared to the pure QA-based approach, our
proposed approach retains the SL features,
which could extract multiple NEs with
the same types without knowing the ex-
act number of NEs in the same passage in
advance. Eventually, experiments on our
CEHR dataset demonstrate that QASL-
based models greatly outperform the SL-
based models by 6.12% to 7.14% of F1-

score.

Keywords: Nested Named Entity Recog-
nition, Chinese Electronic Health Records,
QA-based Sequence Labeling

1 Introduction

Electronic health records (EHRs) contain rich
medical information and treatment histories of
patients (e.g., various event dates, diagnoses,
and treatments). It is beneficial to understand
the patients’ conditions that all clinicians are
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ABEEEA =22 EH L=
(Admission Date) (Emergency Date) (Discharge Date)
FmEBNAT2019F10HABE AR A= - R1I0B78 0 -

The patient was admitted to hospital and sent to the emergency on Oct. 5, 2019. Then,
he was discharged on Oct. 7.

EA=E!
(Outpatient Date)

2 1
10A16H - 108218 =X KRFIZEHUAE -

He went to hospital for follow-up treatment on Oct. 16 and Oct. 21.

Figure 1: A common example of Chinese electronic
health records (CEHRs).

involved in their care. In the past, this in-
formation was embedded in unstructured raw
texts and extracted manually to databases.
Therefore, Named Entity Recognition (NER)
task, effectively identifying meaningful named
entities (NEs) from unstructured raw texts,
has emerged as a hot topic among researchers
and practitioners these days.

In Chinese EHRs, a phenomenon often ex-
ists that NEs are overlapped or nested, espe-
cially in event date types. For example, as
shown in Figure 1, The entity (” & /T 2019
$ 10 A 5 B” Oct. 5, 2019) in the passage
has several roles such as the admission date
and the emergency date. However, most mod-
els only focus on handling flat NER in which
NEs do not overlap each other; only a few of
them deal with nested NER in which over-
lapped NEs are allowed.

The NER task has been treated as a se-
quence labeling (SL) problem in previous
works (Lafferty et al., 2001; Hammerton, 2003;
Ratinov and Roth, 2009; Collobert et al., 2011;
Huang et al., 2015; Ma and Hovy, 2016; Peters
et al., 2018; Devlin et al., 2019). With this
approach, flat (non-overlapping) NEs within a
given passage could be simultaneously identi-
fied; however, they failed to detect nested NEs.

To address the issues, various approaches
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have been proposed to solve both flat and
nested NER with public datasets such as
ACE2004 (Doddington et al., 2004), ACE2005
(Christopher Walker et al., 2006), GENIA
(Kim et al., 2003), and NNE (Ringland et al.,
2019). First, stack-based approaches utilize
flat NER layers to sequentially extract en-
tities from inner to outer or outer to inner
(Alex et al., 2007; Ju et al., 2018; Wang et al.,
2020a).  Secondly, graph-based approaches
apply constituency parse trees (Finkel and
Manning, 2009), hypergraphs (Lu and Roth,
2015; Wang and Lu, 2018; Katiyar and Cardie,
2018), or bipartite graphs (Luo and Zhao,
2020) to identify nested NEs. Thirdly, region-
based approaches decompose NER to two
stages: detect all possible spans and clas-
sify them into pre-defined entity types (Xu
et al., 2017; Fisher and Vlachos, 2019; Xia
et al., 2019; Zheng et al.; 2019; Wang et al.,
2020b). Different from public datasets, our
Chinese EHR dataset only contains flat NEs
and nested NEs with different entity types,
meaning that nested NEs with the same types
are not in our consideration. Therefore, many
above attempts are not the most suitable and
intuitive methods for our CEHR dataset due
to their complicated models or frameworks.

This study proposed a simple and effective
framework of Question Answering Sequence
Labeling (QASL). Inspired by Li et al., 2020
(Li et al., 2020), we also re-formalize the NER
task to a Question Answering (QA) problem
to naturally tackle both flat and nested NER.
However, different from this work (Li et al.,
2020), we modified the strategy of span selec-
tion from predicting start and end positions
of entity spans to directly assigning BIO la-
bels to tokens in the input passage. To be
more specific, the QASL approach first adopts
the corresponding string of the specified NE-
type as the query. It then identifies NEs with
the BIO tagging scheme by parallelly querying
the corresponding NE-type-string (e.g. “AI%
B #,” Admission Date) for each specific NE
type. Asshown in Figure 2, the QASL first as-
signs BIO labels (i.e., Begin (B), Inside (I), or
Other (O)) (Ramshaw and Marcus, 1999) to
the passage based on a given query/type ( “A
B #,” Admission Date). According to the
assigned BIO labels, the NE-date (” % /L 2019
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¥ 10 A 5 A7, Oct. 5, 2019) is thus identi-
fied. Afterward, the QASL conducts the same
procedure based on another query/type ( 2
# B #1,” Emergency Date), and thus identify
the same entity with a different type. Last,
by conducting the above procedure, all NEs in
the passage could be extracted whether they
are overlapped or not.

The modification of the span selection strat-
egy has two advantages: (1) BIO labels implic-
itly tell models the start and end positions of
entities and contain rich information among
tokens (Wang et al., 2020b) for models. (2)
BIO tagging scheme is simple and effective
methods to select multiple spans for QA (Se-
gal et al., 2020). It can do well no matter
models know how many NEs exist in advance
according to questions.

In summary, the contributions of this paper
are:

e We propose a novel QA-based sequence
labeling (QASL) approach to naturally
deal with both flat and nested NER.

e We present the first work to handle
the Chinese electronic health records
(CEHRs) dataset for both flat and nested
NER (To the best of our knowledge).

e We conduct the experiments on a CEHR
dataset to show that the proposed QASL
is effective.

2 QA-based Sequence Labeling

2.1 Task Formulation

Given a passage S = {si,s2,...,8,}, where
n is the length of the passage, find all the
named entities in S with various entity types
(according to a pre-specified type-set) E
{e1,€2,...,em}, where m is the number of en-
tity types. In the framework of QQA-based Se-
quence Labeling (QASL), for each entity type
e € FE, it is firstly mapped into a predefined
query qe = {q1, q2, ..., qx }, where k is the length
of query. Then, for each ¢. € @, we find
the corresponding named entities (with the
same specified type) in S by simply labeling
s;jasl; € L ={B,I,0} according to the BIO
scheme (Ramshaw and Marcus, 1999). The as-
sociated nested named entities are then formed
by overlapping the NER result of each type.
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The patient was admitted to hospital and sent to the emergency on Oct. 5, 2019. Then, he was discharged on Oct. 7. He went to i
hospital for follow-up treatment on Oct. 16 and Oct. 21.

Figure 2: An overview of proposed Question Answering Sequence Labeling (QASL) framework.

2.2 Proposed QASL Model
2.2.1 Query Generation

Since the question could encode prior knowl-
edge about entity types and significantly in-
fluence the final results, it is important to
generate appropriate questions. To gener-
ate the benchmark questions, Li et al. (Li
et al., 2020) adopted the Annotation Guide-
line Notes (e.g., Find locations in the text, in-
cluding non-geographical locations, mountain
ranges, and bodies of water.) to construct
the required training data. They achieved the
highest Fl-score on English OntoNotes 5.0.
However, it would not only require an ex-
pensive cost to generate the benchmark ques-
tions following the guidelines manually, but
the questions generated by the guidelines also
remain unknown to utilize for another dataset.
To avoid those drawbacks mentioned above,
we let the questions be keywords (i.e., Chinese
NE-Types) in this study, as shown in Table
1. The questions can be easily transformed
into the name of entity types, and they can
be utilized by different datasets. Therefore, it
does not require manual generation, which is
expensive, and it is easily generalized by dif-
ferent datasets.

2.2.2 Input Layer

In this paper, we use BERT with whole word
masking (BERT-wwm) as the backbone model
(Cui et al., 2019). Follow the typical setup
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(Li et al., 2020), the question ¢. and the pas-
sage S are concatenated with the special to-
kens [CLS] and [SEP], as shown in Figure
2. Then, word embeddings, segmentation em-
beddings, and positional embeddings for each
token are summed together to generate final
input representations.

2.2.3 BERT Encoder

The adopted BERT encoder consists of 12
Transformer blocks and 12 self-attention heads
by taking the input representation from the in-
put layer and then outputting a context rep-
resentation. Different from the original BERT
(Devlin et al., 2019), BERT-wwm focuses on
Chinese language by pre-training with whole
word masking (Cui et al., 2019). We only use
the passage representations C' € R™ % from
the last hidden layer of BERT-wwm, where d;
is the dimension with a default value 768 and
n is the length of the passage.

2.2.4 Output Layer

This study tests two different structures of
output layers: a softmax classifier and a
BiLSTM-CRF layer. First, the softmax classi-
fier is that the model predicts the conditional
probability distributions P overall categorical
labels L = {B,I,0}, given the passage repre-
sentations C' from BERT encoder:

P(L|C;0) = softmaz(C - V) € R™3 (1)
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Abb. Entity Type Abb. Entity Type Abb. Entity Type

ADD  AdmissionDate OPD OutpatientDate RTD RadiotherapyDate
DCD  DischargeDate OPDS  OutpatientDateStart RTDS  RadiotherapyDateStart
1CD InIntensiveCareDate OPDE  OutpatientDateEnd RTDE  RadiotherapyDateEnd
OCD  OutlntensiveCareDate OpPC OutpatientCount RTC RadiotherapyCount
IBD InBurnWaeDate EMD EmergencyDate CTD ChemotherapyDate
OBD  OutBurnWaeDate EMDS  EmergencyDateStart CTDS  ChemotherapyDateStart
IND InNegativePressureDate EMDE EmergencyDateEnd CTDE  ChemotherapyDateEnd
OND  OutNegativePressureDate EMC EmergencyCount CTC ChemotherapyCount
SGN  SurgeryName SGD SurgeryDate SGDE  SurgeryDateEnd

DTN  Drug/TreatmentName SGDS SurgeryDateStart SGC SurgeryCount

DPN  DepartmentName

Table 1: The names and abbreviation of entity types.

where 0 is the set of all trainable parameters
in the model. V € R4*3 is also the trainable
parameter. On the other hand, the BiLSTM-
CRF first outputs the concatenated hidden
representations H € R"*% given the passage
representations C' from BERT encoder, where
ds is also the dimension with a value of 768.
For each h; € H and ¢; € C:

= [his ) (2)

1,9)

h = LSTM(c;, Ti— (3)

(_

hi = LSTM(c;, oi—1;9) (4)

where 7, ? are the trainable parameters in
BIiLSTM. Besides, the CRF layer (Lafferty
et al., 2001) defines the probability of the pre-
dicted BIO label sequence Y given the input
label sequence X transformed from a given
passage S:

escore(X,Y)

(5)
2y
The score (Lample et al., 2016) is defined as

the sum of transitions and emissions from the

BiLSTM:

P(Y|X;0) = gscore(X,Y)

score(X,Y)

Z Try, i + Z Em,

where T'r is a transition matrix in which
T'ry, yi+1 is the transition parameter from the
label y; to the y;+1. Em is an emission matrix
where E'm,, represents the scores of the label
y; at the i-th position.

Em=H-U ¢ R (7)

21

where U € R%*3 ig the trainable parameters.
At test time in the structure of the softmax

classifier, we take the labels with the largest

probability as the predicted results.

Y* = argmaz(P(L|C;0)) € R™  (8)

At test time in the structure of BiLSTM-
CRF, we take the label sequence with the
largest score as the predicted results by ap-
plying the Viterbi algorithm (Viterbi, 1967).

c Rnxl

Y* = argmaz(score(X,Y")) 9)

3 Experiments

3.1 Dataset

In this paper, all the experiments are con-
ducted on our Chinese electronic health
records (CEHR) dataset.! The CEHR dataset
is annotated with SQuAD-like style by several
well-trained annotators. It is a set of (Pas-
sage, Queries, Answers). There are 31 entity
types in the CEHR dataset, as shown in Ta-
ble 1. We extracted that dataset with only
flat NEs from the original CEHR, dataset as
a flat NER dataset, and we took the origi-
nal CEHR as a nested NER dataset. In the
flat NER dataset, the number of passages is
4,328, and the average length of these passages
is 70.43. The number of flat NE in these pas-
sages is 21,616. On the other hand, in the
nested NER dataset, the number of passages
is 7,907, and the average length of these pas-
sages is 76.08. The number of flat and nested
NEs in these passages is 43,577 and 6,978, re-
spectively. Eventually, the flat NER dataset
and nested NER dataset are split for training,

development, and test set with the ratio 8:1:1.

!The personal privacy information of all patients in
CEHR has been de-identified during the labeling stage.
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Model P R F1 Model P R F1

Bert 95.45 96.33 95.89 Bert 89.39 78.83 83.78
-BiLSTM-CRF 95.37 96.46 95.91 -BiLSTM-CRF 89.02 78.74 83.56
Bert-QA 94.24 95.23 94.73 Bert-QA 87.67 92.26 89.90
-BiLSTM-CRF 95.06 95.98 95.52 -BiLSTM-CRF 91.01 90.40 90.70

Table 2: Model Performance on flat NER.

3.2 Baselines and Parameter Settings

In this study, we propose and test two differ-
ent kinds of QASL-based models: BERT-QA
and BERT-QA-BiLSTM-CRF. For compari-
son, we consider BERT and BERT-BiLSTM-
CRF as two baselines, which treat NER as a
traditional sequence labeling problem. For the
parameter settings of all models, the max se-
quence length is 512. The batch size is 8. The
learning rate is 5 x 107°. The number of lay-
ers, neurons, and dropout ratio in BiLSTM is
1, 384, and 0.5, respectively. The epoch is 40,
and the model with the best Fl-score in the
development set will be the adopted system.

4 Results and Discussion

Table 2 and Table 3 show the experimen-
tal results on flat NER and nested NER, re-
spectively. As shown in Table 2, for flat
NER, QASL-based models are slightly inferior
to the baseline models by -0.39% (in terms
of Fl-score) for BERT-QA (vs. BERT) and
by -1.16% for BERT-QA-BIiLSTM-CRF (vs.
BERT-BiLSTM-CRF). The slight decrease in
performance of QASL-based models results
from two main reasons: (1) QASL-based mod-
els are primarily designed to solve nested NER.
Thus, QASL-based models are much more
complicated than SL-based models, so that
they are overqualified for flat NER that is far
simpler than nested NER. (2) searching spaces
of QASL-based models are much larger than
that of SL-based models. QASL-based mod-
els are designed to search for various possible
NEs without knowing how many they are in
given passages in advance. In contrast, SL-
based models directly assume that each possi-
ble entity span only has one entity type. The
above two reasons cause the slight decrease of
Fl-score of QASL-based models compared to
SL-based models.

As shown in Table 3, for nested NER, we ob-
served that QASL-based models significantly
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Table 3: Model Performance on nested NER.

outperformed baseline models by +6.12% and
+7.14% for BERT-QA (vs. BERT) BERTQA-
BiLSTM-CRF (vs. BERT-BIiLSTM-CRF), re-
spectively. The substantial improvement of
Fl-scores is mainly from the boosted recall
scores, attributed to the framework of QASL,
which successfully detects nested NEs in the
given queries and passages. Additionally,
BERT-QA-BiLSTM-CRF achieves a 90.70%
Fl-score, which is +0.80% over that of BERT-
QA. This is primarily because the BiLSTM-
CRF structure makes QASL-based models as-
sign more reasonable labels to tokens, reducing
impossible outputs, thus leading to a higher
F1-score.

5 Related Work

5.1 Named Entity Recognition

Most traditional feature-based approaches
treated NER as a sequence labeling problem,
thereby adopting Conditional Random Field
(CRF) to resolve the NER task (Lafferty et al.,
2001; Ratinov and Roth, 2009). Recently,
deep learning techniques have achieved good
results on NER tasks, such as LSTM (Ham-
merton, 2003), CNN-CRF (Collobert et al.,
2011), BiILSTM-CRF (Huang et al., 2015), and
BiLSTM-CNN-CRF (Ma and Hovy, 2016).
Besides, transfer learning has been applied
to language models to improve model perfor-
mance, such as ELMo (Peters et al., 2018), and
BERT (Devlin et al., 2019). However, nested
named entities cannot be recognized by the
above approaches.

5.2 Nested Named Entity Recognition

Stack-based approaches have been used to ex-
tract entities from inner to outer or outer to
inner, can handle the nested NER task. Alex
et al. (Alex et al., 2007) proposed two multi-
layers CRF models to recognize nested named
entities; however, this approach cannot handle
nested entities of the same entity type. Ju et
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al. first (Ju et al., 2018) introduced a layered
sequence labeling model to recognize inner-
most entities and then feed them into the next
layer to extract outer entities. This method
can deal with nested entities of the same type
but suffers from error propagation among lay-
ers. Wang et al. (Wang et al., 2020a) proposed
Pyramid, a novel layered model consisting of
a stack of interconnected layers, to recognize
entities without layer disorientation and error
propagation.

Graph-based approaches have also been pro-
posed to solve the nested NER task. Finkel
and Manning (Finkel and Manning, 2009) used
a CRF-based model to detect nested named
entities with the assistance of constituency
parse trees. Lu and Roth (Lu and Roth,
2015) introduced a hypergraph allowing edges
to connect to multiple nodes to recognize over-
lapping entities. Wang and Lu (Wang and Lu,
2018) improved the spurious structures of the
hypergraph by proposing neural segmental hy-
pergraphs. Katiyar and Cardie (Katiyar and
Cardie, 2018) used a LSTM model to learn a
hypergraph representation for nested named
entities. However, the hypergraph structure
would become too complicated to be optimized
if there are too many entities in the input sen-
tences. Luo et al. (Luo and Zhao, 2020) pro-
posed a novel bipartite flat graph network to
recognize outermost entities and then use a
graph module to extract inner ones.

Region-based approaches have utilized a
pipeline framework with an end-to-end train-
ing paradigm to resolve the nested NER task.
Specifically, these approaches first extract pos-
sible spans from the input sentence and then
classify their entity types. Xu et al. (Xu et al.,
2017) examined all possible spans (up to a cer-
tain length) of the input sentence and then fed
their representation into a feed-forward neu-
ral network to classify entity types. Fisher
and Vlachos 2019 (Fisher and Vlachos, 2019)
first merged tokens into entities through real-
valued predictions and then labeled them the
corresponding entity types. Xia et al., 2019
(Xia et al., 2019) detected all possible spans
through a detector and classified entities into
pre-defined categories. Zheng et al., 2019
(Zheng et al., 2019) applied a single-layer se-
quence labeling model to identify the bound-
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aries of potential entities using context in-
formation and then classify these boundary-
aware regions into their entity type or non-
entity. Wang et al., 2020 (Wang et al., 2020b)
developed a head-tail detector and a token in-
teraction tagger to identify nested named en-
tities with appropriate model complexity.

Some researchers have attempted to trans-
form NLP tasks into QA tasks, such as relation
extraction (Levy et al., 2017; Li et al., 2019),
summarization (McCann et al., 2018), named
entity recognition (Li et al., 2020), and senti-
ment analysis (Yin et al., 2020). Li et al., 2020
(Liet al., 2020) treated NER as a QA problem.
Each entity (y) and its entity type (x) can be
parameterized as a question (g(x)) whose an-
swer is (y). According to questions, models
can parallelly identify nested named entities
by using different questions. In addition, they
can naturally solve flat NER as well.

6 Conclusion

This paper proposes a novel QA-based se-
quence labeling (QASL) approach to solve
both flat and nested NER. The proposed
framework comes with three key advantages:
(1) It can recognize both flat and nested en-
tities with a single model; (2) It combines
QA and SL framework to solve NER and
the problem of multiple spans selection; (3)
The queries, encoding significant prior knowl-
edge about entity types, are constructed with-
out manual cost and are independent. The
conducted experiments on Chinese electronic
health records (CEHRs) have clearly shown
the effectiveness of our proposed framework.
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Abstract

Information  extraction is a core
technology of natural language processing,
which  extracts some  meaningful
phrases/clauses from unstructured or semi-
structured content to a particular topic. It
can be said to be the core technology of
many  language  technologies  and
applications. This paper introduces Al
Clerk Platform, which aims to accelerate
and improve the entire process and
convenience of the development of
information extraction tools. AI Clerk
Platform provides a friendly and intuitive
visualized manual labeling interface, sets
suitable semantic label in need, and
implements, distributes and controls
manual labeling tasks, so that users can
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complete customized information
extraction models without programming
and view the automatically predict results
of models by three method. AI Clerk
Platform further assists in the development
of other natural language processing
technologies and the derivation of
application services.
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Abstract

This paper presents a framework to answer
the questions that require various kinds of
inference mechanisms (such as Extraction,
Entailment-Judgement, and Summariza-
tion). Most of the previous approaches
adopt a rigid framework which handles
only one inference mechanism. Only a few
of them adopt several answer generation
modules for providing different mecha-
nisms; however, they either lack an aggre-
gation mechanism to merge the answers
from various modules, or are too compli-
cated to be implemented with neural net-
works. To alleviate the problems men-
tioned above, we propose a divide-and-
conquer framework, which consists of a set
of various answer generation modules, a
dispatch module, and an aggregation mod-
ule. The answer generation modules are de-
signed to provide different inference mech-
anisms, the dispatch module is used to se-
lect a few appropriate answer generation
modules to generate answer candidates,
and the aggregation module is employed to
select the final answer. We test our frame-
work on the 2020 Formosa Grand Chal-
lenge Contest dataset. Experiments show

L https://fgc.stpi.narl.org.tw/activity/techai2018
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that the proposed framework outperforms
the state-of-the-art Roberta-large model by
about 11.4%.

Keywords: QA, Framework, Divide-and-Conquer
strategy, Answer Aggregation, Inference mechanism

1 Introduction

Natural Language Inference (NLI) is an important
topic in the Artificial Intelligence (Al) field, and
any NLI related issue can be checked by asking an
appropriate corresponding question (Chen, 2018).
Therefore, the Question Answering (QA) task has
become a very suitable testbed for evaluating NLI
models and checking the progress of current tech-
niques. Accordingly, the Ministry of Science and
Technology of Taiwan has organized the Formosa
Grand Challenge Open Contest series' (FGC) in
2018, which mainly evaluates the reasoning/infer-
ence capability on natural texts, to promote the Al
progress in Taiwan. Specifically, this open contest
covers a variety of answer modes; that is, it needs
different inference mechanisms (such as Extraction,
Entailment-Judgement,  Aggregative-Operation,
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etc.) to get the desired answer. As a result, the sys-
tem/framework must be able to handle various an-
swer modes at the same time.

The previous frameworks for the QA task could
be classified into two main categories according to
the number of answer modules adopted: (1) Single
answer generation module (Trischler et al., 2017,
Chen, 2018; Shoeybi et al., 2020; Zhang et al.,
2020), which involves only one answer mode, and
allows merely one type of replying format (such as
identifying a span within the given passage, giving
YES/NO answer, free text reply, etc.). (2) Multiple
answer generation modules (Ferrucci, 2012; Andor
et al., 2019; Hu et al., 2019), which adopts several
answer generation modules, and each module con-
ducts a specific inference mechanism (or, answer
mode) with a specific replying format.

Since the first category only considers one an-
swer mode, the types of questions that can be han-
dled are quite limited. For example, it is not suita-
ble for handling the FGC-2020 QA task?, which co-
vers various question types and needs different an-
swer modes to get the desired answers. In contrast,
the approaches under the second category adopt the
divide-and-conquer strategy, which adopts a differ-
ent answer generation module for each specific an-
swer mode. Since each answer generation module
only needs to consider a specific answer mode, it
will be easier to design and add new inference
mechanisms.

Among those second category approaches, the
framework of Watson (Ferrucci, 2012) is not de-
signed for end-to-end training; therefore, it is not
suitable for modern neural-network multi-task
learning due to the complicated flow/architecture
under its statistics-based architecture. Also, the
framework adopted in either (Andor et al., 2019) or
(Hu et al., 2019) does not have an aggregation
layer/module to merge the answers generated from
different answer generation modules (i.e., the out-
put is only picked from a specific module, and
merging is not allowed). Therefore, their ap-
proaches not only have the error accumulation
problem? (i.e., once a wrong module is selected,
this error will propagate to the next answer-gener-

2 https://scidm.nche.org.tw/dataset/grandchallenge2020

3 The error accumulation problem of this kind of approaches
is hard to avoid, as it is difficult to know which inference
mechanism should be adopted before we actually see the re-
lated supporting statements (e.g., span-extraction mechanism
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ation stage), but also lose the advantage of combin-
ing the strength of different inference mechanisms.
Additionally, all modules will be activated in par-
allel under their frameworks (Andor et al., 2019),
so computing resources on those modules that
should not be activated for a given question would
be wasted.

To overcome the problems mentioned above, a
flexible and extensible framework is proposed in
this paper. It adopts a divide-and-conquer strategy,
and possesses the following main modules/func-
tionalities: (1) A supporting evidences locating
module, which extracts supporting evidences from
the passage to narrow down the searching space. (2)
A dispatch module, which would select and acti-
vate several appropriate answer generation mod-
ules; also, the answer type distribution will be pro-
vided to each answer generation module as a refer-
ence, based on the answer mode. (3) A set of an-
swer generation modules, each of them generates a
few local/module outputs (i.e., possible answers) if
it is activated. (4) An aggregation module, which
picks the best answer at the final stage by merging
the answer candidates from those activated answer
generation modules.

The strengths of the proposed framework are
summarized as follows: (1) With the dispatch mod-
ule, it is flexible for handling different question
types with the same framework; as a result, it is ex-
tensible for adding more answer modes in the fu-
ture. (2) With the aggregation module, it is able to
merge the results from various modules; it thus
possesses the capability of combining the strength
of different inference mechanisms, and also re-
duces the error accumulation problem. (3) It is de-
signed to fit the neural-network based end-to-end
multi-task learning framework; therefore, it can be
implemented with an appropriate neural network
without much effort. (4) Since the dispatch module
only activates the corresponding modules accord-
ing to the given question, it will not waste compu-
ting resources on those modules that are irrelevant
and should not be activated.

In comparison with IBM Watson framework,
which adopts a complicated flow/architecture with
probabilistic models, our proposed framework

is usually preferred if the desired answer is explicitly given in
the supporting sentence; otherwise, a more complicated
mechanism must be adopted).
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adopts the neural-network based approach and can
be optimized by the end-to-end training strategy. In
comparison with the approaches from Andor et al.
(2019) and Hu et al. (2019), which lack the mech-
anism to merge different answer candidates, our
proposed framework only activates several possi-
ble/responsible modules and has the ability to ag-
gregate the outputs from various modules.

The proposed framework is tested on the FGC-
2020 QA dataset, which contains 1,322 questions.
This dataset covers eight different answer modes
(i.e., Single-Span-Extraction, Multi-Span-Extrac-
tion, Yes/No, Aggregative-Operation, Arithmetic-
Operations, Date-Duration, Kinship, and Summa-
rization) and ten different answer types (i.e.,
Yes/No, Number-Measure, Kinship, Person, Date-
Duration, Location, Organization, Object, Event,
and Misc). The experiment results show that our
system outperforms the baseline RoBERTa-large
(Liu et al., 2019) model by 11.4%.

In summary, this paper makes the following
contributions: (1) We propose a novel modular
framework/model that is more flexible for han-
dling/adding various inference mechanisms. (2)
We propose a novel aggregation model to merge
various answer candidates. (3) We conduct experi-
ments to show that the proposed framework out-
performs the state-of-the-art RoBERTa-large
model on the FGC-2020 QA dataset.

2 The Proposed Approach

In this section, the proposed divide-and-conquer
QA model is first described in Section 2.1. The de-
scriptions of the architecture of the proposed model
is then presented in Section 2.2. Afterwards, Sec-
tion 2.3 provides the concepts and principles of de-
signing each answer generation module.

2.1 The Proposed Divide-and-Conquer QA

Model

Given a Document D, Question O, Wikipedia Wy
and some external Knowledge Resources R (such
as WordNet and ConceptNet), we would like to
find out the most likely answer. To reduce the com-
putation cost, we will first extract related Wik-
ipages with an off-the-shelf IR tool (e.g., the
Apache Lucene™ searching engine*). Let Wps de-
note the set of extracted Wikipages, the problem of

4 https://lucene.apache.org/
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finding the desired Answer A thus can be formu-
lized as Equation (1). For conciseness, we will only
use one notation (e.g., “D” (Document)) to denote
both its content and its associated embedding vec-
tor when it can be interpreted without confusion.

A = argmax P(A|D,Q,W,,R)

= argmax P(A|D, Q, Wy, R), (D
where 4 is a specific answer candidate, and A de-
notes the desired answer which can be: (1) A list of
string/NE/number/date directly extracted from the
document. This list might contain only one element,
or even empty (The string “UNKNOWN” will be
output in this case). (2) An aggregation result (such
as Summarization, Speaker’s View, Arithmetic Re-
sult, Count/Min/Max/Avg, Entailment/Sentiment
Judgment, etc.) induced from the given document.

Since we will encounter various scenarios that
request different answer modes (among which
each adopts a different strategy to obtain the de-
sired answer), a Divide-and-Conquer framework is
thus proposed to convert a given complicated prob-
lem into a set of simple sub-problems:

P(A|D,Q,W,s, R)

= Sureoe P(AM,T,E;, Gg|D,Q, Wy, R), 2)
where M denotes a specific answer mode, T refers
to a specific answer type that can be used for veri-
fication in each answer generation module, E
stands for a specific set of supporting evidences,
and G, represents a specific set of paragraphs. By
doing so, each answer generation module/model
concentrates only on a specific answer mode. The
probability P(A,M,T,Es, Gs|D,Q,W,s, R) can be
further decomposed into five terms:

P(A,M,T,E, Gs|D,Q, Wy, R)

= P(A|M,T,E, G, D, Q, W, R)

x P(M|T,Es, Gs, D, Q, W, R)

x P(T|Es, Gs, D, Q, Wy, R) X P(Eq|Gs, D, Q, W, R)
x P(Gg|D, Q, W5, R)

~ P(A|M,T,E,,Q,R) x P(M|T, E5, Q) X

P(T|Es, Q) X P(Es|Gs, D, Q, Wps) X P(Gs|D, Q, Wys),

A3)
where P(A|M, T, E;, Q, R) will be generated by each
specific answer generation module, both

P(M|T,Es, Q) and P(T|E,, Q) will be generated by
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the Dispatch module, P(E|G, D, Q, W) will be
generated by the Supporting-Evidence-Locating
module, and P(G|D, Q, W,s) will be generated by
another Paragraph-Locating module (Section 2.2).

Finally, Yurg, e P(A M,T,E;, Gg|D,Q, Wy, R)
will be taken care by the Aggregation module,
which aggregates various answer-candidates gen-
erated by different answer generation modules to
obtain the final answer. It predicts the best answer
based on those obtained answer-module sextuplets
(i.e., <answer mode M, the probability of the an-
swer mode M,, answer type 7, the probability of
the answer type T,,, answer-candidate 4, its associ-
ated confidence-scores F;>, to be specified later),
where M , M,), T, and T}, are from the Dispatch
module, both 4 and F; are from a specific activated
answer generation module. Therefore, Equation (2)
can be re-written as

P(A|D,Q, W, R)
P(A,M,T,E, G|D,Q,Wps, R)

M,T Eg,Gs

(M;MP;T;TP;FS)AJ,...,> @

= softmax o H(
(M; My,; T; T F) o

The above Eq (4) is implemented with a pre-pro-
cessor, which first merges the same answer-candi-
date from various answer generation modules; af-
terwards, for each specific merged answer-candi-
date A (among a varying number of different
merged candidates), it concatenates the corre-
sponding information from each answer generation
module’ to form the input to a mapping function H.
This mapping function A is mainly used to assign
an overall-confidence-score to the given merged
answer-candidate if it is supported/merged by/from
several modules.

Specifically, for each merged answer-candidate
A, we will have K different (M; M,; T; T,; F;) quin-
tuplets, where K is a pre-specified/fixed number of
available answer generation modules. Note that the
relative position of each answer generation module
within the concatenation is fixed (so that the corre-
sponding NN weights can be learnt). The overall-
confidence-score of 4 is input to a specific non-lin-
ear activation function o, then a sofimax function is

5 Please note that the corresponding information from all
answer generation modules will be input to fix the input
format (i.e., regardless of whether they are activated by the
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used to normalize the obtained scores over various
merged answer-candidates.

2.2 The Architecture and Operation Flow

Based on Equations (3) and (4), Figure 1 summa-
rizes the proposed divide-and-conquer QA frame-
work. Sequentially, the Preprocessing-layer first
locates the related Wikipages and annotates the
given question/passage (also those Wikipages)
with their associated linguistic information via oft-
the-shelf language tools (e.g., the Stanford
CoreNLP toolkit).

Afterwards, the Embedding-layer obtains con-
textual word embeddings through a pre-trained
language model (e.g., BERT, RoBERTa (Liu et al.,
2019) or XLNet (Yang et al., 2019)), and generates
the associated hierarchical embeddings (including
the document embedding, paragraph embeddings,
and sentence embeddings). The hierarchical em-
beddings will be shared among subsequent layers.

The Paragraph-Locating-layer then narrows
down the searching space to only refer to those
closely related paragraphs/passages within docu-
ments/pages via the so-called “semantic retrieval”
model (Nie et al., 2019).

The Supporting-Evidence-Locating-layer iden-
tifies the associated Supporting Evidences and also
outputs an associated score of the specified config-
uration. Basically, only content similarity is con-
sidered here, and no reasoning is conducted (which
will be done later in the Answer-Generation-layer).
It can be implemented by a BERT-based model
with output vectors connected to a binary classifier.

The Dispatch-layer generates the corresponding
answer mode and answer type probability distribu-
tions for the given question-passage pair, and then
activates the answer-generation-modules associ-
ated with the fop-D answer modes; also, the answer
type probability distribution will be sent to each an-
swer generation module for reference. Please note
that one answer mode can activate several corre-
sponding answer generation modules simultane-
ously if the ensemble approach is adopted; also, all
those activated answer generation modules will be
operated in parallel. In the current implementation,
the Dispatcher-layer is a BERT-based classifica-
tion model.

Dispatch module or not; however, for those inactivated
modules, their associated fields will be set to null/zero).
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The Answer-Generation-layer includes various
answer generation modules and generates the lo-
cal/module output (i.e., the answer-candidate) from
each selected answer generation module. Further-
more, each module is expected to generate top-N
answer-candidates with their associated confi-
dence scores (Details are given in Section 2.3).

The Aggregation-layer generates the desired fi-
nal answer via aggregating various local/module
answer-candidates (Section 2.4). Please note that
an answer mode may be handled by several differ-
ent answer generation modules at the same time, if
an ensemble approach is adopted. The influence of
each answer generation module is implicitly de-
cided by its associated NN weights of a feedfor-
ward neural network adopted in this layer.

The External-Resources and their accessing util-
ities/tools provide additional information (to sup-
plement the training data-set and those on-line re-
trieved documents) to increase the knowledge cov-
erage of the test data. Currently, they include Word-
Net, ConceptNet, Wikipedia, and other available
resources/tools (e.g., Stanford CoreNLP).

Last, the Online-Working-Memory is a working-
memory used to save the intermediate/linguistic-
analysis results (e.g., Hierarchy Embeddings about
the question/related-passages, POS/NE annotation,
dependency-tree, etc.) that can be shared among
various layers/modules later.

Pre-load
Wikipages

Preprocessing-layer
Wiki Stanford
Articles CoreNLP
Retriever Toolkit

Online-
Working-
Memory

L

Embedding-layer

Pre-trained model

(BERT/RoBERTa/XLNet)
Paragraph/Supporting-Evidence-Locating-layer
BERT-based Semantic-Retrieval Neural =
Network
Dispatch-layer
B =
— P(M|T,E; Q) P(T|Es, Q)
External
Resources "
— Answer-Generation-layer
=
P(A|M,T,E;, Q,R)
Best A cion|
T |Aggregation-layer
i M; My T; T E) . e,y -
A/f softmaxa | H (( P P S)Al )
_ (M; Mp; T3 T ) ax

Figure 1. The proposed DNN system architecture
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2.3 The Adopted Answer Generation Mod-

ules

Figure 2 shows the answer generation modules
adopted in this work. Since this paper mainly ad-
dresses the framework design, we will only briefly
sketch the adopted implementation of each module.
The Single-Span-Extraction module adopts an en-
semble approach. It is implemented by choosing 12
best RoBERTa-large models with AdaBoost algo-
rithm (Yang et al., 2018). The implementation of
the Multi-Span-Extraction module is based on the
tag-based multi-span extraction model (Segal et al.,
2020), which treats the task as a sequence tagging
problem (i.e., for each token in the passage, decide
whether it is part of the answer span). Since the im-
plementations of the Arithmetic-Operation and
Date-Duration modules are similar, we merge
these two functionalities into one module in this
task. In this merged module, a RoBERTa-base
model is first used to extract top K candidates, and
then a rule-based procedure is adopted for perform-
ing some arithmetic operations such as calculating
the duration from the beginning and ending dates.
Furthermore, the Entailment-Judgement module
is implemented by using a pre-trained BERT mode
and fine-tuning it for the Yes-No task (Devlin et al.,
2019). The Common-Sense-Inference is imple-
mented with a template-based approach to answer
Kinship questions. Firstly, the given question is to-
kenized by Stanford CoreNLP toolkit. The Chinese
kinship associated terms (e.g., father, son, etc.) col-
lected from related Wikipages are added to the dic-
tionary of that toolkit to increase its accuracy rate.
Afterwards, a rule-based procedure tries to fill in
the slots of the question template with appropriate
tokens. Last, the Summarization module is imple-
mented by modifying an existing BERT-based ex-
tractive summarization algorithm (Liu, 2019)
Please note that some of the answer generation
modules are not implemented here, which include
the Compare-Members module and the Speaker-
View modules, since they do not occur in the FGC-
2020-pre dataset. Also, the Aggregative-Operation
module is merged into Multi-Span-Extraction
module, since there are only few questions in this
dataset (and the Aggregative-Operation could be
subsequently taken on the members that are ex-
tracted from the Multi-Span-Extraction module).
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Figure 2. The adopted answer generation modules.

2.4 The Proposed Aggregation Module

As described in section 2.1, this module will adopt
a pre-processor to first merge answer candidates
from various answer generation modules. Figure 3
shows an example of the merging process. Suppose
we have three answer generation modules (i.e., M,
M>, M3) and pick top-3 answer candidates from
each answer generation module, where Cj; denotes
the rank-j answer candidate in answer generation
module-i. After the merging process, there are four
merged answer-candidates (i.e., MC;, MC,, MCs3,
MCy) left. For example, MC; groups two answer
candidates C;; and Cj; as they are identical.

MCy: C C
M, : C , C , C 1 11 33,
! H 12 ~ MCy: Cip G, (3
My: Cp1, Cop Cpz=—= .
Merge MCy: Ci3, Cyy, C3y
Ms: C31, C3p, C33 MCy: Cys

Figure 3. An example of merging answer candi-
dates from different answer generation modules.

The mapping function H is implemented by a
Feed-Forward network and its output is connected
to a binary classifier (7/F) as showed in Figure 4.
The overall-confidence-score of each merged an-
swer candidate is given by the score of the output
T. Take MC; as an example, we will have two quin-
tuplets input from module-1 and module-3 while
other modules are with zero vectors.

6 https://fgc.stpi.narl.org.tw/activity/2020 Talk2Al

\

|
|
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Figure 4. The NN-based aggregation module.

3 Evaluation

To verify the validity and effectiveness of the pro-
posed framework, we have tested it on the FGC-
2020 dataset. The details of the dataset and various
experiments conducted are presented below.

3.1 Dataset

Officially, FGC-2020 organizer had released both
FGC-2020-pre dataset, which is mainly used to let
each team train their own model, and FGC-2020-
final test set, which is mainly used to evaluate the
final round performance. Since the FGC-2020-fi-
nal test set is not open to various teams before the
final contest, the following description is mainly
for the FGC-2020-pre dataset. Each released ques-
tion in the FGC-2020-pre dataset is associated with
an official category tag among Elementary, Ad-
vanced, and Argumentation®. Table 1 shows the
statistics of those question categories. Also, as
those Argumentation questions do not have the
golden answers provided by the FGC organizer, we
exclude them from the FGC-2020-pre dataset.

Question Category Count | Percentage
Elementary 929 70.27%
Advanced 378 28.59%
Argumentation 15 1.14%
Total 1,322 100.00%

Table 1. The statistics of the question categories in
the FGC-2020-pre dataset.

To train the models and get a sense about our
performance before the final competition, we fur-
ther divide the remaining FGC-2020-pre data into
our own training/development/test three subsets.
To avoid distribution mismatch problem, we keep
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the distributions of question categories in each sub-
set as similar as possible while dividing them. The
statistics of each subset are shown in Table 2.

Dataset Count Percentage
Training 875 66.94%
Development 242 18.52%
Test 190 14.54%
Total 1,307 100.00%

Table 2. The statistics of training/development/test
subsets in the FGC-2020-pre dataset.

Figure 5 shows the distributions of answer mode
and answer type in the training/development/test
subsets, where the vertical axis displays various an-
swer modes/types and the horizontal axis indicates
their corresponding percentages. It is observed that
the distributions of answer mode in training/devel-
opment/test subsets are similar but that of answer
type are significantly different (especially in the
test subset); it is due to that we divide the dataset
based on the given documents (and then adjust
them according to answer modes), but each docu-
ment is associated with a varying number of ques-
tions/types.

Answer Mode

Aggregative-Operation I
Arithmetic-Operation [
Date-Duration [l
Single-Span-Extraction |
Kinship b
Multi-Span-Extraction -
Entailment-Judgement [N
0% 10% 20% 30% 40% 50% 60% 70%
B Test M Dev HMTrain
Answer Type
Misc e
Event o
Object I s
Organization |
Location |
Date-Duration I
Person | —
Kinship I
Num-Measure
Yes/No ——

Q
ES

5% 10%

-
%]
ES
8]
Q
ES

25%

M Test ®WDev MTrain

FigureS. The distributions of answer mode and an-
swer type in the training/development/test subsets of
the FGC-2020-pre dataset.

3.2 The Baseline Adopted

Since RoBERTa (Liu et al., 2019) is the state-of-
the-art pre-trained model for single-span extraction
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(if ensemble approaches are excluded) on both
SQuAD (Rajpurkar et al., 2016) and DRCD (Shao
et al., 2018) datasets when we were preparing for
the FGC preliminary round (2019/12/24), it was
chosen as our baseline model.

3.3 Overall System Performance on Official

Pre-released Dataset

Table 3 gives the performances of our proposed
model and the above baseline (RoBERTa-large) on
both the FGC-2020-pre test-set and the FGC-2020-
final test-set. In comparison with the baseline, we
have enjoyed 11.4% (= 70.5% - 59.1%) overall im-
provement on the FGC-2020-pre test-set. This
shows when the dataset contains the questions with
various answer modes, customizing the model ar-
chitecture for each specific answer mode (which
needs a different inference mechanism) is better
than adopting a monolithic architecture (and then
applying it to various answer modes). The ad-
vantage of adopting the proposed Divide-and-Con-
quer framework is thus shown.

Furthermore, the top-1 and top-2 accuracy rates
of the answer mode are 98.9% and 100.0%, respec-
tively; and those of the answer type are 93.7% and
95.3%, respectively. This shows that the Dispatch-
layer is quite promising. The performance of an-
swer type prediction is inferior to that of answer
mode, as we have more answer types than answer
modes.

Dataset Baseline |Proposed
FGC-2020-pre test-set 59.1% 70.5%
FGC-2020-final test-set |36.9% 39.1%

Table 3. The EM (Exact Match) scores of the base-
line and the proposed model on the FGC-2020-pre
and the FGC-2020-final test-sets.

Last, an intuitive approach to implement the Ag-
gregation-layer is to simply pick up the answer
candidate with the highest score (which is calcu-
lated by multiplying its associated confidence
score and the corresponding answer mode proba-
bility) among various candidates. It is surprised to
find that this intuitive approach (with EM 70.5%)
is 0.6% better than our proposed NN-based ap-
proach (with EM 69.9%) in this test-set. A possible
reason could be that there is almost no overlapping
among various top-3 candidate-sets (obtained from
different answer generation modules) in this data-
set; as the result, the advantage of merging the
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same answer-candidate generated from different
inference mechanisms thus disappears.

3.4 The Performance on Official Final Test-
set

Since we have got FGC-2020-final test-set after the
contest, we also show its distributions of answer
mode and answer type in Figure 6. It includes total
46 question-passage pairs (again, 4 Argumentation
questions are excluded). It is observed that the dis-
tributions of both answer mode and answer type in
the final run are very different from those in the
FGC-2020-pre dataset. This indicates that we have
a serious mismatch problem in both answer mode
and answer type, which implies that shallow statis-
tical information (which BERT mainly utilizes)
would be less useful and deep understanding would
be more demanding.

The obtained performance is given in Table 3. In
comparison with the baseline, we only got 2.2% (=
39.1% - 36.9%) overall improvement. Comparing
with the improvement obtained on the FGC-2020-
pre test-set (11.4%), the gap shrinks considerably
because the problems in the FGC-2020-final test-
set is much more difficult (and thus beyond not
only the capability of the baseline but also the ca-
pability of our proposed approach).

Answer Mode

Aggregative-Operation "
Arithmetic-Operation ™
Date-Duration [ —
Single-Span-Extraction
Kinship
Multi-Span-Extraction

”

Entailment-Judgement

0% 10% 20% 30% 40% 50% 60%

M Pre-Test M Final-Test

Answer Type

Misc

Event

Object
Organization
Location
Date-Duration
Person
Kinship
Num-Measure
Yes/No

i

=}
ES

5% 10% 15% 20% 25%

M Pre-Test M Final-Test

Figure 6. The distributions of answer mode and an-
swer type in the FGC-2020-pre and FGC-2020-final
test-sets.
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Figure 7 further shows the overall system per-
formance on the FGC-2020-pre and FGC-2020-fi-
nal test-sets in each category. Surprising in coinci-
dence, the accuracy rates on Elementary, Advanced,
and Overall categories are 0.391, 0.391, and 0.391,
respectively. In comparison with the overall perfor-
mance of the FGC-2020-pre test-set, the accuracy
rate drops 0.314 (from 0.705 to 0.391). Figure 8
additionally shows the accuracy rates associated
with various answer-modes (Please note that there
is no Kinship answer mode question in this test-set).
We even have 0% and 15.4% accuracy rates for the
Arithmetic-Operation and Multi-Span-Extraction
answer modes, respectively. The obtained poor
performances clearly indicate that these two an-
swer-modes are more difficult to handle, which fits
our intuition.

1.000

0.827
0.800 0.705
0.600 0.549

391 0.391 0.391

0.400
0.000

Elementary Advanced Overall

MW Pre-released m Final

Figure 7. The overall system accuracy rate on the
FGC-2020-pre and FGC-2020-final test-sets.

Answer Mode

Arithmetic-Operation  0.000

Date-Duration SN 0.333
Single-Span-Extraction I 0.625
Multi-Span-Extraction M 0.154

Entailment-Judgement I 0.444
0.000 0.200 0.400 0.600 0.800

Figure 8. The accuracy rates associated with vari-
ous answer modes on the FGC-2020-final test-set.

4 Error Analysis and Discussion for Of-
ficial Final Test-set

As Figure 7 shows, the overall system performance
degrades significantly (down 0.314, from 0.705 to
0.391) when we move from FGC-2020-pre test-set
to FGC-2020-final test-set. It is mainly because the
questions in the FGC-2020-final test-set is gener-
ally more difficult than that in the FGC-2020-pre
test-set. And it is also because the involved topics
(also their associated lexicons), the distributions of
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both answer mode and answer type drift signifi-
cantly from FGC-2020-pre test-set to FGC-2020-
final test-set (as shown in Figure 6).

Since almost all our current answer generation
modules adopt BERT-based approaches, and it is
well-known that BERT conducts the inference
mainly based on surface-clues/hidden-distribution-
bias (Naik et al., 2018; Poliak et al., 2018; Jiang
and Marnefte, 2019; McCoy et al., 2019), the mis-
match of those surface-clues/distributions thus
causes serious degradation. On the other hand, it
also implies that BERT-based approaches, alt-
hough they have become state-of-the-art models,
are still not capable to handle the FGC-2020 kind
of tests (which require deep reasoning and cannot
be falsely solved simply with surface-clues/distri-
bution-bias).

Specifically, the performance of the Elementary
questions drops more (down 0.436, from 0.827 to
0.391) in comparison with that of Advanced ones
(down 0.158, from 0.549 to 0.391). The perfor-
mance of the Advanced questions is less affected
because those questions require deeper reasoning,
and is thus less affected by the drift of topics and
the distribution of answer mode/answer type men-
tioned above.

If we zoom into various answer modes, it is ob-
served that the Multi-Span-Extraction causes most
overall degradation in the FGC-2020-final test-set,
which is mainly due to both its low accuracy rate
(15.4% in Figure 8) and its high answer mode por-
tion (28% in Figure 6)). It seems that the tag-based
approach (Section 2.3) is not capable of handling
the Multi-Span-Extraction questions involved in
this dataset, as getting a multi-span answer needs
to locate various list-members via matching the
structures (Gentner and Markman, 1997) of the
question and the passage, not just regarding it as a
sequence-tagging task.

5 Conclusion

We proposed a divide-and-conquer model/frame-
work for answering the questions in FGC-2020 QA
dataset, which covers various answer modes. With
the proposed Dispatch-layer, the proposed frame-
work is flexible for handling various answer modes
with different modules simultaneously, and is ex-
tensible for adding new answer modes and answer
types in the future. Also, with the proposed Aggre-
gation-layer, the proposed framework can take ad-
vantage of different inference mechanisms, and
also reduce the error accumulation problem. Last,
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due to its design for fitting the end-to-end multi-
task learning framework, the proposed framework
could be implemented with an appropriate neural
network and is thus more suitable for end-to-end
optimization without much effort.

We have tested the proposed framework on 2020
Formosa Grand Challenge Contest QA dataset.
The experiment results show that our system out-
performs the baseline RoOBERTa-large model about
11.4% on the FGC-2020-pre test-set. However, the
overall system performance drops significantly
(about 31.4%) from the FGC-2020-pre test-set to
the FGC-2020-final test-set. On the other hand, to-
gether with our another dialog sub-system (tested
on the FGC-2020-final Dialog test-set), we ob-
tained 44.1 total score (out of 100; the human per-
formance is 68.2), which outperforms that of the
official top one system (announced in this contest)
7.4 points.
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Abstract

Due to the popularity of intelligent
dialogue assistant services, speech emotion
recognition has become more and more
important. In the communication between
humans and machines, emotion recognition
and emotion analysis can enhance the
interaction between machines and humans.
This study uses the CNN+LSTM model to
implement speech emotion recognition
(SER) processing and prediction. From the
experimental results, it is known that using
the CNN+LSTM model achieves better
performance than using the traditional NN

model.
M4EF ¢ CNN -~ LSTM ~ Frigass)|
Keywords: CNN, LSTM, Speech emotion
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MR REE -ég‘ 5 4 /é"f»#érﬁ’* » 4 Figure 3
O
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Cc1:
Convolutional layer
With n 1D filters

PL: Fl:
Fully-connected
layer to output

Adaptive-Mean-Pooling

Input:
1D wave signal
of various length

Figure3: — ‘o ¥ & p if B ¥ 4! ‘LR

%4

4 Long Short-Term Memory

£ 2 e g & F (long short-term memory,
LSTM) i - #&if .jrp: Zé & e B (recurrent neural
network, RNN) & o H_ G T fRid ful&j’tﬂc

SR A ﬁ'gukﬁ;] MR EFRE B B
P P R L AL R
ARBBRFMEAENEY SBF IR %
**§_Hochreiter & 4 [20] #& 1 £ 2 s H ~
e R ¥ ;ﬁd R HE R
woFY ;T'Jﬁs?] * R RRRE T B ehdp 3

e Figure 4 #77 » £ @ e E < i e
> M atenimre K fs C 3R F P B ark T
Pz =B R aoRi(gate) A W AR R
ﬁg?]» o~ 3‘79?]:". oo % iR~ ] e
Lo R EREEE A ﬁs?“” v e
sigmoid function( o )¢ & 4t 0 F J 12 />
Mgt Fehg 0 A2 E 1 £
TR DU e

P

>

e

ﬁ"éﬁ:%axﬂw
’

Ce iy
A C:
tan h CE— anh | |
“x A e T
o o tanh o
A A a
- F Y
he-1 7 hy
Figure 4: £ 723 3o [ i

% Figure4 # - X, L 5@ AW > BiE 4o i
L Wy Solico$t F - BRI ang g T
ﬁhl)‘mk-r; Rl R EE R DT RE
i&*&ﬁﬁ%} AR A e gk f R B D
FEW o LA G A 1[3:‘)13,5‘? R R
¥ - g
tanh function /4 % _‘w % ) jii iz Ecp o 7 1)

sigmoid function /- % & { ATRE o

o

o
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AW W EE RS ke
B 29 AN LR oo
ek AR R AT RERA L DTN B ﬁs?]
>R R A R e Rk AT R

oo A K AR e il T R AT AT e R
foo Botd R R A NE o d B A RR
w3 o A | e Rk B4 tanh
function rfi’ﬁa?l MR AT o EE D e i
fim dLE o

fe = oWy - [X, he—q] + by) (1)

ip = o(W; - [Xy, he—q] + b)) )

¢ = tanh(W, - [Xp hea] +b) ()
Co= fixCoq +ip Xy 4)

op = oW, [X¢, he—1] + bo) 5)

hs = o X tanh(C;) (6)

5 Experiment Settings and Results

~ F7 3 H# #cdx f1 * Root Mean Square
normalization i& 7 ﬁitjf;}&ﬁ'— v BEE L
il hE - RFRBHSAE
H#-535 X F ok 2 20% 5 TRE ~ 64% & /?J;é‘l
B2 16% kil o 0 T S b G T
FLE B3 - > Bk 143652 0 H® 5 19608 0 7]
PR ERAEM TR AR
ehy AE Bl T B 0 M i@;—; %té‘ﬁ};;}y;ﬁ;}y%
W & B (16000) *7 2 = #c ¥ F ‘5 A K
HIRRA B FH Qo Bfs T UE - BHART 1Y
A5 2 AE R L CNN+LSTM #-3) mﬁs‘l »oo

L 1N

0 3217 71

L JRA X RIA

1?‘“@ 3 ,-_I::J

Figure 5: § #%*> &7 % B

iP*%ﬁ&mF”*wﬁﬂ{ﬁw%
CNN -~ - & LSTM +4v } >:g 45k 12 T#_m o™ o
CNN ¥ 23 - 2L Hh ~HEHEE -
‘é@'ﬁt% > &«’ pit koo H Y i%%‘iéﬁlﬁftfé *
Elu function(exponential linear unit) o ¥+* Relu »
Elu ™ 3 f ol » 4 800 AP SHRARE -
M LSTM ¥ jiois Sndic i tanh function > %03 &
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¢ * iRt 2 585 SGD o H S #cmomentum *
% SGD A ARM G @ b e R T
nesterov = True % ¢ * Nesterov #* ¥ o 3214t

B * EarlyStopping ** 11 i #t & & 3] 4p %w.
AP ORGP/ D PO D T

ModelCheckpoint **-& 1 2 JUHp 15 %35 #-3]
? AR P ﬁ i-uzgg,f:rfﬂ&uj » H '%,ﬁﬁ

Wu|FES G 57.83% 0 Frriw AR 339
LA EDREFER R
5 83%

phh s AR TR LA R
(neural network, NN) i& {7 |F- 4% 5] » ﬁig?J TR
2 lafyf(ha2 j‘:@?fﬁi«;ﬁv} flatten function
Ak L 1T HEd R R DRE TR b
ol AU i se NN A G pled TR vt bl &
20% PF o (B D] E R RS 0 < fEIT A
FERIFES 5 53.30% 0 @ ow fAf ”**JEFE.

F 5 77.90% -

23 (A ek w B
. test 0.533 test 0.779
=0.2
e random 0.477 random 0.763
test size = 0.3 test 0.497 test 0,716
- - random 0.491 random 0.676
test size =04 lest 0.495 Lest 0.699
= : random 0.519 nndclm 0.706
Figure 6: % 4%*” &l & Bl
Bois AFTE R % CNN B2 LSTM #i07) it 7

B ﬁ Sk % BT S A (T

) H sk 1 CNN 3] 5 45.80%
A LSTM H-3) s u] & 75 4 50.50%

6 Discussion

SRR AT F R AT A

B R RREEIR T o SRR D R
POBIE S B RIER RS > AP

PRSI T T LR

SEELLEE T R PRSI RS
Boo Fae LR AR S PR AR EFIIRE PRI
T e S FREL FES o
Table 2: | & w] & /7
Model TR 4 fEH ¥
NN 53.30% 77.90%
CNN 45.80% -
LSTM 50.50% -
CNN+LSTM 57.83% 83.00%

b
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7 Conclusion

A7 @ % CNN+LSTM #-3]F 1535 5 4 7%
(Speech Emotion Recognition, SER) /&2 \E
FIRR] o K F SR E S T A0k * CNN+LSTM -
A ET i F S8 NN B34 B 18 45 choay o
A KT SR A R-H s BT
ByEaz Bl gt EMO-DB Tkl & e iE
TR T OERVRBFE AR AT N g R ERR
FH ¥ A Fl‘}«-au}f‘,l_.I“’m R A 1‘-‘—5“:‘%’{3’,
HEE L& F R RIS {03 e
P SRR e E R

i B i

References

[1] Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4): 169-200, 1992.

[2] Paul Ekman, Wallace V. Friesen, and Ronald C.
Simons. 1985. Is the startle reaction an emotion?

Journal of personality and social psychology, 49(5):
1416.

[3] Robert  Plutchik. 1980. A  general
psychoevolutionary theory of emotion, Chapter 1 in
Theories of emotion: Elsevier, pages 3-33.

[4] Jonathan Posner, James A. Russell, and Bradley S.
Peterson. 2005. The circumplex model of affect: An
integrative approach to affective neuroscience,
cognitive development, and psychopathology.
Development and psychopathology, 17(3): 715-734.

[5] K. Sreenivasa Rao, Shashidhar G. Koolagudi, and
Ramu Reddy Vempada. 2013. Emotion recognition
from speech using global and local prosodic

features. International journal of speech technology,
16(2): 143-160.

[6] Houwei Cao, Stefan Betiu§, Ruben C. Gur, Ragini
Verma, and Ani Nenkova. 2014. Prosodic cues for
emotion: analysis with discrete characterization of
intonation. Speech prosody, 130-134.

Namrata Anand and Prateek Verma. 2015.
Convoluted feelings convolutional and recurrent
nets for detecting emotion from audio data. In
Technical Report: Stanford University.

[7]

[8] Tzinis, Efthymios, and Alexandras Potamianos.
2017. Segment-based speech emotion recognition
using recurrent neural networks. In Proceedings of
the 2017 Seventh International Conference on
Affective Computing and Intelligent Interaction
(ACII). IEEE, pages 190-195.
https://doi.org/10.1109/ACI1.2017.8273599.



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

[9] Lianzhang Zhu, Leiming Chen, Dehai Zhao, Jichan
Zhou, and Weishan Zhang. 2017. Emotion
recognition from Chinese speech for smart affective
services using a combination of SVM and DBN.
Sensors, 17(7): 1694.

[10] George Trigeorgis, Fabien Ringeval, Raymond
Brueckner, Erik Marchi, Mihalis A. Nicolaou, Bjorn
Schuller, and Stefanos Zafeiriou. 2016. Adieu
features? end-to-end speech emotion recognition
using a deep convolutional recurrent network. In
Proceedings of 2016 IEEFE international conference
on acoustics, speech and signal processing
(ICASSP). IEEE, pages 5200-5204.
https://doi.org/10.1109/ICASSP.2016.7472669.

[11] Jun Deng, Sascha Friihholz, Zixing Zhang, and
Bjorn Schuller. 2017. Recognizing emotions from
whispered speech based on acoustic feature transfer
learning. /[EEE Access, 5:5235-5246.

[12] Che-Wei Huang, and Shrikanth Shri Narayana.
2017. Deep convolutional recurrent neural network
with attention mechanism for robust speech
emotion recognition. In Proceedings of 2017 IEEE
International Conference on Multimedia and Expo
(ICME). IEEE, pages 583-588.
https://doi.org/10.1109/ICME.2017.8019296.

[13] Kim, Suyoun, and Michael L. Seltzer. 2018.
Towards language-universal end-to-end speech
recognition. In Proceedings of 2018 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, pages 4914-
4918.
https://doi.org/10.1109/ICASSP.2018.8462201.

[14] Kun-Yi Huang, Chung-Hsien Wu, Qian-Bei Hong,
Ming-Hsiang Su, and Yi-Hsuan Chen. 2019. Speech
emotion recognition using deep neural network
considering verbal and nonverbal speech sounds. In
Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pages 5866-5870.
https://doi.org/10.1109/ICASSP.2019.8682283.

[15] Felix Burkhardt, Astrid Paeschke, M. Rolfes,
Walter F. Sendlmeier, and Benjamin Weiss. 2005. A
database of German emotional speech. In
Proceedings of Ninth European conference on
speech communication and technology.

[16] Hubel, David H., and Torsten N. Wiesel. 1962.
Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex. The
Journal of Physiology, 160(1): 106-154.

[17] Fukushima, Kunihiko, and Sei Miyake. 1982.
Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Visual Pattern
Recognition. In Proceedings of Competition and
Cooperation in Neural Nets, Springer Berlin

47

Heidelberg, pages 267-285.
https://doi.org/10.1007/978-3-642-46466-9 18.

[18] Shih-Chung B. Lo, Heang-Ping Chan, Jyh-Shyan
Lin, Huai Li, Matthew T. Freedman, and Seong
K.Mun. 1995. Artificial convolution neural network
for medical image pattern recognition. Neural
Networks, 8(7): 1201-1214.

[19] LeCun, Yann, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. 1998. Gradient-based learning
applied to document recognition. In Proceedings of
the IEEE, 86(11): 2278-2324.
https://doi.org/10.1109/5.726791.

[20] Hochreiter, Sepp, and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation, 9(8):
1735-1780.



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)

Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

A Study on Contextualized Language Modeling for
Machine Reading Comprehension
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B &%

HE

MERESLBOER HMEMEER
I RCE T REMES > BAH S
FRERBHELEESREA - H 5 ME
WL BN R B TR
AR B RETREES > AWK
B AR XFTEAAAMBEAR B
B EARGE X E A S A B P AR R AT
B & o KA E 4B A H AL BERT
AR TAYISETHEA | BERT-wwm
Fa MacBERT » 2R A #9:E 3| R £ TR A
R BRI K o Lo #
JE B PR AR P o U AR T AR Hoh
EABEXAEBEDE KIS HEHIR
A EN X FRAEEITHE > UL
e B3R B RE LB BTHEA A
A—F@m RPELEREREREE
EREAS L MAER YR EBB T AL
RiE— S RAKSHEE RO EAR -

Abstract

o

processing (NLP) task aiming to assess the
ability of a machine to understand natural
language expressions, which is typically
operationalized by first asking questions
based on a given text paragraph and then
receiving machine-generated answers in
accordance with the given context
paragraph and questions. In this paper, we
leverage two novel pretrained language
models built on top of Bidirectional
Encoder Representations from Transfor-
mers (BERT), namely BERT-wwm and
MacBERT, to develop effective MRC
methods. In addition, we also seek to
investigate whether additional incorpora-
tion of the categorical information about a
context paragraph can benefit MRC or not,
which is achieved based on performing
context paragraph clustering on the training
dataset. On the other hand, an ensemble
learning approach is proposed to harness
the synergistic power of the aforemen-
tioned two BERT-based models so as to
further promote MRC performance.

Mbes  REEE ~ AARETRIE - KRB MN
g BT

Keywords: Deep Learning, Natural Language Proce-
ssing, Machine Reading Comprehension, Language
model

With the recent breakthrough of deep
learning technologies, research on machine
reading comprehension (MRC) has
attracted much attention and found its
versatile applications in many use cases.
MRC is an important natural language
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XEEE:

FTHARFS > TEWERET VR
Ao BEREFERMBE > BFEEARAETA
B RASNTERAREL S HbRTZ
Mo SB8TENSESZHEFTHRAREMRE
é@%;}j 0 tenene

P8 :

b 6y B IR R RGYIR LT A B
THREEL

AuE%

1~ BE 32 AR R RE dup)

1 &%

% & ABXABBFEREEL > FHOA
TR ALMRPRE - ANRAER FHE
HZ bR A E RS R GOARSE C PLUL R B 0 A
BBy oA XA 0 3 B P 1 BGE E Aol e K
% B 3E ¥ A (Machine reading comprehension,
MRC) A4 8787 B 46 2 B BE - 44 35 B3R 32
MO ERERO T @A ERANXAT E
@ BEARF o Blhe D AEER T E S
AR BAGLEA TR AR B B P R AR 8 3
I F e A BRARER 0 BT BUAR
WEREEARME B BB KRR 6 R ER
WX FRAMAMGERALHEFTX - BALE
BOMREXRAEF > A S A B B R
1E AR R AT B -

HEBEERLT BB A RETRIEE
o AUGHER B HN BT HERREN - £

B EATH A R —BEXFRER B

MR RETEREXFETDEL -

K A

B % F A B A IR (Span Extraction) &9 %87
W AEH T BEAT RS THXFE
PRI — AR A A E L o FollhefE | o

W EAR G BAAT S B R AR S AR E
AE B AR A AR 0 PR B E B AE N ho TR UL
& 1 #%] (Attention-based) B A IIF F Y
WX FEERAAZMG LG > e
Attention Sum (Kadlec et al. 2016), Gated atten-
tion (Dhingra et al. 2017), Self-matching (Wang et
al. 2017), Attention over Attention (Cui et al. 2017)
Bi-attention (Seo et al. 2016) ° ¥ F2k - G A
4R35 T A (Pre-trained language model) &9 i
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Start/ End Span

B 2~ BERT &M HEAEHZERATEE

#, > B4 ELMo (Peters et al. 2018) ~ GPT
(Radford et al. 2018) ~ BERT (Devlin et al. 2019)
AR EMREATRE RN oA
R TR - EEAREEAE Rl
BB EE N ARG E AR INRE
TR A EHEATHRE ©

KEF%AE R T w187 Bidirectional Encoder
Representations from Transformers (BERT) (Dev-
lin et al., 2019) 2269 FADNRE ST AL A  BERT
- Whole Word Masking (BERT-wwm) (Yiming
Cui et al. 2019) » Masked As Correction BERT
(Mac-BERT) (Yiming Cui et al. 2020) * w5 %
S P XGE S IR AR A - fE A ey B
EARERSMEERENE BB T X
CMRC (Cui et al., 2019) $2% 8 ¥ x 89 DRCD
(Shao et al., 2018) ° B A W18 X F )32 F-42
PERAMGIT & - Gk FRBARE TR
AREMTRFA LT BTRHNPDE
BAABEDE > BARLHAA X FT#AT
%% (Clustering) > 3t A 5B &4 & RAF A58 I
MG ERBTHEAGEA > BUER N
REMINRBEA - ZEZE—EI;5 > AT
WG T HEAFCERER - KRR &
R —EAEREE - Rk BRIk
& % 8 % (Ensemble Learning Method) @ #% %
B AR B FRR o BORAT Y 0 AR R
(ER:IECS

2 HEMARE
21 BETHEA

M T RAA ETURME Y E 6E
B E R A RERAFES 0 £ A
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Strategies

Example

Original Sentence

& F

TR RIAR T —EFEEE -

+ BERT Tokenizer R E T AR RART —ME3E4EFE -
+CWS 5 3B A R AR T8 F &) EE -
Original Masking & AT [M] R R[M] R F — B8 e948 % o
+WWM £ R 3E% [M] [M] &[M] [M] F— B3R 6948 % -

++ N-gram masking
+++ Mac masking

% A [M] [M] [M] [M] % [M] [M] F — {83 8948 % -
A E AR RTE R T — @A A% -

£ 1 RE W Rk

R &5

BT R ILOER, R A0 NGE S B B
I ERR - LR BINRERE A &
H#:2Z HA » 4v ELMo (Peters et al., 2018) ~
GPT (Radford et al., 2018) ~ BERT (Devlin et al.,
2019) FHAIEZER Y - SHOBEAELL
HibAa B a9 /E# EA K Z B HRINKR - BHEA
PR RBAA B MGEF c wtb— R BT T
VAT AR B ARAE TS B R R e B AR - e A A
SR 5T H B RBA G R -
R R 0 TR EB T A £ L8 B KRB
T RILAABRABAT AL Yk o £ > BERT
AR R ZER AR FER EWE T AR
Al 2z — - BERT i A Transformer (Radford et al.,
2018) &9 B /£ & /1 # 4 (Self-attention mechan-
ism) £E X AT EF Mo LT B it
HanhEEa et  #FEXRTX
49 B 3MAE B 7 sbakdE o BERT &% B ik 4o
4 6 3 B3R 32 AR4EFS - SQUAD (Rajpurkar et
al.,2016) LER TEH @mAgAE ) » RERKT
FEEAT R BT S B A > LB TR B
B 2R IE AR AR RO A AR K 0 ARAT B AT B9AE A
RS AERBINREBSHEE B EHE Tk -

22 MBEEER

MEAMENES  BEMEEAMLXE
ARAE SR A QML o (R AR SR
0 M B B SR IR AR AL T LA 5 By vg B A% S AR
o B F A RBE A (embedding) ~ 4
83 B 48 (feature extraction) ~ X FEFX % #1F
R X A Bl 44 4 (context-question interaction)
R FAR A EAL 4 (answer prediction) © F-H &4 7
RAGH AR X F B SRR R A A
ERURNERAMBEARARESS - R
#,3% Attention Sum (Kadlec et al., 2016) ~ Gated
attention (Dhingra et al. 2017) ~ Self-matching

R & H -
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A —

47 RS AR -

(Wangetal.,2017) ~ Attention over Attention (Cui
et al., 2017) ~ Bi-attention (Seo et al., 2016) % °
HHER > RGBT HEDEERSE > dnH
BEHe)Y s Al 3 LAt =@ a8y )
e AR —EREIRE TR AR TSR
1% o Bk FADIREYE T A Z I RK G E
B EE N MFIR AL o BB AF Ak B BRI
A EZEH BHARIEFRIFTTIF
FHEFORR - SLEFRINKRFBTHAY 0
ELMo (Peters et al., 2018) ~ GPT (Radford et al.,
2018) ~ BERT (Devlin et al., 2019) ~ XLNet
(Yangetal., 2019) ~ RoBERTa (Liu et al., 2019) ~
ALBERT ( Lan et al., 2020 ) ~ ELECTRA (Clark
et al., 2020) °

3 BRIk

AF R EEIR3H BERT e st )32
T AR BERT-wwm (Yiming Cui et al. 2019) ~
MacBERT (Yiming Cui et al. 2020) f& B 3% 22 #%
fEf Loy R B Ko BBy AT o H—
B3R5 A H =BT AN ETRARY
WA e HoE g ERERLEASAA
XEFEHBEANEE > HEBEHEFHRAEE A
18 B o BRI 0 I 5 2R B A A AL 8 By
N EI IR o gk — IR 5L E R
Ao SR RERA S ERUART KB -

3.1 BERT

BERT % &1 Google #2 i &) FAINRE T A » &
4 # Bidirectional Encoder Representations from
Transformers © £ % 224 % Transformers &) %
#5325 (Encoder) * 1 A1 Masked Language model
(MLM) #1 Next Sentence Prediction (NSP) £ %
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( start | ( End |

Title word
. or
Prediction [ Dense Layer 1' [ .! !‘ ] Keyword
S 8 I N A N A A
Encoder [ BERT ] Sentence-
BERT
TypeEmbed [ Bo || Bo || B0 |[ B J[ B J[ & [ B |l B [ B [ B [[ B Jory ] W e
Pos Embed | F:o ” E;l ” }iz || Eis ” E;4 || F:S ” I'i6 || }37 || E+8 || E'9 || E+10 | DBSCAN
SegEmbed | By || Ba || B |[ Ea || B || Bo |[ B || Bo |[ B || Bs |[ s | =
Token Embed |E[c1_s1 || Eqn || Eqr2 || Eqr3 || E(sep “ Epry ” Eppz || Epr3 || Eprs || Eprs || Efsep) | Type bl
Input |[CLS] || QT || QT || ot || [sEP] || PT, | PT, || Py || P, || PTS || [SEP]| ]

3 XERANBABABAL L 22T EE

WRFT X o o) FAEMABAL g8 F o
It BA tokenizer ¥ 3& gk, A 35 & B 41 84 token F 7|
D H > MLM A& 45 % token © [MASK] [ #
i (Masking) ¥R %584 token 3t #4738 #ifr
BEFGTEA 0 B AR B2 B LA EH
&) £ X E 3R B 4% token @A E NG E )
B Ao R B Ak dE Google 2 & 89 F Xk B4
BERT * {5 M 692 4358 & & Xt 4 5 B #F X
¥R BARAXFHEAZEAF S
VI ATBRETT 2 & 1 -
AEBRAHERETHA > ARERES
RSB HREROREK - B 2T B4
HFEMEFY —EMAEAAHEXFTETEE
AT 3% & hw N BRI A B &9 45 2k token
[CLS]® W& &EXFZMAA [SEP] » ARE
B X FEREA o s token F7IM1E AR 6By
A BERT A &R 45518 token 49 F A AR
— B ¥} JE L token B9 & BL (representation) * it
RILE X F ¥ 58 ERESME AR &
Loy kR o & T, A BERT % &89 % i 18 token
B9 &R B > SeRM AAeds 2% & (start vector) °
HEd h Kk token FALHY KR o RARheAk F T
UETATFIAK -

eSTi

Z} eS'Tj

p; = (1)

HEM AT R SR c B R B HEA
A2 25 91 45 25 0y X UIBAR K (cross-entropy 1oss)
FIME o AR R G B AR IR AL BE LA TE Y

— B FH -

o
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3.2 BERT-wwm

BERT-wwm (Yiming Cui et al. 2019) &% %
BERT - whole word masking > &% J& ¥ X 3%
T 45 o) BERT &ML A - 5k 769 BERT &
1B B SXAEAINRBH > AERBKERD
DM EXEFREATEGERY
REREA > BUAAF BB E 9 B2 5 BERT
ZER B P XRALER > STALENA FZ
FleNZH » BAFHBEMET S > B
RINGFHBENEMR - R > BEFIHEIF
BER AR EGHTXUER LR TF
B EEYE o HUAFAE B BELINREF > THE
GAEA—ERE - FRB T XE TN
BERT-wwm 447 %33 854 A LTP (Che et al.,
2010) ¥E A1 4 F X 89 T B (Chinese Word
Segmentation, CWS) » 3t SUE 5 A #4438 & &
89 2 VE A MLM DI 4Re5 0938 5 B4 > A 2L
P F XA o BIREA R
BERT tokenizer &9 tb 35T 24 & 1 a9 $ufs] ©

3.3 MacBERT

MacBERT (Yiming Cuil et al. 2020) & % A
Masked As Correction BERT * & 5 — 1B # & F
BT A M) BERT 24 R A o £ MLM 8931
BAEF L 0 R T A BERT-wwm 8423 4
FaasRag sz 0 BE R T RAEF 8
WE o B ABERRAE B G935 0 X N-
gram masked BAX MBS > £IIFIEEY
token > HM PEZFREZBEAL c HAX > PHE
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Dataset Title Paragraph
HRARE T ARESHO— B EMG AN BEES T EEALE
DRCD o SRHEE——ERMBEES T LK o RBSHLER &K
iE o AR Ao B AR A S FEHI
[ElfRtn & #H7BAR T % ( International Junior Science Olympiad ) & —
ES — 3] A5
CMRC 'zz;z% AT 15 % AT 894 5 5 69 EFRAEIEE - s TR LA 2004
) K — FEP— K -
% 2~ B EX X FRAL L RAZARI
i Y Ry Ak b M
8 e- $t % B AR token jt‘ A wordZY,eac Title# Paragraph# Question#
(Tomas MlkOlOV et al., 2013) :::L‘l’ EJE ’fl;{fji—il'i(é%\/ff DRCD 2,108 10’014 30K
ALY EE > i B R SbARALE AT E 0 T CMRC 3251 3,251 20K

kY B % [MASK] RATFRIIGKER ™K&
HIRAERCAME AT E R £ R 0 BT
AL F S ahia g BT X R e B
fho BE R LB T 2 E Kk 1 ehdat -

34 BEHEIBABNESL

FREXFHRVTREHN I TR LW
RABEOBE > SARZIWAXERYER
HREHETHOXELAATZLES b
RARIE B E FRLA B X FRAURKXF
Bl by & 2 B 6 E R RRAE ARIEET S
B 0 BAFFAM O R0 E A 0 L E U A F
AT R A R o LR AR SR R A e
3 Ao o he AT R A #HE—18 type token °
#Er N BERT AR AT lu N 2] A7 A token ¥ °
H & > keyword &9BAF ok B 2 AT
¥R BEXTEL A FEEL 0 B Term
Frequency-Inverse Document Frequency (TF-IDF)
SHEERE BN RATRH BB LA
RN N % ° TF-IDF &4 S84 > 348
(Term Frequency, TF) $23# & X8 % (Inverse
Document Frequency, IDF) ° % TF %% $#3
R -XFFHERIAE 0 IDF For B
BEHETHRBYXFHRE > TFIDF Rl A
MR o AR T o

i j

Tk, = Lk nk,j @
IDF; = log— 3)
TFIDFLJ = TFi,j X IDFL (4)

o

52

&3 BHEXIEMAE Y XF BAEAREE

EXF TF ey ny HER I HXFE d PHHHR
RE O DBHAHXE 4 VA EFGHRRE
4fo o IDF F0) N BEEEHEHXFTEY
FonAAXNEYLEXTF [ HXFEHE -
ATERAT 2 BEAR IR B9 X F (keyword) SR AR
(title word) B9 74 48 A4 R - B %L > F A
sentence-BERT (Nils Reimers and Iryna Gurevych,
2019) B3 4% A & keyword #9394 A (Word
embedding) * A AT E & REREE Kk
DBSCAN (Density-based spatial clustering)
(Martin Ester et.al., 1996) % & 28 4840 B £ %
R AP ReRA - RHEHTIENR
B A—EmF o f£— THENEERZ U
AL 8 W) BEBEAA (outlier) @ HA% 32 A B30
(noise) °
SEGERTMABNE N ELEA I
BAE% BERT #IWMINT X —EES B -
Ao N8y Ty X408 3 Fom 4 BERT 893 A8 F
Zx/m—J& Type Embed > A EF )X F L
BATMRARE » H b o MARE B BEREAE 0y 3R
G0 AN R R ANAEFTEEINE A -
BT R — R MR AR 0 Bp
BERT 4 AV EATHGH » FAR A R & ey AL 25
VRS TRNE w1V

3.5 %A% ¥ (Ensemble Method)

ERGHILELS S EBEA YL R R LR
R RAMBRBEANYMEEAEN RE T
HXFFeyEEEEITHETRR > 5 5l
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Type Title word 1 keyword 2 keywords

Outlier 657 768 346

DRCD  Big group 1,097 5,105 8483
Small group 10 ~ 193 (19) 10 ~ 436 (75) 10 ~40 (7)

Outlier 810 678 591

CMRC Big group 2,035 2,117 2453
Small group 9 ~116 (14) 10 ~ 43 (26) 10 ~29 (12)

F A pBFERBEFESEARABE>HER > AP HFRESRI HINA AR

BN B ALEE B M R DA R A B R BE e A R o

FaMEALTHIED XEN R RS
PLEL PR R Y &) F o E A B AL R ER A M
R 5o o) TAEAMBE - & H WfE L Eays
AEERET  HEB A TREGTARI G F > 4
FREMEFHMERTTY > REHFIEH
BRENGM BRI TFEE  REK &
B TFEEPRERSENS E RS
eyt d o

4 FTHmEFHEIAH
4.1 TERMH#

AEHARENHOBIEE S EMRER
ZE ¥ % (Delta Reading Comprehension Dataset,
DRCD) (Shao et al., 2018) 23 HeHr P 4% %5 B
332 #23F R (The Third Evaluation Workshop on
Chinese Machine Reading Comprehension,
CMRC) (Cuietal.,2019) - W% A& AR
PR BMAEAETRE - LR E R RR
WA EF oA AT 28
2,108 18 X #& (Title) %9 10,014 18 X & & %
(Paragraph) * XA & = % % 18 188 (Query) ; &
HAHEBTX > 24 3251 EXERERRE
% 1B AE o

EERESHNER  HRATHE T
XFEEXRLBAE A SBARE > ERAIXTR
BB TSE R 2 BRANHBEEREL
T >R E R I DRCD #4518 £ 4 E 3|
SRBEREHIFTHYE S CMRC Al Z— 18

FRAGHREI —BXFE - TEH L3674

XFEURPFAAGHZLE - B EUNE
MégFEA D BRBEN IR AIAAEE X
TN REAT Y FSER  BE XENA Y
TG R BFEER -

53

) L

BT B B B3 > 42 A JIEBA F XE73E T
A H BAR X F#ATHFE ABIT keyword * 3t B
BAE A B ARE 0 45 A JIEBA 698 5 fi 82 ¥
S S e I A AT R R R
BIAE A AR P XL X8 p R RE
DBSCAN 72 ¥ > title #2 keyword 893% €48 7] °
v B5 7T AR 2y AR L B Y R K BEBEBA (eps) A 3
FAABEE T LB B A B i) AR T 25 3 E (min
samples) 2 10 « BERT #4324k 04 2 3k 2 0y
B A learning rate & Se-5 0 4R batch
size % 32 ~ training epoch % 3 | X FRIELZXT
Wy XFMRAREA 3BT ~ A
MEAERES 64 BXF - BALENRAK
B 30 BF - AXFHMAT » KPRFIH
FHERE FHTF 0 PR H R g3
EERKE -

4.2

43 LR

# F Exact match (EM) ¥ F1-Score mAE151% i
TEE CEM 2 ENFER D AMAZER R R
PUERELE > AMNEEELEL B
REFEHHDEHEEE o Bl > —EBIEE
FRAZF 6145 NAE P12 » B8 AR JE ey B4
ERA B P E S EEGEYMAE M AL -
Rl e 2 TR A3 A M8 > #4869 N-M &
BRRETE - R o TEOFERZELE
Forlmeymifgaamsd > oKX
fu T o

Exact Match = % 5)

F1-Score £ & F R 3P FRR @ S AR E L Loy
EERE AR RARELA BN -
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DRCD CMRC
EM (%) F1 EM (%) F1
BERT 85.600 0.917 60.298 0.840
Fine-tune BERT-wwm 85.686 0.921 61.479 0.844
MacBERT 88.606 0.938 63.156 0.856
BERT-wwm
+ Title Label 85.377 0.919 61.819 0.844
+ 1 Keyword Label 85.680 0.917 61.912 0.847
Add + 2 Keyword Labels 85.834 0.920 61.484 0.842
Clustering MacBERT
Info. + Title Label 88.405 0.937 63.591 0.856
+ 1 Keyword Label 88.262 0.936 63.778 0.855
+ 2 Keyword Labels 88.892 0.940 63.156 0.858
MacBERT + BERT-wwm 88.663 0.938 64.461 0.864
Ensemble
The two best model 89.207 0.942 65.238 0.862

% 5~ 1£ A BERT-wwm * MacBERT > MacBERT e A B B MEA M EL E R TMER - R PEREREKE R

LRI FEP 0 RRBAEOREREE > FARANEEEREE TR AP RERERERAREN K

F1-Score MA % #£ % (Accuracy) v 2 ® % (Recall)
6 AFe FHEAFE o AKX TF o

.. TP
precision = —— (6)
TP
recall = (7
TP+FN
ision-recall
Fl — 2 . precision-reca (8)

precision+recall

B #) TP~ TN~ FP ~ FN » %X & w7 4
&) TR S © True Positive (TP) &% 78 % T8
B B ERE 8 B L 5 True Negative (TN) 2 4§44 3%
TR 54326 55U False Positive (FP) % #5444
328 R] & £ B B L 5 False Negative (FN) %
W4 TE 5K TR R By 3R e L o

44 NAHEXR

DEFERT SE R 4o RIBBHZRETRR
HEE s BER s R =R A
(outlier) ~ — 18 K 45| (Big group) $1# 8] 4
%] (Small group) ° BEBE{E 45 64 2 Fe LA X F A8
MBS RAFEHEBMEZHE 21
HE#F0FB R E AR — B AR X FE
BA S K@ fo @iy EE 28N
HAHRE RETHERNWEBER  THEP
HMeH —EAHNFHNR ERHTREB=p2

54

— X FHA o RIEREYE AR AR
H— AR E ] e

AN B S > DRCD #h3EBE A A
# A 657 18 > Réaan| a9tk A 1,097 18 > e
FAAE 19 & HABENHE 10~ 193 18
CMRC &)#EZE AR AT A 810 » Rap|tk
A 2,035 HerdA 14 /@5 0 A
SRR 9~ 116 ©

X FEMET BRI 0 mRAR—
BB GEFIEA AR DB LB S
XFEABS M MERTFFARAENHE
Moo £ — AR ST 2 #8935 > DRCD &)
BERE AR AR A 768 1B 0 AP AR R
510518 > /R AL A 75 480 AR ESH
£ 10 ~ 436 /8 > CMRC #ysB A AR A
678 > ReLFIHASA 2,117 > HerdtA 26 18
IR A B A 10 ~ 43 o BR A
M4t > BEeh 2R o » DRCD 84 B BH (8 4% R 3
Zy 346 18 0 K] 691k A3 8,483 18 - /N4 )
AIZH 7 @ HRABESHAE 10 ~40 18 -
CMRC wy 3B AE A 591 » Rajithik
A 2453 HepEA 12 B/ @ad] 0 A
DAL 10~29 ©

45 THER

ANEEHM¥AT BERT - BERT-wwm A
MacBERT 1 & A 4 #4THEE - ko k 5 B9AT=

o



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

70 EFFERAMANGEENIAE KA
B F B
mENBERMGIE Yy > TEELR S ¥
Add clustering info.&9#4L - 18 Bert-based &)
A e EAR AR BT A ) EMNR 0 E
MR KA RIELRE - ARCARARE
&) MacBERT &9 B 535 > 28X %4 EM L
F1-Score ) #4bR K o AR RN (+
Title Label ) #9% & » DRCD & #}4 89 EM #%
WBFMET 0201 188 5% £ CMRC B4
B3 EM 8% T 0435 B8 52 o 2w
A E®R T 0 CMRC 89 EM #4337 » K&
X EARAAI N XS 00 By SRR T HAR
A — ¥y £ DRCD 8RS £ 3% A
T ERRTRAMEARMEA B OAZA
ZMEAR LR > DRCD ¥ CMRC fe4Z4

BMERAWEZERANZAAITHLA S

DRCD A %4 B XFT£H —EHR X124
CMRC Al Z —BXZHE—EEERE > 7T
FEE LA T REUREAXENEHE M
145 5] N0 53R B R R 6y HI BT 0 i M2 R
BA R TR -

MAFATIE R B > £ A T 2 3 aY B 3E 3R R
42T (+ Keyword Label) #4750 %8F > sk
S B RN B BB X E N A LA
MAEAE—TELREY - TWRERYIY
DRCD fE/uN—{BRsEF ) EM T T 0.334
BE 78 B m AR BT R=AT
0.286 18 & % % ; CMRC mw AN— BT H

0.662 18 & 7 BB 4RIt > Ao NRBRIRF 16 -

BB E TG REA RE o DRCD AuA
— BT R ENREMEET R E
TREARER —BEHEF R EAREKER X
¥y BEEMRMAERRLTFE - CMRC B2
FE A — 18 B4 F oA w42 09k - BERT-wwm
8 & B8 A2 MacBERT 484 o 3 4m ¥
WTRE 579 N mEETHELARRK
= keyword 89 0 BF M E R B HFLEZ BB K &
R RSt m N keyword B4 F 3% AR, 09 % B IR
e TEFE R4

EREHMyER  TEER 5H
ensemble 4L ° sLER R BT BREST C &R
AR R AT R A e B 0 E R A
BFHRAOBENE AN ERR - BALER
BHRGAN TRV R A EREE > /£ DRCD &

55

HEHERLE BEARLIREAARMEY
MacBERT #3A& % » EM 4235 7 0.063 B & &
2t > F1-Score oA 0.011 1B @ HB:eypitaie s -
#£ CMRC EEai3fn > BF RRAB/HBEE
EM #3557 1305 18 & 4 % ° Fl-Score &L A&
0.843 1B G nEEayiEF - Ao F AR HE
AT AR Ny BB MERT > 55
el R HELERETEREE - DRCD§
EndE R b o EAE ) R MAE MacBERT £ fu A
1B Bl 42 % %) MacBERT #7%! - £ EM & %48
BAERAT 5 3A 0.601 Fv 0315 BB 2%
&y i > Fl-Score A #1@#2 7 ; CMRC 89 &
Ex g o SEIEN) R ANALALE) MacBERT £ u
—{B B 425 &9 MacBERT # 7% » &£ EM %5 314
1.647 #v 1.46 1B B » B89 % > Fl-Score .
F340.0065 69 3= F © & RALAE 2 — B 48 3
BNk ok LR ERA AR RS H
WIEF T RS HR -

5 &%

KB RAE A mAE N BERT #9352 A ¢
BERT-wwm A& MacBERT * % 42 %2 ¢ 3
3T B ey B M B R GE B RRAE RS L AT
B~ AR BB EH I R AE A E R E
BB o AN BT NE RIS - REETH
BB E N T RAAA 22 E T A A8 B
HBAERMBSEL  ERAMNERFHRIA S £
ERBA Iy FANRERINRB T
Aoy Eetse ) > HAOBBEBLERO T T
BT REEHER -

HAREER T BHEREREEA
FFEXFHF LR —BBRAG TR &L
B THEZRM THREWLREF S TURER
BB LR A& Rl o
AR s BRI ik s Ak
AR BRI AR 0 R R LT 46 & 2|
LA LER > RARELESHH AR
FHEER £ S e B R AR A b kAT
SR -

%% R
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P FHREARTNEH M AEH 7 e £ e
Discussion on the relationship between elders’ daily conversations and
cognitive executive function: using word vectors and regression models

Ming-Hsiang Su, Yu-An Ko and Man-Ying Wang
Soochow University, Taiwan
huntfox.su,kelen850408, mywang.scu@gmail.com
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FFRATHEEEESL  XE A v
HREBERIES {4t omr Y
Bk eng o PobrH 4o o F] deie T
E"rsﬂfé?r‘*‘ et AEAEETEDL K
2 mEFE {éﬁrsgg,&{ao L =y
Z’K%’ﬁr’ FREAE- HEFEHE R
R At
\’Iiﬁzp‘} RT3 1‘_@}5:‘ A
kbti%?fyv #&'ﬁﬁﬁpp
Bl g Al 2 A HET

s
})—&;., bti ﬁ

ﬁ—mEF FERIHCA) o §Te4 7 f3 BF eid 1t
PR s 2 TR E .
Abstract

As the average life expectancy of Chinese
people rises, the health care problems of the
elderly are becoming more diverse, and the
demand for long-term care is also
increasing. Therefore, how to help the
elderly have a good quality of life and
maintain their dignity is what we need to
think about. This research intends to
explore the characteristics of natural
language of normal aging people through a
deep model. First, we collect information
through focus groups so that the elders can
naturally interact with other participants in
the process. Then, through the word vector
model and regression model, an executive
function prediction model based on
dialogue data is established to help
understand the degradation trajectory of
executive function and establish an early
warning.

MaEsF

TS A

el

p.uff"’*gt T 7% A

Keywords: word vector, regression model, cognitive

executive function
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1 Introduction

R 7o B iﬁg#gﬂirz%*i_ZMSﬁza»:‘g
g g 0@ 2020 ERF O ARRBEA T S G
103% v iEm JE i 2025 F L KESE A2 F
g (RMRFBELER €,2020) ¥ o4

m—%—@iﬁ{ s AN ERE E R R RGER AT
%Eliﬁh ot B R L B A RRE D
i‘gﬁ o drfm R ELELF E R A %
R BT

%‘f R o e iﬂ ‘e" 74 Bt (Alzheimer’s
Dlsease, AD) frig & P,’&fr st (Mild Cogmtlve
Irnpairment, MCD & F & tepofsm Sk > ¢

H13E 3 RJR R AR ] 1) R4 K5 (Taler & Phillips,
2008) Yo B 5 R ogg ik caa 4 T
T hE Ry £ & o JFd el

@ﬁ_@w RATEER B i A
TR T A B A A i R

LN SRAN-E I SRR s ot A C P E
ELFErOFY NS ARE AT E R
5 e

Calza % + (Calza et al. 2021) F2 - T
SH L Eelr A np Bk Ko :] Eg it fody
Wl IRy 4T R %—y{ E T B HCE I o
[CRUAE - EEHEBE{- A8 ¢RI

jl]}i;éii&ijﬁg mzé 'ulw.‘g;gﬂa‘z,y
T3 iR = l[%)ﬁ—{’j} EL S S IR - 1)

R RN S (SVC) w@;ﬁ%
e #E (RFC) &k % & it & $H{e MCI % 32
R S R IR
A AW R R TR A [F B i (G w i e
7* o Fraser % 4 (Fraser et al., 2019)% g — fé B
AR R e Rp FHAF T Ty o

“MCI 2254029 Lt ftR ez S F Y #
N R A N AR A SR
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FhlkFas s fd e s Tty
dlicdy % F e (AUC=0.88 » B 77
it BRTA e LB R e (AUC = 0.75
gk =0.65) ME2 SH LA R HRET
=% (AUC=0.79 > #rik =0.70) "R
%5 % - Wang & 4 (Wang et al., 2019)5%= 5 g
bHETAB SRt fep B p AL IR
ﬂmmh%aiﬂv EFF 0 RALG MCI
B OB AR R E AR o @
m"”tﬁvm MCI & H3F &N % fre iz 4f i
%*ﬁﬁfﬁtﬁ’uam@QAﬁzﬁw
ﬁ,ﬁ@\—frpg‘*ﬂlg\,(ﬁ\./owtbyﬁmﬁ 4 /}%
iR s TR 2 MCI ehiF A e ¥R
ELRK -
Fraser % % (Fraser et al., 2016) & -+
it i:;z-alfﬁi i EATit R A Y p R
;ﬁmﬁi@@m_&rW s X i st
%/» o R A hE T R E oo
DementiaBank 3% L B 2" A 5 B 5 % 12 ‘Ep n
&3 AD mﬁtﬁ”ﬁ'fr%%ﬁﬁﬁﬁﬂ c R4
AD ¥ F 3 sl TR ER 0 B P
Flod T R ZRF R f'}r]‘% A LR 2

tﬁ]
=T

T -F

n_"_ﬂv_n*\_-

s1
2

o

*

ﬁwJ%A%W%m%ﬁ Bl % 4 it =7
Pl PES ek A > B ARG AD i

R § AD ehip &l o fE (7 0 AZ4B 81%
SRS o B PRL P EEV RS
AT g 0 AD HnE R e R A 2LE 5 o
Asgari & % (Asgarietal.,2017) 33 5 ¥ & 330k
# (MCI) et 7 i GhANEEACENGY

A p et A MCL R frsdio i ahf
B R TR R MCT R o8 2

gwwmxﬁ%mrggﬁﬁggAﬁ’k

BT 5 84% 0 B F N 60% i ¢
Polsinelli % * (Polsinelli etal., 2020)3% & 7 34 {7
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2 Dataset
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3  Word Embedding
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BB P ET LY kA2
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H R s P R Y - B aaRTR A
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4 Regression Model

BH e i <A LRSS
FAEE Y ARR %ﬁiﬁmﬁit PP gﬁ%ﬂfﬂ—i
FEHE D ERPIE R IR E L

A EHE S 41["3\ # (stepwise) fv &
(forward) B ff ¥ > e 4% & 4 Cd A
P o N A f RR R hEE (
(Desboulets, 2018) o ® 5 #c~ >t LR & B HcpF
& ¥ oap i = i & i fe (overfitting) eF 48 > ¥
e AP T 3L fr g AR, ppET 2 H
I+ 21 (regularization) o

Lasso &_f-| & $HicipE & fod + i 4L

A - fa* 7 L1 & Rt (Ll-regularization):H
M gESE o B 0 LI 2RI REASE

VIR E S 00 J800 i Bl 1 ok
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EEMNRTHN B AL EARRLAL
EREFERALGLEZREIEFM o F L
BREBFONEZAHFT AL ZHBH AU
R FFEME S FTARH LTRE 6 F
# 3% intra-sentential code switching speech
corpus © A& F L& HEA & (Chinese
Medicine Speech Corpus: sChiMeS) ki
T BT IR FLLAARIFR T
HAE M| WRA R G S EFFE
Bl oo Ak KA LR E BT FH
A% B AT IR 69 35 F PR AT o Bt £ A H
B R MRARA AR RAREY
ChiMeS 754t /& 89 4% 3% o A AR 25 7 3% 2% 5
psChiMeS » A& EATINER o B BF » B BT
F 450935 & R AR 0 KM A ESPnet
HER F VA conformer B A # it H &% CTC
PRk 89 ASR #BRAHE o /£ psChiMeS-
14 89354 & L o Kok AT IR 69 7 K 4T 3
10.5% # CER A K 13.10% % KER ° %
WX AT £ Joint CTC/Attention &4 ik
) ERA 1 15.70% # CER A A 22.50%
9 KER o ABMTTHE BB BB L BEREFT
PRAGG G o

WS RASE  BENRR - BREHE

Abstract

Automatic Speech Recognition (ASR)
technology presents the possibility for med-
ical professionals to document patient
record, diagnosis, postoperative care, pa-
trol records, and etc. that are now
done manually. However, earlier research
aimed on Chinese medical speech corpus
(ChiMeS) has two shortcomings: first is the
lack of punctuation, resulting in reduced

63

readability of the output transcript, and
second is the poor recognition error rate,
affecting its application put to the fields.
Accordingly, the contributions of this pa-
per consist of: (1) A punctuated Chinese
medical corpus psChiMeS-14 newly anno-
tated from ChiMeS-14, which is the col-
lection of 516 anonymized medical record
readouts of 867 minutes long, recorded by
15 professional nursing staff from Taipei
Hospital of the Ministry of Health and Wel-
fare. psChiMeS-14 is manually punctuated
with: colons, commas, and periods, ready
for general end-to-end ASR models. (2)
A self-attention based speech recognition
solution by conformer networks. Trained
by and tested on psChiMeS-14 corpus,
the solutions deliver state-of-the-art recog-
nition performance: CER (character er-
ror rate) 10.5%, and KER (Keyword er-
ror rate) of 13.10%, respectively, which
is contrasted to the 15.70% CER and the
22.50% KER by an earlier reported Joint
CTC/Attention architecture.

Keywords: deep learning, speech recogni-
tion, Chinese medical speech corpus

1 4
1.1 Ik

BRETWHRADAR R L EANREITR
JE AR S RE S ETEHE o A A — A KR
HEERAFERXRBA LR S E ZOER
EE o BREBE RS L P R SURAES
HisE ~ F X B BTG R ~ RS Bkt B A
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B A7k a9 48 F AR o 38 SR BB SR BRI
o8G5 Ak AL R — AR R AU E
fRiRTT R o

ST P SR SR F PR R AT o BT A AR
ARG ERRA =R 25 & : (—) ChiMeS
EhbE o LA 14.4 1 BF 0 3 7225 3 -
(=) N&RAF ) Joint CTC/Attention ASR 42
A E e ChiMeS-14 # BI3X & £ I8 F 4
#3% % (Character Error Rate : CER) 7=} 4
F 4R £ (Keyword Error Rate : KER) 2%
B 12.85% A7 17.62% AR (=) +FfE L4
ASR A2 A S4B % 35 & ek 09 R K BTl
FE o

K HEOFBFHR R EINRIFFE
SREIFI KM, & (Garg et al., 2018) ~
(Zhang and Zhang, 2020) ~ (Li et al., 2021) FT
P09 SRR T AT Je > AR BRI A2 REAR S T
L 0 BB ALA By A A BRI o — T
@ > YR AT 8RR PR BT 09 R Rk
& A4 ChiMeS 89 P RHKA B 5 R 2 B -
LA R R B AT S B LR SR
WA RIAIE ¢ (1) A8 B R FEF PR AT
BAAEFARBERIR  THIRB O LART R
PEAK 5 (2) BEATIRT 89 R BT IR A 8
CER 138 &8 2 M o b » Ak T8 AR
Rl N

1) 2RBHFRREIFLHERBHE
(psChiMeS) :
S5 ZHF AR (ETRBHRT
MY 3 AR BB R ST PR B IR AR A
A4 4 ChiMeS #9 XA Z 37 EATARE »
# %] psChiMeS » £ T AR G4 H+ X
BB E PR H IR B R -

3| B AT A b PER A BRI 6 B R E S PR
#A Joint CTC-Conformer :

FIR A B KRN A (Sl
Attention) #2 &A1 # % (Convolution) #
#1859 Joint CTC-Conformer % & k%
A s £ psChiMeS L& 34k AIK » T A
T 10.5% # CER » "A& 13.10% # KER *
#HZ w4 £ 49 Joint CTC/Attention
BEBIERBITITH 15.7% # CER #»
22.50% #) KER °

1.2 HLEH
R L0 % =B I RE B B AL 2R AZ B AT R

B B o S PRI 0 RARE R o =
a8 B AT R SR 0 BRGE S PR AR A 8
AR HATHLIEAE AL c SO B TREREY
Mtk 0 BAEFT IR ALK 3 AR KA
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Ao ZEAR B AT IR ARG AAE o AR 0 B AR

BRI RZERPARART R 6 o

2 SUEREB

2.1 B #HLAREAZ TR

SHHE TR BE AN T LA LI
BRI U EE 2R RA R - B AT
TR LT B 0 RIE o LAZ T
We AT RABHEIRZHFEG A HILE
AL T A IRHEAM o LB BN — ALk
ASR AT ©

ERE > B B UAR B A IRAR I R A A A
BEAFIEE 8) T & ASR #rih e &R - #4785
HAGEELE ZIF RO BHRER (punctu-
ation restoration) » L3k & AF T SA% B 4T 9K 49
TAMAARRE > Sk B 2R B IR TA -
2017 4 (Salloum et al., 2017) % %St B £
AL SUREATAR B R R > L PTAR A 69 B dir
&A%l RNN Ae b Attention #9# %] A 4742
BRI F o RARERAARF F B KT
Ro0q30 & & R — & T F AR EK] 87
F o LPMTAIZIR ~ 73 - FIRMAZ B R
BOR _EARBAT 45 69 2LAE © 2018 F i1 (Garg
et al., 2018) P74 % 69 B BpAR 2 AR BAFJEALAL »
ARZATRETRETFER N EUESWF
B > STA R EATAR B AT IR A9 TR B A X A8 F AR
o ARSHEFE SR 0 LR IEE ONN A B2

®) LSTM FARIA A A 4k 69 20AE o

2020 ¥ Amazon ## &% E G 69 PR
£ 7 » B ATAZ 25 4 9% 69 78 B L BOE AE K /)
% (Sunkara et al., 2020) 84k o TP 4£ A
BERT (Devlin et al., 2018) FA 31|44 A & K
fE#5 AT R SLRAB R B 7 KRR
AR ALAR B AT IR TR B R WAL E A K ) B 694 FF
b3 LSTM ZAfAR b » 2KAERF 3 ~ 4% © Fl
%A 2020 5 0 B (Zhang and Zhang, 2020)
By T AR R PP BE RS A B AR B AR AR R RO
& F i St BRE > 42 ERNIE (Zhang et al.,
2019) IR » L % 5 H MR 7 XA TR
B8 F ey R0 kR ASR R A E
4T > BLEU #7%3FR|454% (Papineni et al.,
2002) T ARRF K& 2% © 2020 ¥ Google #=
HAFFETRY (Lietal., 2021) » &% 4) Fif
J+3% £ (Sentence Boundary Augmentation)
£ %A FHE L BLEU 484 T4 A - & U147
By o) TiE R FERRSTHML > Lit@FEzS
HA RS
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2.2 m¥#H ASR HA
2.2.1 CTC

BT RGBT RNALN S F I KA
T B 2 8 B » CTC (Graves et al., 2006) %t
F—MEMARETAAAREE WM E L
R BEF BT EAHEAR LS T T T8
R 0 2017 & 8 E IR H 89 Deep Speech 2
(DS2)(Amodei et al., 2016) » %45 & £ & CNN
B E) LSTM 4% > JA R RIAME 355 oF 5
L EG TR UM R o 3R AT LAY G ISR
K (hidden state) & A R FIEK L CTC
WMERE - F—F @ > RS EE—E L
# 4% (fully connected layer) » 1~ # & &2 9}
R AT RRAEH £ o mAR ASR 8
RIEAFZ A RMEEATINRE THEF Hin
BRI F o Af CTC 95k Bs% @ SHH MBI A
PR AL B B S g SR 0 PTA T B B EE
FAEA > RAR R ATE LM AR R R A B o

2.2.2 Joint CTC-Attention

2017 ¥ & (Kim et al., 2017) F £ %42
& B B B Attention ##]F2 CTC 49 Joint
CTC-attention 3&F #RAEA o A T £ 45
MEAB3E 9 1 % — » Encoder #& A £ A X, »
I d CNN F= LSTM 41 m& it & fF 25 15 Bl
BT A B 09 I8 M B AR 88 i £ CTC Decoder
F2 Attention Decoder ° % = » CTC Decoder
B —B R T8 F A AR T AR
W AEHE—MOFTRIMAST A HRE
B FMmd o REAMBELG FlE g2
R (Blank) 894 By XA HH o % = > Atten-
tion Decoder #i# attention 2~ %iE - A M B
LT A% o A& > FHBSHHE N ERAE De-
coder B91& 25 » A N R EFAE K RE A
Fo B8 WX 1 P& 0 BARPTEAFH Joint
CTC-attention B A A2 & BF £ 3] F 4709355
P AR o

(1)

2.2.3 Self-Attention #%] 17~ ASR A

£ 2017 F > Google 4% ¥ Transformer
(Vaswani et al., 2017) > st T —fEp A 8
K EZ A (Self-Attention) 8 Seq2Seq ##
Ao 3R SL M) 69 AL A L DN AR T A S TR
WO BB A A AT M 0 FATEH > ik
IR o Transformer & 3 FAE#HF= NLP 175
FoFF AR RA o A RIFOER o
#% » A FH A Transformer 12 A 5] X 7& 5 9%
3k o £ 2018 F W (Dong et al., 2018) ¥ 24
# %% Speech-Transformer * F4% A Trans-
former RAE A B RNN 2 LSTM % Seq2Seq

Ljoint - ALCTC’ + (1 - )\)LAttention
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A > T 4E & Wall Street Journal (WSJ) &4+
J& £ 5T AT B 5 543% % (Word Error Rate :
WER ) 10.9% #93h8 » PT & 69 ) 4R B M 2L 42
B JR A2 A RNN % LSTM &A% 30% o

#2020 @ (Miao et al., 2020) ¥ 2%
i 4% CTC #%| &4 e X Transformer &
AHF s WEMTARA Transformer & 8 I
KIBFEO ET UHBEZGHFMN RlFas
& CTC #—0F M THRBGE M - FKAL
HKUST ¥ L34t & L > A4 Joint CTC-
Attention A & CER 187 4% °

3K Transformer #78 K 35 89 LT U4
A T R A2 HA BRI A
553k o B3k 2020 @ Google % 9N Trans-
former Encoder ¥ /m X Convolution #%%#] » ##%
1€ Conformer Encoder (Gulati et al., 2020) °
LA XA BRI TR £
% B — & 89 LSTM Decoder RAFT » T WL £
LibriSpeech #&#t & B 4F WER 2.1% #3048 ;
5 EE S R £ AT WER 1.9% #930A¢ o
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3.1 —FEBUABAREAR BT IR 0935 PR AL
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1 FTow o ¥k o RATH LS HIRAA it
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JRA K hede BRI 6 L ARARE . EHEITA
MIEAZEE > e L EFE  FIE 2RI L
Ao BAVA g RT o T RAREFRBFEH
1% Al Self-Attention # %] 89 conformer » YA &
CTC % #5 % 1 %, Joint CTC/Conformer R4
89 ASR #8¥% o frbin Hamty I RAEL > Bk
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—Z Z i MARIHS &
A BAE SREAKS
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B ROIE R A A R Ak
B R BEmLER
& FRKE B E T
RIHE R A R & 4 B AL
HRARE ZRFHT
DAY R VN
tAFREHT L AL
AT

—Z ZEEARIHE > &
Aok RASHE AR
B {on) {full} {diet}

. —=Z=Z%ARIHE » &K
B RA SR AH B
% > {on} {full} {diet} °

R PTL RB AT 5 2 ATV R ARG
#) o RIEFLA R AL & e

JERBERL > BAL
FHiK > Bl gHGT
RIH - & R & B & & B A&
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LA B A AR AR AR ©
A FRER T ARG
4 o

- 3. REE# AR BMMEEK X
@ kom0 BH A FHAK
B &, & Bi% 7] > RIH -

4 BRAR AL BAHERAL
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AL RAIR ©

5.6 R F3REH T AT

Annotation of the
whole record
without punctuation

Readout of a
complete patient
record

annotated transcription

Segmenting the speech
record into semantically
complete utterances

Punctuating the

(*newly added*)

2: psChiMeS X A423 7 X,

E BB 14.4 8> LB A RAIRSE LE
B9 15 4rdo M8 326 » ARIE 516 B L 1LR
WA E TR B B & 0 AR JEBF S35 69 7 X i
ITEF 05 Bl A KBRS P R
X i o do B 2 BT fARdEE  AMA
SR B R B B SRAE LB ATAZE > 1R R AR
AR FL (BER) BFEMEE T H
F A9 AR B A 0% T 3B ELARAR B TR 4
TR TEBRIAZBEFRAL gk 1 K%
A PTAR 32 69 3% U ANAR BEAF 9% 0 13 8] AR B AF
FHHFL (BAER)

H—pmBEONE LI REELILZ
EAFTH S ARKE -~ BAlRE  EXKRR
FHFOEI G o HHEE LG R kot
B E R RMFEBAELEZOLEMN
REGRBELFI I RS BT (ER) ©
#f& > #F ChiMeS 354 B 419 B34k 2 A13K
o mEOG s ERKE 41 FB I E
B 5682 4] 0 mBlsXE A 1,543 6] o DR ER
BRI E P AW E ARG IR o FlabyBAt
J& oA & de & 2, B F psChiMeS B 212 %4
FEHE o

A 1 ARB A IARZEALA

HLA
EEEEE
HESELE s SR T EE A
BTAEZRTEBRERA
BTARERERAE LR L
web o Bl R
EERNGEE RS EE X

RIS AT I

A
~

23 (-

~—

B (:

~—

a5 (o)
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& 2: sChiMeS #= psChiMeS ##F4H &

EH R sChiMeS psChiMeS
E & 2K
FE | BERE | e
A SRR | pmmn
&) 7,225 7,225
(3% /RI3K)|(5,682/1,543)|(5,682/1,543)
FHHFE
) 7.2 7.2
T 29.8 33.3
ey &
(o 0) 867.86 867.86

3.3 Joint CTC-Conformer #

4 & 3 P77 0 Joint CTC-Conformer &
W Conformer % #5 % » # 8 CTC MR % fo
Transformer AFA%5 3 PT 40k > L P maH 5 89
352 W % 18 Conformer Block #17% » 4 1B
block &/ &2 7] #f X # % (Feed-Forward
Netword) ~ % 38 X 2 & 7 4] ~ HATE 4004
Bh— R Al tk X% o LT A& Joint CTC-
Conformer P #& A4 -

3.3.1 % #AXNEEN#H (Multi-Head
Self-Attention * MHSA)

Self-Attention #93iE 7 X & 4 K B A5 £
&1 %4 (Scaled Dot-Product Attention) > £
HE—HEFRBREEZMBMARAGERE (lin-
ear layer) 29| BB Q~ K~V & > EAHK
B IE B )R] o T HE AL BEAR IR & ) R AR
Hdo X 20 H 18 FATE I X F WA T A B 5
B Q #HEJ B FE K RREEEA - 5055
MERBAE R R T /d), > AR AEE N soft-
max T2 A B 1 89EEAHE (Attention
Weight) » & A& RREERE V A2 H
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Softmax
CIC
(o=
1 r = Y
(et rom)
P
‘ Feed ‘
‘ Layer Norm | Farward
?;~ é;;
Multi-Head
Feed-Forward Attention
% (Retarom)
Convolution
Masked
D Multi-Head
g “Aftent
. o4
‘Muth-Head
Self Attention. s "
Module ;—( g; P,
Output
'Embedding
Feed-Forward
A = Outputs
Shifted Right)

B 3: Conformer ASR %4 B

R BAEEE T8 R A T3
Z%& 71 B (Attention Map) > £ F 1% M 4 4 A
T VA, YR EEAE QF K BHEKEOK
ERERE Q 7 K 9B E XK > mikmE
1A K > E A E softmax 091F F 8 Mk E &

Ed
27 4K

o BEIRGEEFR o

T

QK
Vi

$AXEENHH > w3 AT Zd
% AR B E B ARBT LR, o Rl & —
B A5 A 8 = B R R 89 8 B (linear layer)
TRBBE QK NV HERE—FTH Q-
K~V &35 m h 9 % AGBMELTHE
L CNN &4 B F &8 38 # JE 69 convolution
kernel 893 R » @& —FA A (head * h) F &7
Bl R FL AR B R BB 89 B3R 0 AR A e B
Fatke) Q~ K~V FiENERBFIE
PP S ERESE LS UREIPE P
WO SWE WY B SBIER  BalRAT
3 o

Attention(Q, K, V) = softmax( W (2)

MHSA(Q, K,V) = Concat(head, ..., head g ) W°

where heady, = Attention(QW,?, KW/, VW;Y)
(3)

3.3.2 %4 (Convolution Module)

Conformer ¥ # Convolution Module * A
15 20 B3 A BB IAE ) 0 T v AR AR EEF 69
AR AP BAL B A - RERA S E AR R
A4 ARB IR AEBH—RHGBE
A% (1-D pointwise convolution) =T VA i &

67

(channel) Aefd » AEAKF % GLU $By &8
— 4R E A (1-D depthwise convolution)
Batch Normalize » # %1% Swish B 2%
RELEELBEMRE o

3.3.3 Self-attention &% 3%

bR Z AT Self-Attention A% % 6948
KRB o R ABHBIEH LKL > L8RS
£ % K8 Self-Attention Z 1% » FHBEMEE
1 softmax » 7 A1 B 5 69 B B 4 8UT 7
MHRFERYEBEFFOFAREE - HFH
Ground Truth #4% & one-hot 4 #5H X, » &
& S A B B 5 09 TR B M AT VAR R R

# (cross-entropy loss) 3t o AKX X 4 F7
A
U
Lselffattention = - Z y*ln(yu) (4)
u=1

A ¥y AR B EHERTE Ground Truth * y,
By AR R AR E o R AT A
B 8 34 RAR A o m AN AR A AR K
# ¥ (Loss Function) &Mt » F B A 43
(Negative logarithm) 3+ 3 48 & & # o

3.3.4 CTC ##5 %

BENB OTC W THIEHEKE H TR
RE R BB RaRA o 9 REAE & U B
B BT ARG FRES 8 FLF U
B ¥ L Syllable 89 BT H %3] » £ CTC F &€ %
ShAEF P Im A Blank (-) AR & T &EF -
BETFW R F] o MmEF PR H
AR AR A AR E I 0 K
B9 By 4] » BP & Self-Attention Based Encoder
BT $ B B — BF 5 69 hidden state A% 13 2] 48 4
JEG B FNBEE py(se|lw) > B F sy A4 t BFZ|HE
FH U FPHARGFHF - HBEBNBEAFE
B 5 BT TR B 69 28 ) R R An R T AT 3] TR A T
BEgEE - T 5 AT

p(Slz) = [ [ pe(selz) ()

A o T 2R RAZBTHHE IR
B p(selr) RTBER ¢t BTG A
EragakE s BTARATE - @ p(S|x) Bl
TR FRAFRFEEANREGTA
B e EE S LR AN FRTTE
pie(selr) HeFAR RATIFEI R TAR T 8K F -
w4 CTC H—WFEAAEEGHE -
LTREARS EHGTARFHI blank » 1%
BImE T RAEERD ¢ 9RE > Bk
CTC P &#AHKOM BRI ERANT & &
BRI g o ko CTC 8RB & s
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THF RS HEEMKTFARF $ 8 blank
Mo RAAAFBIM MK T E > Bl TEHE
e EEE | B8 CTC MK ¢33 M E#
Eaa

R CTC B ARREZE » KM= T
AT &K CTC H48 R R > A E A
Bk scd o ZHMOAR K BT M S
HAR ZIERAR o B TRINRATA R > 48
RHAALR LS g  BEAIBEZ R LR 6
BTt

T
> TIpesele)
s€ Align(z,y*) t=1
EF 2, y* 2R REMAGEFTHBT 5 Fo 40 4
J& &9 Ground Truth ; Align(xz,y*) & Fi A FAR]
M4igi8 CTC MRS yr R ML &
BASETA B Align(z,y*) 89 46 FA40ha o
7 8 A R B AT 48 K B (Loss Function)
oMb s LA A ## (Negative logarithm)
R FRRHE -

3.3.5 R A#5#%4] Joint Decoding

B T SRES PR A A F AR R B &
£ CTC # & EFF A4 HE - LA Self-
Attention RERIFE KI5 B A& ST 15 6945 3% »
AR SCPT AR 04 WA 36 R A e PR AT I BRAR B L ) AR
A WL EEE \ SRS ERRAE
CTC loss YL & self-attention # cross-entropy
loss B9 E P » X, 7 BT -

(6)

Lere = —log

(7)

Ltotul = (]- - A)Lselffattention - )\LCTC’

4

KM H B Joint CTC-Attention 48 31 K
AR AT H Joint CTC-Conformer A » A
R SLE AT EA G 0 » EARSFR
psChiMeS-14 #4794k » #Ha s b oo & A A2 2
FFIRAZ 2 O PERANRE o BIBF » KA 4L AL
—FIRFTIE AT B IR A9AZ 34 ASR 2KAEHY
HHE > Wk AR R Joint CTC-Conformer
LR 0 A2k LR X A9 EH B B ChiMeS-
14 $2 psChiMeS-14 # £ £ 85 > CER $#2 KER
BRI o

4.1 Attention 2 Conformer # ¥
WA~ B FRIIEAR » TR TR R 2B PRk T AL
b9 F 45 #53- & (Character Error Rate : CER)
23 EEEREIRT > B REME B
1By EE o KM T B4 F R R A5 AT
(Keyword Error Rate : KER) » #F » K425
ARINRIAT B I EHATREBH S KA R

68

707 A B KA G M 4ET > AR Tk 3 HT
7| o 3k £ 69 KER 3FtEAR X 8 T :

& 3 BhkMaETHEA

PR R R AR e T S IR
# =354 60 99 | 19 | 60 115 707
KER=F Dt e 60y (8)

Ny,

KER #3t A A CER 44 » 4H4 Tabel 3
89 B 48 5 7] & &AM ground truth #9.EsEAE
0 ARTABIER T AT R MEET > BEIMR
BB REATREGH K - L N, BAT
HIEHEGHETFRE > @ S, ~ Dy, F I, AR
by B4 E AR M 4 F LR R B RAA BB (B
)~ Mk (RAE) RIEA (S 0) BEE =48
EoE LR PP E (g

Lo 44 Out Of Keyword (OOK) 4
ARG BIAINRE > 40 B I RKEGH
$27] 0 KM A I E K OOK-KER #3845
2o e X 9 BT

Sook + Dook + ]ook
Nook

AREXAARLES KER 89 k4 F > £
OOK-KER A& 4t # 7 K i 375 91 4 4 69 B 42
FEATFFI D Ny, B ARRXEF RBRAL
A& F ground truth EFEMEF O F - @
Sook > Dook Fa Lok A /’% 20k S 9% ;\%T‘?JL CF' ’ é‘]’%’
OOK W fAR| B A % Mkl A=/
SR RE o A RA1E A CER -~ KER #=
OOK-KER 7k & 3 B 4% & £ 338 ASR 43k »
ZAEAEAR R R BAEAK 0 R T ASR A AR AR
1 o

KMF AR 4 BTo AR ENEE
# Joint CTC-Attention VAR A AL ik B3
¥ Z Joint CTC-Conformer 4R #8355 » 1 A
KAKETH 11 Rk THTEKEGELF —1
RBERIFRER - BR T8 S8y
FIAER 4@~ MR fotid <> KT o

Wk 5 P& mAEA A baseline 1% A
AT 3% & 8945 T » Joint CTC-Conformer 49
CER # KER %747 Joint CTC-Attention
K& 6.04% # 9.51% > @ OOK-KER 1%
# Joint CTC-Attention K & 14.3% ° & %
BAE R #IF ¥ F 14 > Joint CTC-Attention 1%
Bl wave ¥ LA ZBH KR A4 LT
Z (volume) ~ & # (pitch) YA B &R (speed)
FHRATHEAARALE > AR WE R L 4
% 5 # Joint CTC-Conformer B| &4 Al 353k

OOK — KER = x 100%

9)
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% 4: BI Joint CTC-attention ¥ Joint CTC-Conformer 3t A£ R 89 82X & 15

B

F CER

Ground Truth {cer} » #Eim KL o

{cot{lon}{can}{cer} » ZH @k » AA 2k » AR BHL >
DM{diet} —k—FZ&F oA DM * JEBE X * {co}{lon}{can}
Rt R ER B I {co}{lon}{can}{cer} -
BARM A > A £ E A {port}A 0 AT H = RALFE AR ©

E A —H {port}A > B+ A =3 > {su}{gar} B QIDAC*» ZF o

Joint CTC-Attention
with wave augmentation

{can}{cer}< -

{coY{lon}{can}{cer} * AH @k » AAH @& » AR BHL >
DM{diet} —F—FZ&&BF » A DM< *
{can}{cer} e BEmREL< > > bk« = ~HEHHRA {co}{lon}
>E R A EHR {port}A<
FRACRAIR o Eif{an)—F A< SB+HA =K >
{su}{gar} Bl QIDAC* A F o

SJERE S > {co}{lon}

Saste | 108

Joint CTC-Conformer
with speed augmentation

{co}{lon}{can}{cer} » ZA @k » A A @)k » AH BH
% > DM{diet} —X—FEZEF » H DM«
{co}{lon}{can}{cer} - #FEm F < o > : Mk KL H BAE

R, {co}{lon}{can}{cer} » LB K » LS FH {port}AA
& DMRALEANTL ©
< 9% > {su}{gar} B QIDAC< * >& < ¥ >

Z %A —1F {port}A<

C S JEREE
15.25
AT A=

3 & (speed perturbation) » ALt & % i 3 #
REHM R (09 F 1.1 42351%) > KF4
¥ e B RARE) 3 4F o M EAE LB T 0 Joint
CTC-Attention /£ A wave 3§ & Z & » A&
7 A% R 8 baseline * 2 CER #= KER % 3|
T 4.74% #2 7 % » @ OOK-KER 2] # F o
71 Joint CTC-Conformer /£ Ao A\ 353% 38 & 1% »
A8 A A A A% A 8 baseline » 3 CER ~ KER
2 OOK-KER .4 3| T 7T 3.9 % ~ 6.89% #=
3.34 % -

B EREE TR £ERAREN K
HABITHRXARRAZRAT Y - £
— ¥ g R AEA 82048 0 T A 3 Joint CTC-
Conformer 4 baseline #9454 T » =B 154247
1718 Fl wave ¥ €89 Joint CTC-Attention ;
FEAE R 3 8H LT » Joint CTC-Conformer
8 OOK-KER £ &A1& # Joint CTC-Attention
K# 1769 %> BHREFT Conformer /m A
Convolution 9 # %] 484 2T By 345 - 12
FHE& T B 4 F- 69 PR AE o

& 5: BFF RAEAE psChiMeS-14 E 6948 rb

Joint Joint
ASR CTC-Attention|CTC-Conformer
Aug. baseline| wave |baseline| speed
CER(%) 20.44 | 15.70 | 14.40 | 10.50
KER(%) 29.50 | 22.50 | 19.99 | 13.10
OOK-KER(%)| 76.85 | 76.85 | 62.50 | 59.16

EMAFFNHARG HALEILE T O0OK
By PR o A —F& ASR AT REBIXE R E
B DR E R FE (OOV) » HA- Bk Mbt
Foo AAH B REGmAs > ikt i 4
BB S FRARXETHAT SRR RE

69

— 18 % 18 55T % {8 & U F #p BT 4R 69 B
4257 (keyword) » £ & 3| 4 e 89 F R B & 8
HALEINREF o 76 ASR A K E AR
RAA I BB SEF TR o £ AT AT
# 89 Joint CTC-conformer RAFT > 7 & 255
# OOK-KER BPR & : BT & £35S F
B B SE T o LA TR EAEFFR B R o &
A EE R A BN PM (pronunciation
model) YA& LM (language model) 8% #% » &
R ASR Rk 5T AR EF
BRBFHFGE AR AL LT TG AE
BMAET o R 6 f1k 7 Rk — LA E A
P L% ST OOK 8945 o

W A2 B AR IR AAZEH ASR A

b s RAAATF A 0 e AAZ BEAFIRAZ 3R 69 ST
RKEAHHHEFTHREN EHRER L
B E o ATE €48 A Joint CTC-Conformer
A > gk F AL A RAT B A IE 89 ChiMeS $24
12 B FF95A% 32 89 psChiMeS 5 g 754 & » i
TN Bk S 1% 4 P KBOR G g o Tk 8 PT R 0
% Joint CTC-Conformer 1% Ji Ao L A2 5 5 3%
# psChiMeS 4B » € Yo g 4% F A AR B 4T
A% EY ChiMeS 34k » CER L7 2.1 %
7 SER LA K& 11% o RAVBEG R A A :
2B E T psChiMeS-14 #4 LA+ F#
B K& 10% » dody B B8 AR B 45 9% O #E P SR %
# F-Score RA& » ¥ 5 83% » BT XA faiit
A CER LA 2% 897 B » £ #JEZ% T AR
B IRATH % 5 M SER (sentence error rate)
;> wA SER A7 XA A - Wit &
RE—GEHE—BAFRRE L » Fiw i
AR B IRAINERAT I R EGAR BT IR 443R » AL E
# SER # EF+ o

4.2
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& 6: LT HR OOK Ff

& Aol & 9 F 47

OOK Conformer Results
B 55 + B -ﬁ:‘:‘" ’Ti%%ﬁg?ﬁﬁ%ﬂ%%ﬁ » UTI » ARzt A
PR Ak RERYABA > AABEL o
1k T8 et B ) = =303 & B 77 5 O s 4 Ry n TR SRy &4k 0 AR
7% 0 F- 4t

S EBBA | g -

FIRA SRR » AR 10 AAEF%» REEAZS =+

RERD B ER LA DM RIS 5 A MIIE » AR

AR
MATRE | mg A £ MRAERERE -
buscopan * buscopan 4T » & follow A 42 P » A B389 CTL
& fE CARBEHY AN ENE » REM KX X ray AA F » EKG
sinus tachycardia °
& 70 RLTHE OOK $ubl
OOK Conformer Results
Kascoal RIE M ARAE B f%é?fé?ﬁ"‘%—‘é%’% k?scoal o BA— %
primperan nexium iz ®AFjefbiFie T o
bladder CA FHA+ = KFTEE bladder CA» AA Bk » RABR» &
A @BHSE & on full diet ©
CAD FHREFEKZE A CAD ESRD > A disk > A @& o
on levophed | NA-T-EIRE A o BAK » &4 on levophed pump » X A% oz iR
pump OK #t on JR °
% lung tumor %Tiﬂ“l‘ﬁﬁi ’ Méééé‘li%)jit lung tumor * Z A &%k » A
=B A AWK 0 B AL on soft diet e

KA B IS5 M AR E LR e AR B
FRE HARAF L FRELEF B
(mon-syllable) %3k 89 % % o & 3k > &AM
psChiMeS-14 RX &R P 6912 B Lk » &
ot AT Z A AEARAL 0 B EUALA P ARG
A A AL B A IRAZ 326 sChiMeS-14 4R 4% AL
eGP XL REITHIE c WwR &R SPHH =
7|7 » CER £ A KKty %% ; SER 8934
EHMTET 045%° @ KER TH T 1.14% °
MBI ETARRE » BAE A m A2 TR
B UARBATINR » FERGER P LFHFEL
B MRAR TR » R B B A2 B3R
BATKREE R A T > PTVAGE B M 42 F 93k
A I o

% 8: Joint CTC-Conformer 7~ Bl 354} & 2L 48 rh i

Corpus Joint CTC-Comformer
P CER[SER| KER

sChiMeS-14 8.4276.21 13.59

psChiMeS-14 10.5(87.60 13.10

psChiMeS-14

(remove punctuation) 8.40175.76)  12.45

70

5 Conclusion

B TR LERET IR ER LI
BEFFRGTFER AR EBEHARZRE
B LA ChiMeS-14 w43 2] A 4% 8 55 9% 69 91
4R 4 psChiMeS o R4 » #] A1 ¥A self-attention
Ml B 69 conformer A 2 CTC &4
#8 Joint CTC-Attention ASR #9424 » /£
psChiMeS-14 75 #} /& i 47 21| R 42 8] 3K > &A1
TR B AT B L AT E G PR o — i
Ao AR e EAR I LA 0 £ Joint CTC-
Conformer 8 &A% L4738 #8094k » AR
LR &% CER, SER &% KER # %A # 85 %
2o ASR 4§13 S5 20 SR 2 4942 B A SR AL F
P LFRARLEFT —ROFH -

wfE o HABARERGFREKE OE
AR S HBRER TR FE F 09 A E E 4|
AL ZGHEERSE > w8~ FEFEHXFT
AT o f B UK % FRA Rt
FRAEBZERNE » 55— AR > HLK
RALGAE 2RI A AT Bk k
THEFER S RBE RS > TIERRKE -
Lo o @ (Salloum et al., 2017) %4 BTt
R o E TR BB FE—FER
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Data centric approach to Chinese Medical Speech Recognition

VAEHE B P s 9 F SUR % 35 PRk 3T B B
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%

SH4 P LR R B F RN 0 AR
VAE B PS8 L% (data centric) > %
BAREZE PSS EZE (MLOps) #
RRETHAR - Ak ARAREFRL
P78 8 Chinese Medical Speech Cor-
pus (ChiMeS) 5 & kK T35 F #4228
&AL« £ B Z Joint CTC/Attention ) &
%35 & #%3% (Automatic Speech Recogni-
tion * ASR) #% RAE#% - St HEH R &
5 TR LI > AR BT H M E R
FHJAR - ERAA ATREF I
BRBT RGBS ARG LR AR
AZ o pHE (=) KE$EAZE ChiMeS
B E . LA 144 B 3 79225 4
BE o (=) HAHTIBERBTHREN
I B 4F 89 Joint CTC/Attention ASR #%
Ao LA ChiMeS-14 # R X & Loy F
4% £ (Character Error Rate * CER)
Fo B 4 F 45 3% £ (Keyword Error Rate
KER) 2 %] & 13.65% #= 20.82% ° A &
(Z) RABEA R4 LA ASR A 3k
BAF & o fm#h3F% ChiMeS A & #3k
(https://iclab.ee.ntust.edu.tw/home) ©

Mats : REFEHE ~ PUREREFTE FF
Pk

Abstract

Concerning the deleopment of Chi-
nese medical speech recognition technol-
ogy, this study re-addresses earlier encoun-
tered issues in accordance with the pro-
cess of Machine Learning Engineering for
Production (MLOps) from a data centric
perspective.  First is the new segmen-
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tation of speech utterances to meet sen-
tences completeness for all utterances in
the colllected Chinese Medical Speech Cor-
pus (ChiMeS). Second is optimization of
Joint CTC/Attention model through data
augmentation in boosting recognition per-
formance out of very limited speech cor-
pus. Overall, to facilitate the development
of Chinese medical speech recognition, this
paper contributes: (1) The ChiMeS cor-
pus, the first Chinese Medicine Speech
corpus of its kind, which is 14.4 hours,
with a total of 7,225 sentences. (2) A
trained Joint CTC/Attention ASR model
by ChiMeS-14, yielding a Character Er-
ror Rate (CER) of 13.65% and a Key-
word Error Rate (KER) of 20.82%, re-
spectively, when tested on the ChiMeS-14
testing set. And (3) an evaluation plat-
form set up to compare performance of
other ASR models. All the released re-
sources can be found in the ChiMeS portal
(https://iclab.ee.ntust.edu.tw/home).

Keywords: Deep learning, Chinese medi-
cal speech corpus, Speech recognition

1 %R

# % 5 ¥ 3% 4F Machine Learning and
Operations (MLOps)(Spjuth et al., 2021) &)
AR SHEOARE Y B RBOER - BF
i K& 69 A EATIRILAK ~ F 2 R B Y
FREVABITE RN ~ 2R HFHERANE
BRI A 0 AR R AT LT
B S b A GAC AT B RAR o ABTRPT ARG
By B B9 BR R 1 AIRE SR Mt B ARRE > BT
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LB AEERAL FORATH R BREF > BT
&% %) MLOps AT R EMEIHEF o

1% 475 & PR AT (Oh et al., 2008) » £
ZEBAEAEZEA (acoustic model * AM)
~ FrFRA (pronunciation model * PM) YA
B F A (language model » LM) = fEAL A 8
ABt L o giEZ 29 LAAH AR F 21
Rl ANER o BAREIE G - HF R 15 Deep
Speech(Hannun et al., 2014) ¥ A4 RESZE
Z R RE TR G BB o F9EF PRI
TR REZE @ AT YR ETATH
Z R R % 0 W R R ARG S R 2
SRS RIL > 3T 4F R R 6 PR
% o

B Al 7& F PRk T K % 4t 8 —fx A % &
R 35038 6) » wiEF ohIE ~ € k83
F oo SHHLBE A o B LA AR E B E09EH
e o T ZAEAR M BFAEA 8994k o R34 7 A
0938 & P AT 0 E B KRAREH R 69 D4R
2 F G o T3 548 & 47 69 Pkt
RoMBEmE » HABRMGE LS EGENT
A U ESEHM ARG 2 A0 F
FENBARGETIRBATGRE - Rd > B
HEESFY o wH AHEFHRGMY > T
AR KA o AHEE T IEEB] » BEA
BATIHEMNZKLNA TREGRENEE
BB — LT AR o« HHEFHRT ol 2 9>
BERZTHMAEE T E LS (Electronic
Health Record * EHR) ¥ > F TAE ¥ %3 A
FoF o AP L REBRETHRBMAA R B 8
Z— o BEAWBEEA R £ v YR o A
35 & PR BAMT > M o 69 R B B %S F R
X F o B EHR » ABAKE A B 05
B~ FHEBMARE - ABBE T TR G
F] o

BR Y LE BB RN AT @R R E
BOPEK A FEEHE Bk WRES
HE BT HRIMN  FEREN TN
TR RAIR - M2 § X BRARL > BB
B 2 ER R ABGMAMTESERES A
AR LB L EFBH R GEE - Lk —
AP L HEHFEFHERAFTLE L 125 3
kL FHE > WA FE (sentential code-
switching) #9378 ¥ & 42435 & 95k & — B K
o BT MELERAREME Kot 8B
MLOps # R4 @ R R B~ L ETHE - I
AR > ABM BRI E A TG H > BAF
AT SEITHAR o AR ARAN (1)
KELRZAZELEG P RZEHE
(ChiMeS) ; (2) #H#Fsb B 2754 & 28 SME R K
3 E (Ko et al., 2015) 897 % » 158 CER
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#7 KER 251 & 13.65% ## 20.82% # ASR #%
A (3) LB ChiMeS A v #8355 » RAEEEH
Jo AT AR F 4 o
AW LAT H =0T E K 5 A5
B ASR M HATEERITAL - H 5
89 ChiMeS-14 &4t B ¥ T A R 095k B
RS INRAB X ARG FTHT  BA K
HERATIRBE AN O3k o F W E & Joint
CTC/Attention 35 & #F=& R » A BILT 3%
TR o % BHETRERBESM AL
o BABBRERARRFRZ @ ©
2 XEREM
EA R
SRR ABIR OGBS IRIEF 0 FRTR
WIS EH o AT ABH 2017 FE K AT
B P L BRBETAHA MR GENE S B
WHEZE - Kl BB EEENE > A
B Fe SRAE B ZEA R -
ETHAMRRELNETZ— > PUAM
FOPHBME o 2E P HBERFZTHEN T
X oo EFHGER S BE > URFROET
b REREHAPTRE - &8 7 LKENR
By LB R 0 4o FSW 234 & (Liao et al.,
2020)* R AZBEEEXAFTRIEET S 095
B RBBEL 610 B REBHEF LA
98,089 €7 AR 14,631,829 1B F 4 o % & &%
T E 735 BEAEIE  KEOESA 120 A
91k 800 H KM EF o AEHE L EE
2018 Z Formosa Grand Challenge # & A °
2019 4B > Common Voice(Ardila et al., 2019)
KET R ELRANZEST AP 2B o d
ik 4 43 DB BT 2020 F R EF 78
QNEF o SR N B AL 949 W m E 1,444 1% o
A — 7 @ 2018 F A& F E AT E M
AIShell-2(Du et al., 2018) & A # ¥ 100 &
Bé&F 847 1,000 869355 T4
MR 1991 AR SRS BB AR
K6 F LEFRE - £ 2020 F FH > DiDiS-
peech(Guo et al., 2021) K& T 6,000 A
BEOAARAMERESEISHKTE AL
%0 EE BT HMATRESHRESN
FER BREH RS ARERR G TFE
DiDiSpeech-1 #= DiDiSpeech-2 ° 4500 12 4% %
# % B, DiDiSpeech-1 #) 480,571 & : @ %
IN 89 1,500 424k % 171,361 47 89 DiDiSpeech-
2 o
Bl AR F 5% FEAQF i Fe HRFGE >
AR F AR P SR ARG 7 A H K 0 2018 F
## th SEAME(Lee et al., 2018) > & 192 ‘JNBF 89
EATE 0 A 157 AxskF A 0 A 162,290 4] ©

2.1



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

FTEAZURGEHFER L EXARAFAF
(word-level) B Bz 474%72 » L A2 HES
RBAR B SIS IRE > 25 B BARE
F B AET R LHE o
FBACA R IEFB AR o

W5 AT B R SR MR 2017 B
Google (Chiu et al., 2017) % # #& 90,000
FRAMR B FREBERAE R T RE
BHELR 10 948 Mk kiEP 2 B £
& oo sbIh o AR ETRA 100 LA L&
SEkE o EIRERMKXENES L X
TREAGEFETRGEY » LT HREI]
BREGERA > ARG HAARKET o KE
A6 RRBHBEERK 2L -
2.2 ASR #i

& G3E8 F PERHAT T > kaldi(Povey et al.,
2011) R\ E R  FERY - BFEAL
BRFEZHRASF AR TR o L FEH
A BRBEY T LR B F A U A
## (lexicon) A » X ¥ JEF % (phoneme)
Y % (grapheme) 89 Bl 14 > ¥ 3h B S AR A
BERSBFHFI L RE SRR LY
XA FHRFZHGH A > REAELE ASR 75
B F B o dt g A F RZEF IR
e SURE SRR & Por WS g Rl =y
HAEAL o

PR AR B B AR 6 Hon e g
PRI T B R do A 355 A B ek, B AR
FH o ETHFEASH GG AERE E
BRI R A H AR » A E B - sHHn
BERRRABGAH IR P 684k £
HEEFERGFETRAETE REW ST
B EAMT L > 284 B Connectionist Temporal
Classification(CTC) #2 2 & 71 (attention) #
& o L0 BT RRGET RIS R 7
RETRERZ G EA > CTC(Graves et al., 2006)
HE—MOMARTARERE 29 b &
R #E® CTC %ty 7 X M EHGFH L
MR AR E QAR > BT 7] 3
WAL 0 AR5 Y FEF SA HE 09 AR BT 7] de AT
AHHL -

B h—F @ KANEER (Attention)
H 8 ASR AL T E 8 4 AG B A0 ARAH B ML RGEF
PR R I B R R E 95T HIR
TR ET ARG E AR EBORE (hid-
den state) » AF| 1 K7 RNN 69 @85 % > M
B E B R A B TS EUIR B AR AT AR T 7] AT 89 TR A
BR o fo CTC BHF TR & > ZEABAE
FRAG R G RIRF 5 a5 5 T 0 BT A R BAR A
ST AL B F 35 £ R A9 AR L (context) #9
Bl AR o BFERA PR ERFITRAY
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AR AR o 2 E N ARG REARME Google
# % #) Listen, attend and spell (LAS)(Chan
et al., 2016) * £ ¥ » # & Listener #9& F 3%
A& LSTM A3 A5 7] 95 4 A & #eaF 55
M Speller £ RAZENQHAT » BEY
AR L MAA > ZRBEMAGHERT > Wk
B A S8 TR o

7 2017 SF AT A &89 Joint CTC/Attention
(Kim et al., 2017) &R EHE L& CTC £
ERA M RS RO L LRI R
P E AR o R ERABBHEGT X HH
5P 5| F IR SR o Mg A B AR R Y
R 5] A L6y CTC Foiz &7 Ml AT
BroAdf ) g R o URR B » WHFS
SHH R RS RBE NG R R T IR EM ) 2
FRAHHBURBEFALRLE - B L
# 1 (Zhu and Cheng, 2020) # % # & &4 &
LSTM (BLSTM) #Lp#) = &R RiF4&R » 12
AR BEARGHRT » R B 58
1o %9 (Liet al., 2019) 42 R 1B 269 4%
A5 A B SR BOARE B EE 5
o AAFE B 8972 & J1 2 # 5] A Hierarchical
Attention Network (HAN) #EAT# & » 52| &
AR o

3 ChiMeS 3EH &8 A 0 #3k

BEEAMHEBRRESS  mEEAREILT
ZFEH B ALk o KB R 516 (R IRA
BRPRBTH  ARBEZIZERETEY
By BN AR o AR o HEAM SLIEHR R BT o
HA IR ERBXEPHFTABRRA EH o
T AT E PR R1542 0 BT CER
29 AR EBEPHETF AT EE > KM
7 9 &M 4 F 4537 & Keyword Error Rate
(KER) ° A8 B354t B ~ FRFRREUAR T A
TN =k E

LE S8

+ LB F7EH E Chinese Medical Speech
Corpus (ChiMeS) # BB & 14.4 /o > oy
WA RA I G BFIRY 15 fao TR - AR
Y516 WELILEENELER BREE > UL
R JERF ARG 7 RBATEF 5 > BT
HEZ B b R E AR E IR o DR
BEEAAETEOE BELAILRER L EH
AR ~ B AR o A KR EH F oA
o B AR ELAE ¢ A S L RAT S TR
A RA s FRRZFES o WEBHEZ T
%R wav #& X > WAL (sampling rate) oI
M7 & (bit resolution) 4% & 16K Hz A
16-bit » & X AL A UTF-8 4 254 X o
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&AM 4L A ELAN(https://archive.mpi.nl/
tla/elan) %EEEI-—,E\- ’ ;I"}‘—?f‘ %3@:@ é’ﬁ f!}] 3“;’7’% }ﬁ‘

RZEE > BRIANTELER  URKHY

R REE 5 AVE 15 EHT  KENA
JERRBF B RF S B R ENES (ut-
terance) 7 % o WA RER T TR EI A FA
FHERVYHE T — T HERAN AT
& AMBESRYZFZHZER > LETY
ML FAEzE o HF » BENTHE > I LEHE
FRERE TR EN—ARE - — BB F T
HHAE > PRTILEZENTERE > KM
WEEFO R T — ) T EAEF 0 LA
Yo B 1P o
BHE T T (word) I K (grapheme)
BiRsi > THART ASR REWMBETHNHE
fi o AR E B &K ASR B9 & aket ity B2
CER #-& WER 83t J o F U8 %354 B A%
EORAETREGRALALEGFE LA R
(intra-sentential code switching) : ## A& & £
MAFL M 28 FIi6A #F L6y
R L FEAME SHH G PEARTFH R
FE o FARZBANY EELLA RR @ £ H
FART R APFTFE AERIAT B
B 26 B3 F 8 0 F RS 26 B & o A8
T P X F e E R EHFIE (ideogram)
AT XFHAL A —BREIR A - 64
VAFEARE 69354 R 0 ASR TR T R 318
T BRATAEZETHEIMBRER L
TE—BEF s B ERMFRFMGETR o
MARELFIRENGEN R TROREF
FTREBERFTFHHN A ASR &
HEBEWHEATE LA P E B AR E TR
ko B Ti2 ASR A —E - SH 8 FE
Ab1#89 ChiMeS 54t & » & AR 2249 R 2
AL P A—BAF LFFE R w3k LA
A—1fB 3% LA E & 8 (mono-syllable) & F4x o
AH 5% A How many syllables (https://www.
howmanysyllables.com) #)’C/;] ﬂ%—*ﬂﬂ % ’;:L gﬁ ﬁ(:’ 3@
X7 (word) ¥F A% v BB 3 LR FE AT R
RO IRAF o BB R ¢ “glucose T 2R AR
‘glu’ ‘cose’ ;s MAERLHEH EEMKE AT
42 CRP ° sb4h > A REBERT &A K ZHA
By B 0 ARAE R P UAREE 0 4o 1 T10.37 4R3EE
tE= o

FEA R by o SRR
HHREZLHHRAIREZNXE &
ChiMeS &4 B4 4 ¢ 1 thtl > o A
BEBREBOIRERA K B I A
Wy r XA BMBE K5 mEREZT
FoR A S 38 6 Ry B R LR e
0522 01 1l.wav e

3.2
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B A543 B 2K 0 &M B b dE ChiMeS-
14 #9354 B ¥ » BB —18F % ChiMeS-5 » 4o
RAFF o RS RIGRABRY > mEERY
Bty AR ik BB 0 AA A S AR F
S AR lRA o mAEANBSR YR EENK
Lo ETF 01 A7 02 KON ETE > TR
0304 A2 06 WHEHAER > 3 24 86>
33 A0 O MR B R BINEW 05 A A
3 8% B & T AHE ChiMeS-5 F © &
& 2 ChiMeS 898 & ~ )& ~ & F L FiF42
AL FHOETHR - FHEMEREF AN &
o RO E BFEOFTHELEH S
#i /£ ChiMeS-14 F & 167,409 #= 48,110 5
ChiMeS-5 21 & 65,807 #7 17,534 o ¥ T~ F| F-44
HZ FHAF i AL ChiMeS-14 F & 1,608
#1689 5 M ChiMeS-5 Al & 1,268 #= 553

K 1 B

AR ChiMeS-14 ChiMeS-5
BRI EF 4R 9% {01~15}-{05,11,12}[{01~06}-05
I E {05,11,12} 05
ek B & Ay 394 166
PIEEY X% 4 122 33

& 2 EAE tm f
By ChiMeS-14|ChiMeS-5
14.4hr 5.5hr
RES (867mins) | (335mins)
BTk 53 7,225 2,987
48 tokens ¥ 215,519 | 83,341
Pl tokens 48%k| 2,297 1,821
FHEF K (secs) 7.2 6.7
‘F 35 tokens 29.8 27.9
OO0V & 104 109

WA ERETRTY 0 FEFRMTEYH
®EEEEE > KII4 ChiMeS-14 T4 5| &
AT ZERE 707 B EZ2AMMOMET &
¥EmL o~ EMR S FM o s EYARK
EEE o FARB R 3T BAREN
E4e 1 SRS ~ limadol ~ B BRIR IR ~ F A5 ~

vena Fo A% AL AR F P R LFEF] o 13 BATIEL

SERE PR ALAF BB R F B F PR B SR o

& 3 BT HERY

#8942 4t & F 4| B o | |k &R B (48
F¥|354| 60 [99 (19|60 | 115 |[707

#H3F ChiMeS &4t B b1 9 Bl & » &AM
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e T £ RS {co} {lon}CAE A &

-

(@) st H#m B A MRS

-

H B R AR e

ot £ B35 BT A {co} {lon}CA
BAAH HIEAAHEAN B
{on} {full} {diet} & =k #% & H
{co}{lon}CA #i7 % & % # & #
{co} {lon}CA Gy & T Ak 5 BE 4§ & 4|
BaEsHMBADRERKLERS
{co} {lon}CA iy & 4t £ {port}A % 4§
HH K — 8L {port} AR SRS T H
A RAG 048 {port} AE] fu AR R
sEfadh B AT AT A FUR S5v9 34
ot ANRCEFITET MARS

i A & A A B &L {on} {full} {diet}

iE sk kA A {co} {lon}CAHTiE @4 3 &
# {co} {lon}CA%TIE T ik A REG T ] A% 25
A Bi& 7]

iRk A H A {co}{lon}CAfir & 4 %
{port} A £ 85 F # # —18 £ {port}A

ERAE T H A B0 E {port} AE]
dn FPARCR SR d B AT LT A FUA By

(b) Bk

REA_TARCESITETHALSA
B AT R R 2R T2 ) e

(c) #EEMEES

1: AR RA

1R A A2 35F PR 9 3F #1454 ¢ CER ~ KER °
L > CER 89 &d A1 AT

S+D+1
TN M

£ EXF » N A& ground truth ¥ E#EIREEY
FHEB -m S ~D AT 5RHEENE
RP o HEBP (HA) S Rk (Rip) 236
N (Fih) FEZABREROT S P
PLFHA—BBEFLFEEL s Mk
RIAR R 3 S E 5 8 B F AT EATSHE - REIM
% 0 ‘glucose T HAER ‘glu’ ‘cose 0 EFE
B AR A W AE T ZAFRE T LEFN
¥ R TR FRE o

T CER #3FR41 » A5 R KER
B HE s AAKXLTR2:

Sy + Dy, + I,
k

KER #3184 CER #80L » $t#H & 3693
$8F 7 & 0 KA ground truth FEAEAE
VAR TA R R P AT B0 M4 R AR A
BERE LT Ny BHTARKETH ground
truth PAT A EHEMEFOHE = S,
Dy A= I, 3 B TR R P Ak - Ml
WA R Z AT HA o

CER = x 100%

KER = x100%  (2)

3.3 ChiMeS A v #3b
Ry AR U 2

AR AL &

M E T ChiMeS A\ 7 43k (https://iclab.ee.

ntust.edu.tw/home) » AR e /L}f/fﬁ?]“ﬂ B 84 32 4
J& ~ A1 A ChiMeS-14 FTal4k 49 ASR & & 9F3k
A ARRAE LI ASR A2 A &k 6 B K P
{; o

ChiMeS A2 #sb 4 A{ER S : B E
AHE BT FRRARG LT ET o
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BEOSKGERGHN EHE>AET R
IR Z T T & ChiMeS &4 & 6934k &
Fo R 3K 4R 0 FAG AP AL 20 TR o SRR SR
ChiMeS-5 $2 ChiMeS-14 BI3X % » AR T
Ao TRAE LM ASR 89 7R 7 £ 698X &
oo hgh o KATAAREEAE ) ChiMeS-14 914k
Z_ Joint CTC/Attention AT PP B 35 & #f 3 o
%8 A EARF A R T AR R A S R GE AT B B 4R
0 BP 453 ASR #FER - RE B LT H)
BToyBY » —HRiE@%KFTRAE L EEHG T
A o BPEFAF R ek R 0 RTINS HE R
1T o

B 35 AR

A% 5% (Hori et al., 2017) X Joint
CTC/Attention AR B F L & R34 & 8
ARG Ry R oo sk BBEIMEANK
W7y ik A RE B R R EEMNET R
HEHEMBOEER - KG My B ZEHRS
N8 Bk MERTRIFBTHRAEAES
R A S R SR SX A RAL o T AR Joint
CTC/Attention RN 7 % o ;K » F il
AWM B A R EARENR o

EEF R RALT o BT T
EAARE S MKk EE T ¥ EZHHT 5
X = (z1,.,op) > FHEBFFHRAEL I
A FH> %R PAERBRERERRKE
ZOFTHBRHRBRRER U MHXER Y =
(Y1, yu) © EINRIEE > AP RIERFA Joint
CTC/Attention #% » &4 ground truth iE
FEARE RSl CTC Z B ABB OB RS
B AERELE - LAEMBBRF X FE
BARAM CTC XM E » RuoREMR
MR o ASb—Tr @ > ERIKEE  £F E W
LRI BT o g SE CTC iR &K
H o EATHE F LG 8 B o AR AR B RIE

4
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% (Beam search) 89857 X, » HEPTH 69 7T &
MRS KRR KRGS TIERTRR L
% o

/" Joint

Shared

e BLSTM + Projection layer =2
"""" ¥ USRS S Oy AU S
\ | T |
| Projection layer |
T
| BLSTM |
i e M o T
| CNN (VGG Extractor) |
7 i f
Rl - R =]
2: Joint CTC/Attention
4.1 XAFHAHE

EMMBEBHEAGR | FFF
ow EHEIZBFEHEZZERTA
g M BRE A G RN TS A
W = {(wlvyik)’ (wQ’y;)v -+ (wzvy;k)} R
A Joint CTC/Attention #83% R 4469 E At 5 48
HE o ALK EAE A SRR 2 R B (Fast
Fourier transform » FFT) #& B 3% 4% 3 i 48 3%,
Joint CTC/Attention 48 R4k &\ —18 475
o AREBETHBAEZIFFHG > Kk
BT 8ro X Sk LAY HBAT
PPoma B BARER H = (hy,....,hy) > %
A3

P

H = Encoder(X) (3)

4.2 CTC a3

CTC #A a5 k7| #IE 2427 7] »
I F B GERT FERINREFETHEE - RE
RO B ST BARGE S WAL A A HE B
HFF AR FHOESHTREV 27>
AP XFHRALESTH » A blank 1R 5K
(<blank>) KA FRM R A & F 09K E o
= EFFEH Y ZKFE o LIAE B R
MRAETHTA TR S = (s1,..,s1) @4 A K

71

S CH AW

p(Y]X) =

>

SeAlign(X,Y)

p(S|X)  (4)

IR > BB REGEREAARE
HHESH L CTC R KRFEMASF
| EEAEAZZE YV B9 £ R 0 AL 4REF e R
FHABARZERIEMAG - 8 K R E A
Ao RESLF 7| Ao EAEAZ SEARAR AL 0 A B AT
AT o X5HT T

Lore £ —Inp(Y¥X) (5)

AR RS

AR TN R ARG E R G X 6k
WayF R FEMABZEGEBARE 0 &
i EEE o R E TR g, o o R T
T » Attention 7 &A= CTC 7 & & K £ 3| &
REENRTHRAETHETH X ANE
T G L E B LML Ylu—1 VAL B %
AT LM A R /7] Y TAR] o

4.3

Yy ~ AttentionDecoder(H,y1.,—1) (6)
p(S1X) = [[p(wul X, p1:u1) — (7)

AR RBAKFH X 80 #l A cross-
entropy 8 E B2 H RAHE H = (hy,...,h1)
Fe 2 ENBBBENWME Y = (y1,...,y0) WAE
RRREGFET] o ot BT HREED B
BRI A6 2 F Bl AR LA MR > AR A FRad
£ % (Teacher forcing) (Chang et al., 2019) #9
7R MEEEERRTI] g, FAR
T E A K A o EATHEIE IR

LAttention = —In Zp(ymxa yiﬁ;u&) (8)

BTHABAELEHZ (Context Vec-
tor) » 8L A3t F location-based #9 i &7 HE £
(Chorowski et al., 2015) * A% 4 #5 2 69 [& BoK
REhy SRR ANEF )RR AR R 6 L EOK &
qu—1 ARG 3BT A ISR 6 T8 BOR BT
A& LG E o

w Ko A B R B & A Joint
CTC/Attention # ASR % # =& & /2 R
Fl 89 iR e 7y kAR R\ 5 8GAF 0 4 CTC B4R
5 K BRI o NS UE 2 7 B A BT LR B s R R
Hm— R EATINER > L FHBEEHBAARE o

LJoint - ALC’TC’ + (1 - )\)LAttentiOn (9>



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

T E
SHE RN R B W X F AR Ik
WMERENERFIARS > AT Z 8 TH
X FEPFERR A FED AN - B M
1R KM EZF (Ko et al., 2015) » -5 R 43
BREFTAGENE o 2545 THE - AR
F A P AR 0 X% ASR #ATI4R o
&M1& B Sound eXchange 3% & %4 8 &
it (http://sox.sourceforge.net/) AT F AR B 15
oo B THRBERRIAFERERE - BF 1K
FogE RADBEGERL  RMEEEER LRAE
70% E 120% 5 & = Bl A& £-500 %] 500 & 4
(cent) M s & MM A K 10dB £ & 20dB
B LB R s B LRSS 0 B 10ms A4 °
MRk Z 9 0 B B ik A AN @ o) 4R FE A9 AR
71 0 % K (Amodei et al., 2016) > 34w 10
2| 15dB & ey gkF o @A RE LA
SVl b BRI R R R AZ
B ey MR H T E 0 Al EET R AR
PE > Yldmik ASR 89 9FRAES o

PR LR

B T Rk bR 6935 & kAL S 0 R A4
# ChiMeS &4t EB EATH A 63| R AKX >
Ak R AR RER - KR E
BRP A M ASR #94#3%E » BAHR PR K
HEHAR 5B VOCCG FREZ 4 & CNN shedy
R AR ey sl s 2R E T AR R &
W% A 640 18456 (cell) 89% & LSTM 3
3RMEmm > BAEFE—REE LSTM &4 €
P — R MR R (linear projection layer) ©
MEENBHENER—RECQHEA 320 MR
b9 LSTM &R#% ° Joint CTC/Attention £ 34k
B 0 4% A 0.0001 894 F % (learning rate) ~ #t
# K (batch size) & 24 > YA A& Adam &1t
% (optimizer) 44 Botf L # M H9XE > CTC A=
AR EHALRA 0.5 £BIREF 0 AR
TWEAL 60 REATRAEL REGEIE o

ETHRANTRASIEHTHETRE
R RN T8 77 X oo AR (1)
B4k B 89 ASR # B R4~ (2) s — 1@
EAREATIR S 3) IRBEFETA MK
AEEEE - AR 4) REAGEMEFE
A BB X EEBBK TROG L T N
Bt ASR A ChiMeS & #H3 8/8XK
AT EA R GBI E L o BEIRF A
Joint CTC/Attention % » 3114k ChiMeS-14
EHEEHEE > 4L H JCA 14 wi EE
R HAE R EHE RTINS ChiMeS-5 3
B> 3 AKX AS ChiMeS-14 BlX £ - Bl B
JCA_5/14 °

4.4

m#}

5

\
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414t Joint CTC/Attention &A% A #F
HHH] 0 RATLE T B E T AT RAR A 6935
FHBRAR kA ERERNEZT N 7R
BT LA N =0 9 REEL RA
f27% ChiMeS $ A k8T A Z » LA @ &
RIS R o HJHARGEGHRAOER - ™
R B 88 CTC Fri & ) iRA5#% % T » ASR
BgFARIA E R % o Hh N ML FER o AR
R84 CTC ¥ 7k kA AN=18 HE
BZmEMOEENAG  BREB EABENR
AL AR AH M B HE R o

k4 FRER

A JCA 14 JCA_14 w
0 92.01% 83.41%
0.2 21.57% 16.71%
0.5 19.82% 13.65%
0.8 21.51% 17.39%

1 33.49% 19.97%

ZRFBAE K DA R K K14
LA AR R E 6 ASR MR E
Wk 5 BT FAE R KK ¥ E IR Joint
CTC/Attention B » & CER T &1 4% A &
W) 19.82% 0 KM@Y 6.17% : R &
KER & T A BRI E 10.82% 89 K& o

&5 BEMBIERER

o AR A CER KER
JCA_14 19.82% 30.90%
JCA 14 w 13.65% 20.82%

KMAIA & 6 FrBlXE TR 11 RekF
HHTSR B E T — R B RPFRER > A
AL R ETY B TR o BHERF M - 2

AT B> NER Lo s L EM by folh d
T S
6 &#H

AR —Eh FEHAEABTGRY
J SCE &5 E ChiMeS » 3 4R 4 — 4% Bl 5% %
MRS E RAR RGN ET - AR
B IGF O Ty ik o W NBINEAS 0 A BRI B
& PER A ZAE ©

ARG RA M B RASHE
FERREFE @GN E: FRELEE
S8R ANE > R KRR 0% EE A
o R GEARGTH > A B E
Z GBI RARGIE TN c BREAEA L
M B FT 89 5 $ 3R 35 F PR R 0 B4 ¢ Trans-
former(Dong et al., 2018) ~ Conformer(Gulati
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& 6: WEWNEKZEH

=

5

Ground Truth

{co}{lon}{can}{cer} ZHA kA A & BEF B L

DM{diet} —R—-FTZ&E-FAH DM B X {co}{lon}{can}{cer} & & &
R LR AR BER {co}{lon}{can}{cer} # KM 7 -
fe S F A {port} A TAIHT B = RALBEATR

Z %A —% {port}A B+ A =3 {su}{gar} #l QIDAC A F

a7

JCA 14 |« K < 1 >

<{co}>{com}{can}{cer} A< 7 >k EAA @ BREAA BEL
D<M>{diet} —R—FE%FA DM & X < {co}><{lon} >4 i@k L
EAMSER B < 4 > BE4R {con}{can}{cer} L A F K
AALFZRA TR DN ek AR

< % >ig B—§{po}A{gas}t+A={per}{su}{gar} & QIDACS {tive}

JCA 14 w

{co}{lon}{can}{cer} A Sk & A %R A A BE L

DM{diet} —F—-F&Z&E-FH DM KX {co}{lon}{can}{cer} & & &
< K ofbsk< - B R BEEZ {co}{lon}{can}{cer} # Hi ik K

WA B {port AA R =KL TR

E¥< A >—mA B+ A =3 {su}{gar}< " ~QIDAC & ¥

et al., 2020) FRAMHRAR - RKE > DEF
e ireE8 % At - AR BB EZ Y (Kunze et al.,

2017) 89 7 XA B R R & » 13 5] £ 42 69 5
% o
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Exploiting Low-Resource Code-Switching Data to
Mandarin-English Speech Recognition Systems

# /3% Hou-An Lin, 4 F Chia-Ping Chen
Bizp hZKEETNIAELA
National Sun Yat-sen University
Department of Computer Science and Engineering
m0930400660@nsysu.edu.tw, cpchen@cse.nsysu.edu.tw

SRS

AL RMIEF TR S E 0935
#H ¥4 (Code-Switching) & # & % 2,
BN MRE T HRAL o KM Trans-
former % 2| 5% A A B A GE A B EF
MHRAG ERAFXAHEN LS E
TRR A M RALEF TAH KRk M
B KR Ly A (Baseline) » 4% 3 Jb
BN % 1E7H S E (Multi-task learn-
ing) ~ # £ ¥ (Transfer learning) #f
AAEAGKRGERE  TRERG T
YAF U5%3# % (Character Error Rate,
CER) 1F A FBr A L0942 4 > & &A1
H=BALE>HNESTHEZHEE (Lan-
guage model,LM) > 5 %78 It baseline
8 28.7% HME RFHERTHET
23.9% -

Abstract

In this paper, we investigate how to use
limited code-switching data to implement
a code-switching speech recognition sys-
tem. We utilize the Transformer end-to-
end model to develop our code switching
speech recognition system, which is trained
with the Mandarin dataset and a small
amount of Mandarin-English code switch-
ing dataset, as the baseline of this pa-
per. Next, we compare the performance
of systems after adding multi-task learn
ing and transfer learning. Character Error
Rate(CER) is adopted as the criterion for
the system. Finally, we combined the three
systems with the language model, respec-
tively, our best result dropped to 23.9%
compared with the baseline of 28.7%.

MeE g @ 5A584E ~ 55 Pk~ 3R] >
HEHEAU S BHERE S VEER

Keywords: code-switching, speech recog-
nition, language model, language identifica-
tion, transfer learning, low-resource
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Bm

w7 2019 F#H A EREF (Covid-19) /£ #S5F
BHIFA > HEATE R REE » HF TR
AP — o ARMERERIT » ERFRAE
WRTRERAFORYE ) RELETUALRE
o mRBEREIALZERARRA AR
i 0 S 9B MR B UK o
BTRmBZALRAYREHOE  KMA
BRAEY R bR FTALAR A &M e P
LB F Pk A # (Automatic Speech Recogni-
tion, ASR) R#HHHHh TEFTRERREA
FLA TR BIHREA IV ENRLEA
& AR AFRAERE G B AFEHERRE (Code-
Switching) &9 M % » B KR sh LA #3559
BOERTRAE BT RLBEHRAL -
FEARARBHLTF » &ML Transformer 5 2|
s (End-to-End, E2E) 8 4% (Vaswani et al.,
2017)(Karita et al., 2019a) > /& 2| &R B 4% JH 34
L (Tsunoo et al., 2019) 4% & 89 contextual
block processing # Transformer % #% % » 4
BB &AM 89 PR A B o /£ inference BF AR5 35
& 1% A Blockwise Synchronous Beam Search
89 7 i% (Tsunoo et al., 2020) °
TRy - KMVAR A2 F LEF AR
ARG TH W ARMRAA G Y EEHERT
BN AL > BB AR B T 5 69 lhiAZ 28 >
EEXREES FRKERMGZE - AT
FEd g 8d 7 X A%E  ABEMEERL
(Zeng et al., 2019)(Li et al., 2019) » /& &R 1F
B A LID (Language identification) %~#8 &
B IER A G o FIBF R A 093585 840 KA
AR FTARAT & AR B 45 5 LIRS
BIRE > B RY LA TAE T R ERA K
B BOE » RIMTAFR AN F LB T HRALGTE
TAIRBA > FBUARLA 09V S 0950 T4t
IR A H o
RN TEH T o TH G NBRMATER
0 R RREABINR T % » £Eih = F &RME

= AP =
NBEAVGERZE AR R EHE » £

1
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j/-f-

FHOEHMARMOTRER » RE—FFH
7> AR *”“%z“f&**”‘ °

2 K7k

B BIMER P LEHE L EREA T
THING —BZTHREALTETHRY LK
AR FlEFdERXAIRILEIRR S 1252 F
8 & A LID 94 & W%~@%%%&ﬁ’
EAARE G EHREIR S —BEBTIRAL -
%% A AP A H R AR — 18
EETHRAL > BREABHEXEY GHAN o e
L O AFERRE A B R TH L MGA— B
ﬁ%ﬁo%&%%ﬁ%ﬁﬁﬁmﬁu&ﬁﬁ°
2.1 sHEHAEA
AT 6Y 3% B 5 35 & AL A (E2E ASR model)
&A% M % L (Tsunoo et al., 2019) #& 4% H

contextual embedding 8 Transformer &) & 44
& 1P77 o BB L Transformer 244 3t

,AMD\ﬁ“’“%@E2%%’ﬁ¢Lm
FHEBORBAR 2F £ FE KRy

2.1.1 Transformer % # %

BARM AT G ATE—E 80 #e9ER
#AE B (mel-spectrogram) 5 7] o & KM &
HAFBEE AR AR (Subsampling) » & P Bk
M (Subsampling module) =& v/ & 65 &A%
7 #% (Convolutional neural network, CNN)
MR 0 EF kernel size & 3 0 stride & 2 #A
256 18 channel YA & ReLU #8723 (ac-
tivation function) o &A14E A Aw A contextual
embedding # Transformer %45 % 1 & &1 49
R BIEZ A (self—attentlon) At 54 90
NP 8 BB AL B AT GG 2 B S Az B Y
R B AT A 8 2R 15 8 > RABSR
% Transformer —#k > RARLEE 169 £ F3 o

2.1.2 Transformer f##5%

% Transformer & ff 45 2 1% M 2] 45 25 B &9
?“{:B X, BRAFMFFH IDs Y1 @ o
Y[1],...,Y[u] » &K a5 5 G 5 b 5 7
psas(Y[Xe) BB FL T

[ps2s(Y2][Y [1], Xe), ...
= softmax(ZdWatt + batt)

psas (Y| Xe) Hpszs [u+1]|Y[L: ], X)
ft‘cP Zg %ﬁg%%é@?fﬁﬂi’Wm S

Rdatthchar b att e Rdchar ;QE T £ “IW é"] 7‘; %i 9
denar B F 7089 8 Z © Transformer ﬁ$ 75 3 69
RinBE 1694 F0 o
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yps2s(Yu + 1YL : ul, X,)]

2.1.3 #FIHEI AR

WATRFET ERFT T XEA £E  ARAM
%% L (Zeng et al., 2019)(Li et al., 2019)
67 ik » FLR LID 4315 & 1 — 1848 34 80 2
A W ROVRFA IR AL BRE - 95 04
WMANB T L~ LR AEHERG T o milf
S48 & 4 LR A 8) Transformer &A% 4% A
SEHPE T EINRAGL - £ LID 7 HAEH
18 K R (Loss function) &1 M cross entropy

BERABK - LID 7RG EME 24 FiLF7
TO
2.1.4 Itk F %

12 9 R BF &AL A 3/ T (Tsunoo et al., 2019)
# % 8 contextual block processing 9 7 %
REATINER - £ FRAG B 093 4RI R A
Transforemr #24% % 48 F] 69 #t% (batch) 24k o

2.1.5 ¥4 3% CTC # Transformer

1 % 85 F %8 (Connectionist temporal clas-
sification, CTC)(Graves et al., 2006) £ ¥ 3&
TR EEF TR CTC B 4214k
WHE b TEETORE ) TUARER
Peig 89 (Kim et al., 2017; Karita et al.,
2019b) © £ INERIE L » RMTIRA SAEFHR RS
# (Multi-task loss) > X JE&E ST L 8 M7
%A CTC 89 B HEHF (Kim et al., 2017;
Karita et al., 2019b,a; Tsunoo et al., 2020) »
BRI T
Lmtl =« 10gps?s(Y’Xe) - (1 - Oé) logpctc(Y|Xe)
Pete & CTC FAR 692 ER ik & » o £ — 1A
5% MAFEE CTC F S28 U X M &1k
%l o

ua
aa ;@

W43k CTC ~LID 4%
Transforrner
IR PAHE LID v AEEHBO AL AKX
B g LID 89 A HIHE > BRI
T

2.1.6

Ly = —« logPSQS(Y|Xe) - (1 - a) logpctc(Y|Xe)
— log pria(L| Xe)

EF L RZEWMANEZTHEY mm%Cﬂ]

TAR B BB R > pyq & LID 948 B 69 & 5t
$’ai*@iﬂﬁ A7 CTC #= 928
A 2 B 84 ) o

2.1.7 B4&fE# CTC ~ LM
1 225 (Decoding) M8 » &M £ 694F S2S ~
CTC AR B Z A 6 M R & B $ % & Ae
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Output

™ Add & Norm

Feed Forward

™ Add & Norm

Multi-Head
Self Attention

> Add & Norm

Multi-Head Self
Attention.

‘Mask Muti-Head
Self Attention

Decoder

Encoder
\,i\ Position
{ Encodi
Character
Embeddin,
Outputs

1. A= X contextual embedding #) Transformer
RiEE

Softmax |

Linear

Add & Norm

Feed Forward

,{ Add & Norm

¥
Feed Forward

«J‘ Add & Norm

i)
Multi-Head Self
Attenti

Add & Norm

SR

2. &Ik LID 2 HAm XA contextual
embedding #) Transformer 54 B

TN e

& > E VA (Tsunoo et al., 2020) 42 % 8 Block
Boundary Detection (BBD) #fif "o & block-
wise synchronous beam search algorithm #AX
J# 28 beam search algorithm » 3 F block-
wise synchronous beam search algorithm #& %]
FAR A — % 8989 block T » sLALE B L —
#X beam search #J#CR ° #1724 attention-based
BRMELETEHEABTHAINE <eos> R#H
FAR F 489 token ° BBD & B 89 & H| BT &
A block #7TAR R BFAL LT BT (re-
liable) » % | BT & 1 T 3¢ » 3L & ok A245 5 4% A
%5 & T —18 block 8% A4 25 o L
(Tsunoo et al., 2020) 42 % 9 Block Boundary
Detection (BBD) YA& blockwise synchronous
beam search algorithm ° &A1 & & 1858 &
TR —FF A R LA F 842 do B 3AT
T BT eI B B TAR L FR A to-
ken > F 3L F| Bt block & 18 — R # 78 2| & 8
A B RTE » MBS IEARBET
—1B block #4445 47 A7 25 o
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THE  TRE BRE (1H)
Course-train 827 3.03
Course-val 90 0.31
Course-test 389 0.92

A1 RETHE

Y = arg max{\log pas (Y| X,)
Yey*

+(1 = N log pee (Y| Xe) + v 1og pra (Y) }

AP pm(Y) Y BT HAEMKE - N fo y 5
ARLH ARAERNE APTIEGE >y
& — {8 # H 8% (output hypotheses) 8 &4 o

2.1.8 BHEZY
BE)

# % £ F (Transfer learning)(Wang and

Zheng, 2015) A& — AW & iZ J& B 09 47 > 3B

2B T U €0 E 3 0 TR I MR A 48 K

B L AAR R RN RAE R > TOAE K EHHE I

RPTE B0y TAE o 3BT VAR Sk R SEAG M

BT RO B R o AR 6B AG TA B

Yo BHIR TG % RBERS (Overfitt-

ting) M % o FLRIME A BHLEE > Lk

AR 8 F B PR A ST R A

Ao Fim bk 1PV E63EASRE AT RMA

(fine-tune) P REHBIBFTIHRAL ©

3 T EHLAHE

3.1 ##HE

PN A Y QLR &

B ZAE 0 KT &Y 0 AN R EH B

PR FHOREENEL 178 Course-test

AR RAE B AR H LAY RRE o

3.1.1 REAHE

EE E AL AREZROGETH L REEK

REHAR » L P OLERHEPE T o A3

£H 10 TR KMV ELF 2 eREZARE

B B R R R 8 ERAZA 90% ~ 10% 897

AT EINREARERFE - £ & 1T T #

BRI o

3.1.2 FXEHME

b EA B TR R AR B EAT R

FHm A RAE 2P R o

(1) NER-Trs-Vol : W Bl 2% F Kk #EEE#
B AXARBFEM B AR MR E

"https://www.youtube.com/playlist?list=PL_
Ks_ZHSKSQ5T2w4gEDC{ tEmbGNDB j48z
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block 1
(40 encoder frames)
Character length = 3
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block 2 block 3

(56 encoder frames)
Character length = 4
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Character length = 16
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3. blockwise synchronous beam search # #7% T4 3" £ Fl 8% Z# & SIGMA F7%” £ F beam size

10
TR TR KR (D)
NER-Trs-Voll 21,089 126.65
AISHELL-1 20,000 24.82
AISHELL-2 20,000 19.87
HEKIESE 24102 50.50
total 85,191 221.84

&2, PLEHL

AR NES c AP RAE 1268 )
B o 3k 21,089 FHAE o

AISHELL-1 ~ AISHELL-2 : & AISHELL
28] Bt (Bu et al., 2017) » 231 400
1991 42k B F B R R B3R APT4H »
EXAANBEOLFRRE RAERFHA
B RAVE BEAF TR B A8 L
By B R o 3B B R AR P &R
B F 20,000 F FE A AR E o

FHE K4E € (Formosa Grand Challenge) :
W Bl A IR A 3 BOR AT R A AR s R A
M B EELAE S RlsR > 4 AL~ AH
BAER o MEF KB 400 B 0 RAE
J B RE BE R 63 H AL R KA
50.5 ‘NEF 0 3R 24102 FHAE o

3.1.3 TXHERBEEHE

AR ETHERMABGKREEHEL 1T
89 Course-train A At £+ L FH £ & 24
Bt AR E LR R 3HTF o

84

TR TR Ak ()
NER-Trs-Voll 21,089 126.65
AISHELL-1 20,000 24.82
AISHELL-2 20,000 19.87
FHRIFTE 24,102 50.50
Course-train 827 3.03

total 86,018 224.87

& 3. PUSERAEZAHE

3.1.4 ZTHRAVEHE
HAETHEAENOERERAAEESH TR

BB RRZERE L EAHE T AL
RIPTT o ARG EH—F 54T HE L
Fo AR E S REFEURBRXETHNA 827~
90 L& 389 £ A » JNERE T character to-
ken #8# A 39796 °

3.2 TR&E

mARMGTHER S > AT RER
%) (speed perturbation) (Ko et al., 2015) »A
% SpecAugment(Park et al., 2019) A # A4t
WATH B - LF o REZDHEHINRTHE
#0910 11 ZESEREL R =ZATR
BEREQINRATHRE IR ETHE - £
SpecAugment #93% 5 0 & [ 3% $ A L B AT
ZAER > F—AEHizd (Time Warping)
M 72 B B 7 @) L AT A B BAE o AR
853 AL BB (time) SRR (frequency) 7
) EGE F (mask) o AR TRRE > A
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BRI il B CER(%)
Transformer 28.7
Transformer + LID - 27.8
Transformer V 27.3
Transformer + LID Vv 26.5
& 4. Fa# baseline $1#73% LID 9 H S RB ALY
ERER
D R R ] «‘F‘@J&@if}#%% ¥ed
I BRE B3 A, ‘25 ’J‘ ‘T‘ (GPU) A N D
MA s RMKAeBRZEHBRGENTALS
47@%1#%% #E?x:%%imﬂi
¢xﬁ%ﬁﬁﬂﬁiww< BB AR B R AL 5
BIMRT 228 E54 0 o J%% A A

0.089% VA& 0 088% -

A1 89 5% 2] 5% R A% B Transformer 89 m}ﬁ%
Al 12 BBRAE 6 R ARIHE MR o JLR L
(Tsunoo et al., 2019)(Tsunoo et al., 2020) F
AR BAEPTA ML frame HA—FE R 75
% o FIBF € #5818 block P FTA & frame 95

1'151;]3 » @458 % (Past) L&A BE frame
~ & AT (Current) 4 A 89 frame AR R4 (Fu-
ture) 89 frame > H F @ & Fo KRB RIEH
frame i%ﬁﬁ%?"”‘ AT 8 frame LT SCHER > M

z _‘ﬂﬂ*ﬁf\ﬁﬁ frame & % 3| ¥4 {N;, N., N,}
AT B AMGREE {8,16,16) 0 M i
L (Tsunoo et al., 2019) # i #J contextual
embedding * #1117 4& 3t contextual embed-
ding # 7 X ZH & 18 block F FTA 8 frame
B3 %4’?%%}1%4@_ ' FlBF 4% A position en-
coding &% B1 4 9% blocks 8957 - A F £ %
1352 7 z% (multitask learning) é’?i*%’(
a B 0.3 decoding FE B 9B L E N\ F= v 47|
B 0.5 AR 0.3 * beam size KN B 10 °

1 LID 4 #2 % 5 &1 — & 59 multi-head self
attention A& 2 & 8 1D-convolution * 3 %
kernel size % 3 stride *A & padding #F & 5
10 RBEABERE linear FTHLMR ©

EFETHRB I KRR 2 & 1024
8 49 42 7 89 & 42 #1752 1& (Long Short-Term
Memory, LSTM) 22 s i 18 4 42 4 88 » i 24
1B AFEATINSR ©

A8 BT A E BRAR A ASR T & ESP-
net2(Watanabe et al., 2018) A B4 o

4 FTHRER

MABEAESUPLET AL H L3
Fodh » BB VA L AE SR A B AR 6
2 o B Y R A 3EE
BRI > L Transformer RAFVAZA hw X LID
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wmBamRA  FEAEE  CER%)

Transformer 24.1

Transformer Vv 23.9
& 5. BHINRGERER

ua
ag

THEEEREIMGER > TRERw R 457
T oo £ RIAGEST AR T T LE B £ e
AN LID 8 S % F AR E 28.7% TIE3
sz%’ﬁﬁ%LTué@mALm 5%
RUAEBALKGET AT Y Al AR
%%%%: S RETRGER T H A
TH, 3% E 27.3% ~ 26.5% °
%%&mu¢iﬁﬁ%ﬁ2ﬁm&*@¢i
FEHRALTETRIRER » BAL A BA I
%éﬁﬁ#ﬂi)ﬂvﬁ‘%ﬁ" BAHER 1RGEATHGA » &
RETHE 241% > W BT HEAK R4

THE 23.9%, BRERWE 47T o
5 4k

FEiZETRY  KIEA SEHEH 7 kA
T LI % R RRF ALK BN TR E
THMEF AL —H 0 Bk Aty R

R B % AT B B TIAE S BT EAR L 0 A
FARIE 0 HARGAET AR F B89 o FlEF &M
128 T BASZH GHM » RARLATES I
RAEMINGRE R ARG ﬁﬁm&&ﬁiﬂm
TH Y ERRR T RMAETHRAL T
BREER LA B E o

B R RATEAE R o AT P& &AM 89 &
B0 WA REMIRE S T T HRAT o
Rl ARG RAAE » B HAHNLZHLY
BERAH Y s RbRMEe b4t HETHERN AL
WATAGE » IR R H R 5 BB IAT
At Bl A RN A APERGRALE B 69 RIE
AT AR TR EL LR LERHEES

BAEATHE > AR RIVERM Rt -
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ABHLERAARZILRELEEELR
EH ARG KRS RAVEA BT I 4k 8935
BERE AL AR AABRZAGE kA
A 53 o B RAEMME VoxCeleb2 FHH &
N4k ECAPA-TDNN 45 & — 18 & BB A »
#EH A CHT-TDSV AH £ L T4
B2 ACE R R H L AT DANN ~
CDANN ~ Deep CORAL ° & 142 & 89 %
% /£ NSYSU-TDSV ##+%& &K 10 42
FRGERFR O3 —KEREMER
B REASMBEENSZT » RIEFH#
SRR ARG 1830 THE 884 &
A EHRE ARG SR B AR

Abstract

In this paper, we use domain generaliza-
tion to improve the performance of the
cross-device speaker verification system.
Based on a trainable speaker verification
system, we use domain generalization algo-
rithms to fine-tune the model parameters.
First, we use the VoxCeleb2 dataset to
train ECAPA-TDNN as a baseline model.
Then, use the CHT-TDSV dataset and
the following domain generalization algo-
rithms to fine-tune it: DANN, CDNN,
Deep CORAL. Our proposed system tests
10 different scenarios in the NSYSU-TDSV
dataset, including a single device and mul-
tiple devices. Finally, in the scenario of
multiple devices, the best equal error rate

87

decreased from 18.39 in the baseline to
8.84. Successfully achieved cross-device
identification on the speaker verification
system.

MeEF @ 354 BnaE ~ ARz ~ REAVEH
¥

Keywords: Speaker Verification, Domain
Generalization, Deep Neural Networks

1 %

ERBRBEEGAREETET T HRAAT—%
B SATRERE » BF 0T AL E G E R
HA & BT EBEGEETRERRGEST FER
REFZP O EH > AREDEEEFTEEAR
— AN EERFERATRAR G ER - Ad
TREKETHRINGETIGAMAEL > B
¥ hoiB A BRE A PERIEE o AL AR KA L AR
RATRFIRKEZ MO £EN > SHELRE A
BRI c BEBKEEFZRAELRAL
P Jm A 4B 3% Z AL (Domain Generalization) 4%
i sl I8 Fe AN RFEH BRI A AR » AL I
BRABRPZBBR IR ;AR Z TN EER
xS P A SRR N
¥ (Speaker Embedding) * i # Jb ¥ Speaker
Embedding 7T vA#F 2| 384 X M 694 L E > 7
MRFEHRF AL o M KA A Speaker Em-
bedding & 1F 48 3k 2 4G 5 J ik 69 4 R BR
(Fine-Tuning) #8942 A& » 48 18 £t 38 1% & A1
BT LA S AR > RIERE A L T FR B 0935
F BTG IER B R o
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Dataset Voxceleb2
EXE &2 5,994
B 5 ) 61%
Yh#E 150,480
%55 & (hours) 2,442
& T 1,128,246
HANFHY R K 25
HNAFH 6T # 185

% 1. VoxCeleb2 #93F m &30,

2 BRIk

2.1 KHE

2.1.1 VoxCeleb2

VoxCeleb2(Nagrani et al., 2020)(Chung et al.,
2018)(Nagrani et al., 2017) & 7> T 4 #& B 89
HAE > AEAK Youtube L6893 R #RE
FRB o HLEANER S EAHE Ly
FNRAMEHEOEAFF > ABRTHY
HERBTOEHFHRET EEAAR X
BETH e AHENFLARERZ BET
FRSFEH -RE - 0F ko BHFORER
B 16kHz » £ 3E » WAV #% X - & H 89353
By 3= L o VoxCeleb2 H 89 3% tm & 34w & — PT
oo

2.1.2 CHT-TDSV
CHT-TDSV & ¥ # 125 % I M 5 69 & 4
Fo BLAAMBGENE FHEKE 32 A
FATEH A 30 3] 90 EWELT ET AT
L0 FEF IR E A SkHz » £ 48 » WAV 4
N BETAREEE 9 BEFIHAKR Y
RE# 24 - CHT-TDSV i A AKX B354
BraE s EAZHRRINEE > 99 B S5 LA
F Ao 3E o

2.1.3 NSYSU-TDSV
NSYSU-TDSV Z &M E B £ 8 174k 1 09 A4t
£oBERE12A(9F 3 %) FHEEA
1,080 44 ES B P L FFOREESR
16kHz » ¥ 48 » WAV 4 X © NSYSU-TDSV
HEAMFRGEE > 25 A% LA (micro)
F# (mobile) #= 7 35 (office) » Wit =K &
S HEAGEME ERBIREKETUS B 9ME
To BIR B HE T A 9 By sE M BB X AR & B — &
& (micro ~ mobile ~ office) » A B J& 4 AT B 3t
K B Fo JR 4R 1% B B3 B (micro_mobile
micro_office » mobile micro » mobile office »
office_micro ~ office_ mobile) » & & & A A £
0 FETF A A —Ae (all) » A8 6 BIKIE
3 o

#5—| maw | e gna

FBankit | A A EZAL L v R

2.2.1 FAE®

B BATRE B H REF - B K ENRTE
FHREAL DR BGHOR B 4T > WRAERIRIT T &
B4 8 B #4 (Over-Fitting) 69 B2 » R b,
PVF) R AL 9% 69 7 ik K38 e RAT B R H A
HEFR S o KPR A RAE 7 5 REAT TA
3% » F—4ETm A MUSAN 34t & (Snyder
et al., 2015) #% % > MUSAN #H# R a2 7
HH (Speech) ~ &% (Music) % & (Noise)
=Ry BRABPOAZEBARETATH
B P 2 R AKX B BUR P69 ok 5 &R
BeETBERRARRITEL TNy AFEH
frhoRd (IR - SRR ) F R
T (EHE - -RE - HYRETF) 2R 0N
BT PR aE W s 9 ABE o b AR AF R 5 M
k1% % J& (Room Impulse Response) e A8 4
(Reverberation) » % M Mk 4 J& & f2 f B 79 4%
i B 89 Bk A5 & (Impulse Sound) » K& 4
WA B AR @ R AT A A E
& o

2.2.2 HZHHBRR

B —BEE o ROAE G % BRI E
Bom— R #EEFAE (frame) » FHFH
T HE P SR BUAE S AF AR By A 2 Mk e L
AT AE KA IR E A KF o A
F 8 9% % 4 (Filter bank, FBank) 1§ & # 2 4%
B o FBank A ZH MR EZARWE —> &
J7EF A AL B TR (Pre-emphasis) &
H A BT E > MR AL LT
FH P B AR A T A E R % B
ABBEFRAGPTRA G [ - TR
BB EASRTIE AFTERNLEAE
(Hamming window) 5% # R K M3 1E 25 1E
M °T A 38 AR B9 SRR ARG o T —F AR ALE
TR A B IR A4 > BT AR R Beik g 2 B
# 4% (Fast Fourier Transfrom, FFT) #f £ % &
RESARRE  FRORE>ANREE LR
B E A o BAMAH O HRRES M= A
R R B AREHAE TR 0 BT R
BRI AETOERARR @A
B oo 48 3 M B BP 7R, FBank #9 8 54
AR B o
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2.3 ECAPA-TDNN
2.3.1 B

ECAPA-TDNN(Desplanques et al.,
2020)(Thienpondt et al., 2020) & VoxSRC-20
R B — L oy AR A kAN B A A 8 4
# (TDNN)(Peddinti et al., 2015) 2 i
A& > &AM PT 4R R ) ECAPA-TDNN # &
(Thienpondt et al., 2020) R4 B = 4
BT RABATERC K EMBEH K
BAEMME KD ~d BRIk E (dilation rate)
SAEARE ERMYAGKT T EAZTAE
200 18 frame> C & 2048°S B 5994 o #t
HEHMAR 80 oM AETRE T 8
4% 8 % — & & ConviD+ReLU+BN © #
TAREHA N EH 1-D Squeeze-Excitation
Res2Block(SE-Res2Block) * /£ (Desplanques
et al., 2020) ¥ R A =1f8 SE-Res2Block *
£ (Thienpondt et al., 2020) T4 %4 w i
# SE-Res2Block * # /& SE-Res2Block % #
MARGFEKEE 5K 2~3-4~5°TF
— R & ConviD+ReLU® & — R 891 H A %
J& 4% B ¥ 4 (Multi-layer feature aggregation
and summation) > # £ — 3 5~ F 1 F Ik ik
£ ) SE-Res2Block &9 3y & £ /\i% #T
& & Attentive Statistical Pooling /& » 3t
FimEFHE e ERREE KRREIK
By EAT AL c AR E B AR IER
L+ BatchNormld & » B vAAF 4F B 4 1 9
#4338 192 4 4) embedding ° K& — & &
AAM- Softmax(Deng et al., 2019) > # 192 4t
89 embedding H#EATH % » %m b9 18 $ 5 B A4
BANEE (5994) ©

2.3.2 SE-Res2Block

ECAPA-TDNN #% & & & & & 89 3 4 3t &
SE-Res2Block * SE-Res2Block 8 R 4=
A E A SE-Block(Hu et al., 2018) 7w %
Res2Block £ #1 (Gao et al. 2019) oy Row o &t
AR RER A ResQBlock Gy 2 A
H AL BERBE L AABERY 1 &
AR -

SE R &% B4 (Squeeze) F7 ik B (Excita-
tion) o BREGH 8 HZ XEAK (1) &4t
HRAE T #ATABMEF 384U (global average
pool) © hy KA —18 frame 8 feature map * 4
JE B CxL* C B channel ¥ » L B4FBUm s o
?“‘1\/7‘\% v 4l oz BSHEE R B Ox1 o BB

TARHUHEBMRBAGTRHETEY  HES
fw/&éx (2)* Wy B RxC 8982 » by A Rxl
BgE € 0 BTk Wiz + by W —18 Rx1 699§
oL ¥ R RAEHRG G o HF X1

= >

_—

89

input l 80xT
ConvlD + ReLU + BN (k=5.,d=1)

CxT

A 4

SE-Res2Block (k=3.d=2)

! v CxT
| SE ResZBlock (k=3.d=3) |

l CxT

| ISE ﬁeszlock (k=3,d=4) |

CxT
Y

| SE- ResZBlock (k=34d=5) |
j' V W l 4x(CxT)
| ConviD+ReLU (k=1.d=1) |
] 1536xT
| Attentive Stat Pooling + BN |
l 3072x 1
| FC |
v 192x1
| AAM-Softmax |
output ¢ Sx1

2. ECAPA-TDNN A7 2 4%

FESRME R B > EILERME A ReLU &HE - X
B Wy & CxR & E 2 by B Ox1 89&F > FT
Vl Wof(Whz + bl) + by $ —18 Cx1 8

o RBRBE o RE (sigmoid HK) Mk s
s 4&%2‘5‘4‘“‘1&%3@&/@ JEERIE R BT F B 49
feature map 89 E » HEE B Cxl o HHFHH
hy P 818 channel & L HJE &4 T > 43k
A% h; B channel-wise multiplication » %=/
X (3) A& » sche Rk s ¥ % ¢ 18 channel F»
feature map P # % ¢ 18 channel A% » h, &
% c 18 channel & #71% 49 feature map * /£ &
#@ SE Z.1% 89 feature map #/Z 155 CxL o

L I
i=r > h (1)

s = O'(WQf(le + bl) + bg) (2)
he = sche (3)

Res2Block 8 R4 B @ » )55'@7‘115}%4'?5(57\/‘%
x1>x2 x3 x4 WA (TAKHHS EIEE
4o iAW A 0 xl T\féﬂ}_ﬂ@]ﬂ"ﬁ Ppi%
BT EE vyl mx2BB—WEMRKIE 3 Z
AR RBAFEARIEL y2 FoH1E x3 BHRE
B o x3 B AT — 4 (x2) f9d kA x3 A
THMABBERERMEE y3 FEE 4 &
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input l

ConvlD + ReLU+BN
Res2 Dilated

ConvlD * ReLU*BN
ConvlD + ReLU+BN

!

SE-Block
v

output ?

B 3. SE-Res2Block %4

ARG M > x4 B AT — 4 (x3) 899 h Ao x4
BN BEM R IR ya 0 BT E T
ZBEME—EOWE y1 > y2 - y3 s y4 iR
RABGE 1x1 8 BARR A MR B GBS o

2.4 Az

PN 4R4F 69 ECAPA-TDNN A A T 2l & 5 9 iy
BEF AT EF —AZERTH 255 E4 Y
e LB ORE TR M EHRREIRA I
& o KA ECAPA-TDNN 4£ & pre-trained
model 3 FAE3K 27 Fx A CHT-TDSV & 1F
IR R AT BB A SR AL IS KB GBS PR 4G 2K
Ko RMMER T =4 R 6948 Bz b 7 kAR
# AT K% > 2 % & DANN ~ CDANN ~ Deep
CORAL °

2.4.1 DANN

DANN(Ganin and Lempitsky, 2015) # /& 3
A E AR (Generative Adversarial
Networks) P %4t 89 488 & e £ IR E £ ¥ 34l
A& Bl RZALH R > DANN #) R 4o Bl
AHT R TR BERE (feature extrac-
tor) ~ 2 82 # £ (label predictor) ~ ¥ %4
% (domain classifier) #4n £ gradient reversal
layer(GRL) AT #417% © DANN R A% 89 AAL 4o A
TH o ELE R O IRAE A x 2B A
ERBEFFOEMF £ HFHF f FAER
DFA B M ANE A B S % > 3B class label
vy B F 1B loss L, s H 8 f 1A %S
£ 89 A ¥ domain #4759 % > W domain
label d » 33+ —18 loss Ly o #% T REATR
g P 0,0, 04 A REFBER
R -REsAERBYASNEE £ L, 8

Sal-1-1

90

input y ]
X
S T S
X208 [ExS x4
3x3
v
3x3
\ 4
3x3
y A 4 A 4
yl| y2 | y3 | y4
I [ [ [
|
%<l
.
oufput y

B 4. Res2Block %4

Gg
HEERS featllu'e

[GRL}—{ #5552 % |>domain label d
Gq loss Lq

loss Ly

RIS

class label y

5. DANN 4%

RetpisFAmZatm ey faER L, RoE
RAFBL £ 9 FI R MR A6 RS » M Ly
By B o) R4 B AL b A R R RCNMUAA R Ly
Hi#&#® GRL M5B RJA—M8 )\ KM
oo e B AR R AR TR
B 2R3 (source domain) 4= B 4% 3% (target
domain) » #& i B 48R Z AL B R o

A
A L » DANN %3269 BAZ £ 47
PR IMUERSAZNIAK L, 0 B FKE
BB BBNBRK Ly RRALKH 280, P it
1B 5B EB K Ly RO 58 0,0 &M
IR (4) RET 2 0p ~ 0, ~ O REFEME
FRORAEM - E ZEO T 22K (5) 0 3
FT A B R AE R@ 1R 35 BF loss 89 4840 » Gy~
Gy~ Gg BHREBFBERSE - RBrHAEP
BB N REFTAMAHERD > 2, A7
FiEWMA Oy AT D FMAL label d;
REF i FMANBARE > 0 IR TABAZR
BRI o m E HETAEEAENK (5) P&
FAT 0 Ly Ao L) REF BB AN L, Ao
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Ld°

(éf, éy) =arg g}zg; E <0f, 0y, éd) "
0y = arg maz E (9f,9y, 9d>
d

E(0f,0y,0a) = Z Ly (Gy (Gy (zi505) ;0y) , yi) —

i=1..N
d;=0
A La(Ga(Gy (2:;05);0a),v:)
1=1..N
= > Ly (05,0,) =X > Li(05,0a)
1317(])\[ i=1..N

(5)

R R, (4) PTib K6 AT HBAR (6)-
(8) HEEHAAR S8y BERFE > 2
K (6) Py Gt Rk -\ WAL HAER GG
B o

oL, IL:
o« o —u(Gpr NG ©

oL
0, + 0, — u—-"- (7)
Y Y aay

oL},
Hd < Qd — Maad (8)

£ A T A #% ECAPA-TDNN # # 4 &
DANN RBOHBERESFEZRS AR
HCE LR E BB R4 F R % ECAPA-
TDNN & FC & Frém 69 192 #489 em-
bedding » 4% 8% %8 £ P78 i 69 class label 3
Bl # AAM-Softmax & #9873k » B s Z AT T 1L
# ECAPA-TDNN # & 7 & B >~ 69 2 4 2%
W EE A o ¥ loss Ligap PITH T AT d
A X (6) BEFIRTET RN (9)° Lopeaker
# Liomain 23 B ECAPA-TDNN #£ & o 3%,
TR o

LtotalD - Lspeaker + (_)\) Ldomain (9)

2.4.2 CDANN
CDANN(Li et al., 2018) & DANN & —4& &
ft. » CDANN # /& A DANN F 69 3% 548 & I
Lt Prior-Normalized &% & #8 5.5 5 — 1tk 448

ECAPA-TDNN ¢ input 80xT

$3072x1
| FC H—
3 192x1
| AAM-Softmax |
[ sx1
¥

/7]\

— &
o\e
Q

L .
output Lspeaker domain

6. ECAPA-TDNN + DANN %£#

HHERE |feature f>|HR M2 H| lossLy

5 — 1t

loss Lyorm

Bk
B mE

}Lﬂﬁl loss Leon

7. CDANN &

% (class prior-normalized domain network)
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Abstract

Due to the recent advances of natural
language processing, several works have
applied the pre-trained masked language
model (MLM) of BERT to the post-
correction of speech recognition. How-
ever, existing pre-trained models only con-
sider the semantic correction while the pho-
netic features of words is neglected. The
semantic-only post-correction will conse-
quently decrease the performance since ho-
mophonic errors are fairly common in Chi-
nese ASR. In this paper, we proposed a
novel approach to collectively exploit the
contextualized representation and the pho-
netic information between the error and
its replacing candidates to alleviate the er-
ror rate of Chinese ASR. Our experiment
results on real world speech recognition
datasets showed that our proposed method
has evidently lower CER than the baseline
model, which utilized a pre-trained BERT
MLM as the corrector.

Keywords: language error correction,
masked language modeling, phonetic distance

1 Introduction

A variety of real-world applications have been
benefited from the recent advances of Auto-
matic speech recognition (ASR), such as voice-
activated banking, meeting minutes transcrip-
tion, and voice content inspection. In ASR,
hidden Markov model (HMM) based mod-
els (Rabiner and Juang, 1986; Rabiner, 1989;
Povey et al., 2011) and end-to-end models
(Chan et al., 2016; Bahdanau et al., 2016;

lukechen4190gmail.com
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Department of Mathematics

National Kaohsiung Normal University
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yryeh@nknu.edu.tw

Graves, 2012; Jaitly et al., 2016) are two popu-
lar types of modeling methods. For end-to-end
models, it typically requires a huge amount of
data for the model training due to the compli-
cated architectures of neural networks. How-
ever, it is not easy to collect sufficient voice
data in many real-world scenarios.

In contrast to end-to-end models, conven-
tional HMM-based models, such as Kaldi
(Povey et al., 2011), require less data and are
quite popular in practice. HMM-based mod-
els are comprised of the acoustic model and
language model. The acoustic model is used
to produce phonetic units from the speech sig-
nals. Language models are responsible for ob-
taining the probabilities of next words by given
past words. Typically the N-gram model is
used as the language model in HMM-based
models. One drawback of the N-gram model is
the lack of long-term contextual clues by com-
paring with RNN-based or transformer-based
language models.

For Chinese speech recognition, we found
that many homo-phonic errors are produced in
HMM-based models with the N-gram model.
It shows that the néive N-gram model might
sacrifice the performance of HMM-based mod-
els even a well-trained acoustic model is given.
However, it is not easy to replace the N-gram
model due to the structure of interaction be-
tween the acoustic model and language model
within HMM-based models. To overcome this
problem, many methods have been proposed
for the post-correction of speech recognition
(Kumar et al., 2017; Xie et al., 2016; Guo et al.,
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2019; Liu et al., 2013; Zhang et al., 2020).

Recently, many successful methods have
been proposed in natural language process-
ing, such as BERT (Devlin et al., 2019). For
those pretraining tasks in BERT, masked lan-
guage modeling (MLM) is a task of interest
for our post-correction. The goal of MLM is
to predict those masked tokens within a sen-
tence in which certain input tokens are ran-
domly masked. The prediction of masked to-
kens can be regarded as a kind of error correc-
tion. As shown in (Devlin et al., 2019), MLM
also could be applied as a post-correction for
speech recognition. To be more precise, we
apply the fine-tuned BERT to detect the er-
rors within a recognized sentence from ASR.
Followed by the detection, MLM is applied to
correct these words.

The post-correction by MLM could reduce
the deficiency of long-term contextual infor-
mation in the N-gram model. However, the
conventional MLM did not take the phoneme
into account. To address this issue, we aim
to propose a phonetic MLM as the post-
correction for speech recognition by leveraging
the phoneme information from the predicted
words.

2 Related Work

Many methods have been proposed for cor-
recting the outputs of ASR systems (Errattahi
et al., 2018). These existing approaches of lan-
guage correction typically can be divided into
three categories. The first group of them uses
external language models to rescore k-best can-
didates in ASR system. For example, (Kumar
et al., 2017) picks k-best candidates of each
word from the original ASR system. Once
these k-best candidates are determined, RNN-
LM is applied to re-score the k-best candidates
of each word. From (Kumar et al., 2017), it
also shows that the improved performance can
be achieved since RNN-LM is a more effec-
tive model for the representation of natural
languages.

The second category of language correc-
tion methods adopts the sequence to sequence
learning framework (Sutskever et al., 2014).
Based on this architecture, (Xie et al., 2016)
adopts a character-based attention mechanism
to generate a corrected sentence. On the other
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hand, (Guo et al., 2019) also proposes a RNN
with attention to correct the output from Lis-
ten, Attend, and Spell (LAS) model.

The third group of language correction
methods adopts a two-step correction. For
example, (Liu et al., 2013) uses the lan-
guage model and statistical machine transla-
tion model to detect error words in a sentence.
After the error detection, SVM is used to re-
place the predicted error words with the most
likely word. In (Zhang et al., 2020), the au-
thors proposed a bi-GRU model as the error
detection network. Given a sequence of em-
beddings from BERT, the detection networks
generate the probability of being an incorrect
word. Followed by the detection network, the
input of the correction model is the convex
combination of mask token embedding and
token embedding with the probability of in-
correctness. Once the integrated embedding
is calculated, a sequential multi-class labeling
model based on BERT is applied to generate
the corrected sentence.

3 Methodology

In our proposed method, we integrate seman-
tic and phonetic information for the post-
correction of ASR. More specifically, the mask
language model (MLM) based on BERT is
used for semantic error correction. Besides,
we also apply a phonetic distance to re-rank
the candidates of being corrected from MLM.
The details will be addressed in Section 3.1
and Section 3.2 respectively.

3.1 Semantic Post-correction by MLM

In our work, we first apply a token classifier to
detect the errors within a recognized sentence
from ASR. To learn the binary classifier, we re-
gard the incorrect words within a sentence as
the positive examples and fine-tune the model
with Chinese pre-trained BERT. Followed by
the detection, MLM is applied to correct these
words. MLM is one of the pre-training tasks
of BERT and originally aims to predict those
masked tokens within a sentence in which cer-
tain input tokens are randomly masked.
the original design for the pre-training BERT,
MLM predicts all masked tokens (i.e., the er-
ror words in our task) in a sentence simultane-
ously as shown in Figure 1(a). That is, the

In
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Uncorrected sentence:

®

aEIE

=

HE]

| maskall 4 maskin order | maskall
gle]m[alw]w]n] [f]]a]s[e]rm]s] [&]][n]s]e][w=]5s]
\v predict & fill all e predict , predict & fill the highest probability
alm|n[a|e]u|s] [gla|an]s[e]n|s] [a]g/n]s]e][y]s]
, maskin order , maskall
s |a|n|e|w][s]| [&]w[a]s|s]s]s]
v predict , predict & fill the highest probability
la|s|m|n|w|[n]s] =lag/n]s]|e|s]|s]

(a)

(b)

()

Figure 1: Different masking and replacement strategies of MLM for post-correction: (a) mask-all-and-
replace-all, (b) mask-one-and-replace-one, and (c¢) mask-all-and-replace-one.

mask-all-and-replace-all strategy applied the
error token classifier to detect all candidates
of incorrect words. Once the detected error
words are determined by the token classifier,
we replace all of them by the “[MASK]” token
and predict the correct words by MLM at the
same time.

In addition to the mask-all-and-replace-all
strategy, we also propose two other strategies
to investigate the influence of the sequential
masking and replacement of the detected er-
ror words. Different to mask-all-and-replace-
all, our first strategy, mask-one-and-replace-
one as shown in Figure 1(b), applies MLM to
predict the correct words for each error token
sequentially from left to right after the posi-
tions of error tokens are determined.

Similar to mask-all-and-replace-all, our sec-
ond strategy, mask-all-and-replace-one, also
masks all the candidates at the beginning.
Rather than replace all the candidates at once,
only one candidate associated with the high-
est probability will be replaced at one time as
shown in Figure 1(c).

Based on the strategies mentioned above,
the edited sentence will go through the same
process all over again until all detected er-
ror words has been corrected. In our exper-
iments, we also evaluate the performance of
using these different strategies. The detailed
results will be discussed in Section 4.1.

3.2 Phonetic MLM for Post-correction

Using conventional MLM as post-correction
of speech recognition only takes the semantic
context into account. As the example recog-
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nized sentences shown in Figure 2, we found
that many homo-phonic errors of correction
are made in HMM-based models with the N-
gram language model. To overcome this prob-
lem, we proposed a phonetic MLM by lever-
aging the phonetic distance to integrate se-
mantic and phonetic information for the post-
correction.

In our proposed framework as shown in Fig-
ure 2, we first apply the fine-tuned BERT
of token classification to detect the positions
Once the errors are determined,
we simply mask them and apply MLM to
get the probabilities of candidates denoted by
P.ondidate- As the example in Figure 2, we first
detect the error “#&” in the recognized sen-
tence, and then “42” is replaced by “[MASK]".
After masking “#.”, our MLM will predict can-
didates of replacement, such as “# ”, “&”, and
“£” with the corresponding probabilities 0.4,
0.2, and 0.1 respectively.

In addition to the semantic correction by
the conventional MLM, we also take the pho-
netic information into account. To obtain the
phonetic information, we apply DIMSIM (Li
et al., 2018) to obtain the Chinese phonetic
distance. In DIMSIM, each pronunciation of
Chinese characters is encoded in a high dimen-
sional space. The phonetic distance S between
Chinese characters ¢ and ¢ is defined as fol-
lows:

S(e,d) =
Sp(piapg/) + Sp(pfapg) + ST(pZaPZ)»

where pl, pf' and pl represent the initial, fi-
nal, and tone components of ¢ in Pinyin, re-

of errors.
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Corrected
l'p( ' S(Cerrorr Ccandidate)): [004 ' 0.1 1 e ]
S(Cerrorl Ccandidate): [ 9.7 ] 0.0 ] 0.0 ;o eee ]

Mask prediction: | & | & @R masdf/ B B & R |

CIDEE

Figure 2: An example of our proposed semantic and phonetic post-correction. P.qpdidate is the probabili-
ties of candidates from MLM. S(Cerror, Ceandidate) 18 the the phonetic distances between the detected error
character of interest (cerror) and the candidates (cecandidate) based on (1). W(:,-) controls the trade-off
between semantic and phonetic metrics as defined in (2).

% | % |

Uncorrected sentence:‘ N ‘ ¥ | R

spectively. S, and St are denoted as the Eu-  dation set. As the example in Figure 2, given
clidean distance and phonetic tone distance be-  the error of interest (i,e., “#2”), S(“4&”, “HA "),
tween ¢ and ¢/, respectively. We note that  S(“4&” “&”), and S(“4&”,“£”) are calcu-
the phonetic distance S between two homo- lated as 9.7, 0.0, and 0.0 by (1), respectively.
phonic characters is 0, and the phonetic dis-  For the correction, we use (2) to obtain the fi-
tance S(c,¢/) > 0. In (1), by given two Chi- nal scores 0.04, 0.2, and 0.1 for “A”, “&”, and

nese characters, the phonetic distance will be  “£7”, respectively. Based on the scores from
larger while the phonic difference is more sig- (2), we chose the character with the highest
nificant. score as the replacement (i.e., “#” in Figure

Based on (1), we could calculate the pho-  2).

netic distances between the detected error

character of interest (cerror) and the can-

didates (Ceandidate) Of replacing cepror by

S(CGTT‘OT‘7CCGTLdidat€)' For examplea we will 4 Experiments
calculate S(“#” “H”), S(“#” “Z"), and
S(“#7 “£”) as their phonetic distances in
Figure 2. To consider the semantic correc-
tion and phonetic distance for the selection
of candidates simultaneously, we first estimate
P.ondidate of all candidates by MLM. Once
Pcandidate and S(cerrom Ccandidate) are 0btained7
we balance these two metrics by the function
U as follows:

Different to the conventional typo correction,
we aim to correct the error after ASR in this
work. To obtain the results of ASR, we use
Kaldi (Povey et al., 2011) as the speech rec-
ognizer in our experiments. Once the ASR
results are generated, the correction methods
are applied to refine the sentences. To evaluate
U (P.andidates S(Cerrors Ceandidate)) our proposed methods, we conduct two exper-
= Prandidate X €xp(— X S(Cerror, Ceandidate) ) iments in this section. For the first o'ne, we
(2) evaluate the performance of the semantic-only

post-correction with MLM in Section 3.1. In

where « is a positive number that controls the  the second experiment, our proposed semantic
trade-off between semantic and phonetic infor-  and phonetic post-correction in Section 3.2 is
mation. In our experiments, this hyperparam-  also evaluated. The details will be addressed
eter is determined by grid search with a vali- in the following sections.
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Datasets
AISHELL-3  Wiki
mask-all-and-replace-all 11.69 % 75.14 %
mask-one-and-replace-one 9.89 % 73.84 %
mask-all-and-replace-one 11.75 % 75.62 %

Table 1: The correction accuracies for different masking and replacement strategies.

Correction
Pre. Rec. Fi CER
MLM 0.099 0.061 0.075 | 10%
Ours (a =500) | 0.404 0.179 0.248 | 8.3%

Table 2: The evaluation results of our proposed method and the baseline model on AISHELL-3 dataset.
Pre., Rec., F; represent the correction precision, recall and Fj-score denoted in (Tseng et al., 2015),

respectively.

4.1 Evaluation on Semantic-only
Post-correction

In this experiment, we aim to evaluate
the effectiveness on the semantic-only post-
correction with MLM by considering differ-
ent masking and replacement strategies as de-
scribed in Section 3.1. For the error detection,
we assume that our detection network could
detect all the incorrect words perfectly. Based
on the setting, we calculate the accuracy of cor-
rection by given the detected incorrect charac-
ters. In our evaluation, we use two benchmark
datasets in this experiment. The first one is a
Chinese open speech dataset: AISHELL-3 (Shi
et al., 2020). AISHELL-3 contains 63,262 and
24,773 sentences as the training set and test
set respectively. It is worth noting that we di-
rectly use the pre-trained MLM of BERT with
different masking strategies. Thus, we did not
use the training set and only sampling 20,000
sentences from the testing set for the evalua-
tion. The second one is Wiki dataset. The
dataset contains 286,975 sentences, and all of
them are used for the evaluation.

From the evaluation on Wiki dataset, as
the results are shown in Table 1, the mask-
one-and-replace-one strategy produces the low-
est accuracy. This indicates that if we only
mask one incorrect character, the other un-
masked incorrect characters will sacrifice the
performance of MLM. On the other hand, if
the incorrect characters are all masked, such
as mask-all-and-replace-all and mask-all-and-
replace-one strategies, the incorrect semantic
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information will not propagate to the task of
token replacement. For AISHELL-3 dataset,
we also can obtain similar results from the eval-
uation even if there are a lot of proper nouns
in the sentences. Besides, the results from Ta-
ble 1 also show that mask-all-and-replace-all
and mask-all-and-replace-one strategies pro-
duce similar results for the token correction.
For the sake of simplicity, we applied the mask-
all-and-replace-all strategy in our experiment
as the origin MLM of BERT did.

4.2 Evaluation on Our Semantic and
Phonetic Post-correction

In the second experiment, we evaluate our
proposed phonetic MLM post-correction men-
tioned in Section 3.2 with only AISHELIL-3
dataset since the phonetic information is not
available in Wiki dataset. Different to the set-
ting in Section 4.1, we randomly split 6,000
sentences from the training set as the valida-
tion set to find the proper hyper-parameters in
our proposed method, and all the testing data
are used for the evaluation. To evaluate the
performance of the post-correction for ASR,
we adopt correction Fj-score and CER (char-
acter error rate) as the metrics. Correction F-
score is calculated by examining whether each
error is corrected or not. Most Chinese error
correction tasks adopt this metric as the evalu-
ation (Tseng et al., 2015). On the other hand,
CER is calculated by the average error rate in
every sentence. It is often used to evaluate the
results of speech recognition. To evaluate the



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

0.25

e
o

0.15

Correction Fj

0.1

| | |
1076 107% 1072 10° 102 10*

«

1

6
1076 10=% 102

| |

109 102 10%

(e

Figure 3: Comparisons of correction F; and CER using different « in (2) for ALSHELL-3 dataset.

performance in practices, we also report CER
of the correction results in our experiments.

Followed by experimental results in Section
4.1, we use the pre-trained MLM model from
the official bert-base-chinese package' for the
semantic correction. This semantic-only ap-
proach is also the baseline in this experiment.
As shown in Table 2, our proposed method
could achieve 0.248 correction Fj-score while
the baseline model only has 0.075 correction
Fi-score. It shows that our proposed improve
the performance of post-correction by leverag-
ing the phonetic distance defined in (2).

In addition to the correction Fj-score, we
also evaluate the performance of these two
models with CER due to the practical usage.
Similar to the results with correction F}-score,
our proposed method also achieves better CER
by comparing with the baseline model. Based
on the results from Table 2, we confirmed that
the usage of phonetic information of characters
is beneficial to post-correction of ASR.

4.3 Sensitivity of Phonetic Distance

As discussed in Section 3.2, we need to de-
termine the hyper-parameter « in (2). This
hyper-parameter controls the trade-off be-
tween semantic and phonetic information. In
our experiments, we use the validation set to
determine the value of o by the grid search.
According to the range of phonetic distances
from DIMSIM, we set 1076 to 10* as the search
range, and calculate correction Fj-score and
CER with the validation data. Typically the

"https://github.com/huggingface/transformers
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{Unrecoverable case h
S(Cerror ’ Ccand\date): [ 00 ] OO 1] 97 ] ]
Candidates: & = =]
- J
EIEERIRIE A2
4 N
S(Cerror 1 Ccandldate): [ 97: 00 ] 00 1 eee ]
Candidates: & = .
\Recoverable case )

Figure 4: Examples of recoverable and unrecover-
able cases in our scenario.

larger « value we have, the more influence
of the phonetic distance it will increase. As
shown in Figure 3, we plot the correction Fi-
score and CER according to different values of
a. It can be observed that slightly increasing
the value of o will improve the performance
dramatically. This also indicates that many
homo-phonic errors can be corrected by our
proposed method. On the other hand, a too
large value of o will also cause the opposite
effect due to the over-emphasizing of phonetic
information. Besides, it also shows that the
results are quite robust within a wide range of
a. Thus, the proper value of v in (2) could be
easily searched.

4.4 Recoverable Ability of Phonetic
Distance

In our proposed method, it is obvious that not
all the incorrect characters can be corrected by
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adding the phonetic information. To be more
precise, an error word of interest is unrecover-
able if there exists a candidate that satisfies
the following two conditions:

3)

Perror candidate > Pcorrect candidate
and

S(Cerrory Cerror candidate) (4)

< S(Cerror’ Ccorrect candidate) )

where Cegppor is the error word of interest,
Ceorrect candidate 18 the ground truth, and
Corror candidate 18 the incorrect word of the can-
didates. For example, as the unrecoverable
case shown in Figure 4, it is not possible to re-
cover the correct character “&” since “ /%" sat-
isfies (3) and (4). On the other hand, one can
recover the correct character “#” as shown in
the recoverable case of Figure 4 since no can-
didate satisfies (3) and (4).

In our experiments, we have 21,865 Chinese
characters that are not able to be corrected
properly by the baseline model. Among these
error corrections, we have 6,483 recoverable
characters (~29.7%). By given these recover-
able characters, our proposed method can re-
fine 4,671 characters (~72.1%) correctly by us-
ing the phonetic distance. This indicates that
our proposed phonetic feature could fix most
recoverable characters.

5 Conclusion

In this paper, we proposed a novel approach
for the post-correction of speech recognition.
By exploring the phonetic distance derived
from DIMSIM, we integrated semantic and
phonetic information based on the pre-trained
MLM of BERT. By taking the phonetic dis-
tance into account, many homophonic errors
can be corrected by our proposed method.
Experimental results on a real-world speech
recognition dataset confirmed the use of our

proposed method for improved post-correction
of ASR.
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Abstract

With the widespread commercialization of
smart devices, research on environmental
sound classification has gained more and
more attention in recent years. In this paper,
we set out to make effective use of large-
scale audio pretrained model and semi-
supervised model training paradigm for
environmental sound classification. To this
end, an environmental sound classification
method is first put forward, whose
component model is built on top a large-
scale audio pretrained model. Further, to
simulate a low-resource sound classifica-
tion setting where only limited supervised
examples are made available, we instanti-
ate the notion of transfer learning with a
recently proposed training algorithm
(namely, FixMatch) and a data augmenta-
tion method (namely, SpecAugment) to
achieve the goal of semi-supervised model
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training. Experiments conducted on bench-
mark dataset UrbanSound8K reveal that
our classification method can lead to an
accuracy improvement of 2.4% in relation
to a current baseline method.
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Abstract

Current neural math solvers learn to incor-
porate commonsense or domain knowledge
by utilizing pre-specified constants or for-
mulas. However, as these constants and
formulas are mainly human-specified, the
generalizability of the solvers is limited. In
this paper, we propose to explicitly retrieve
the required knowledge from math problem
datasets. In this way, we can determinedly
characterize the required knowledge and
improve the explainability of solvers. Our
two algorithms take the problem text and
the solution equations as input. Then,
they try to deduce the required common-
sense and domain knowledge by integrat-
ing information from both the problem
text and equation. To show the effective-
ness of our algorithms, we construct two
math datasets and prove by experiments
that our algorithms can retrieve the re-
quired knowledge for problem-solving.

Keywords: Math word problem solving,
knowledge retrieval

1 Introduction

Math word problem (MWP) solving is a spe-
cial subtask of question answering in which
machine solvers need natural language under-
standing and numerical reasoning capability to
solve a given problem. Traditionally, feature-
based solvers (Kushman et al., 2014; Hosseini
et al., 2014) learn to apply the corresponding
operations with the help of salient features or
indicators (e.g., "buy A, B and C'in total” may
indicates a series of addition).

Benefiting from the availability of large scale
datasets, neural solvers have emerged. They
utilize encoder-decoder architectures to en-
code the problem text into hidden represen-
tations and learn to decode them into equa-
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tion strings or operation trees (Wang et al.,
2017; Amini et al., 2019; Xie and Sun, 2019;
Zhang et al., 2020). During the decoding
stage, pre-specified constants and formulas are
either added to the vocabulary or introduced
by some special mechanisms so that the solver
can generate equations that carry mathemat-
ical knowledge. In most cases, the constants
or formulas are limited and human-specified,
impeding the generalizability of the solvers to
different types of problems (e.g., commonsense
problems, geometry problems, etc).

In this paper, we propose to alleviate this
issue by automatically retrieving the required
knowledge from MWP datasets. To do so, our
algorithms try to identify numbers and their
associated concepts or units in the text
(e.g., in "the length is 5 m”, length is the con-
cept and m is the unit) and then deduce the re-
quired knowledge by aggregating information
from solution equations. For example, if there
are two different units in the problem (e.g.,
"the length is 5 m and width is 50 ¢m”), then
our algorithms will try to find the ratio that
possibly bridges these two units. In this way,
our algorithms may be able to retrieve the unit
conversion knowledge that there is a conver-
sion ratio 100 between "cm” and "m”. Techni-
cally, this task differs from standard problem
solving tasks in which we aim to characterize
all the required knowledge in a dataset rather
than predicting the required knowledge for a
single problem.

To verify our algorithms, we construct two
middle-sized MWP datasets and annotate
each problem with the associated knowledge.
Experimental results show the effectiveness of
our algorithms that they can retrieve 69.8%
and 62.5% of the required knowledge for these
two datasets, respectively.
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Type Example

Example Problem

Object property A chicken has two feet

There are 15 chickens and 10 rabbits in the

(commonsense) and a rabbit has four. cage. How many animal feet are in there?
(animal_feet = 15 x 2+ 10 x 4)

Hyper/hyponym A daisy or rose is a Mary bought 3 daisies, 2 roses, and 5

(commonsense) kind of flower; a flower flower pots from a flower store. How many

pot is not a flower.

flowers does she have?

Unit conversion One kilometer equals

Sam just ran a race of 3400 meters long.

(commonsense) 1000 meters. How many kilometers was the race?
Geometry Formulas like "area = The length of a rectangular plot is thrice
(domain) length xbreadth”. its breadth. If the area is 972 sq. m, then

what is the perimeter of the plot?

Table 1: Commonly used commonsense and domain knowledge in MWP solving

2 External Knowledge in MWP
Solving

As with other QA tasks, solving MWPs usu-
ally requires external knowledge that is be-
yond the given information in the problem. Ta-
ble 1 lists the common types of commonsense
and domain knowledge used in MWP solving
with prototypical examples.

Commonsense Knowledge is the set of
prior knowledge that solvers are presumed
to hold when dealing with problems concern-
ing some real world scenarios. For example,
as shown in Table 1, object-property or hy-
per/hyponym knowledge is critically needed to
perform arithmetic operations between differ-
ent objects. To calculate the number of flow-
ers, a solver needs to know ”daisy and rose are
hyponyms of flower”. As another example, the
knowledge ”a chicken has two feet; a rabbit
has four” is required to calculate the number
of animal feet.

Domain Knowledge On the other hand,
domain knowledge also plays an essential role
in MWP solving. Ranging from geometry
and probability to combinations and permu-
tations, a solver needs to apply some partic-
ular domain knowledge to solve the MWPs.
In most cases, the domain knowledge is in the
form of formulas. For example, a solver ap-
plies "the area formula for rectangle” to solve
the geometry problem in Table 1. As another
example, a solver may apply the conditional
probability formula to solve a probability prob-
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lem. Therefore, in this work we target on the
domain knowledge that can be represented as
formulas.

3 Retrieving Commonsense
Knowledge

Our first step is to retrieve from MWP
datasets the commonsense knowledge for prob-
lem solving.

3.1 Commonsense Knowledge as
Mapping Ratios

Typically, commonsense knowledge concerns
the introduction of extra numerical informa-
tion, most of which can be regarded as spe-
cific ratios between concepts. For example,
in the first MWP in Table 1, a solver intro-
duces the object-property knowledge to calcu-
late the total number of animal feet, where ”a
chicken has two feet” and ”a rabbit has four
feet”. In fact, ”2” and ”4” serve as the associ-
ated mapping ratios that convert the concepts
of ”chicken” and "rabbit” to "animal feet”.

Likewise, the knowledge of hypernym and
hyponym can be considered as a 1-to-1 ratio
that maps a hyponym to its hypernym or vice
versa. On the other hand, the unit-conversion
knowledge, obviously, can be represented as a
mapping ratio between two units.

3.2 Identifying Mapping Ratios in
Equations

To identify the ratios, our algorithm first ex-
tracts numbers in the text, and then creates
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mappings that map numbers to their corre-
sponding concepts or units, as shown in the
first step in Figure 1. For example, the noun
"pennies” is captured as the unit for the num-
ber 79”. Specifically, we use StanfordNLP
toolkit (Manning et al., 2014) for dependency
parsing in order to locate the numbers and
their head nouns (concepts/units).

On the other hand, for variables, our algo-
rithm uses five simple semantic patterns to
capture the problem target as the correspond-
ing concept or unit, as shown in Table 2. For
example, we capture "cent” from "how many
cents ...” as the unit for variable "x”. In our
pilot study, this heuristic handles about 90%
of the cases.

7

Pattern Rule

The goal object is A
(and B)

We take the first length
unit in the problem as
the goal unit.

how many A (and
B) ...

(what is / find) the
(length / distance)

(what is the / find
the / how much)
time ...

We take the first time
unit as the goal unit.

We take the first mass
unit as the goal unit.

how much weight

how much ... The default unit is dol-
lar.
Table 2: Patterns for capturing the goal con-

cept/unit of the variables

Next, the algorithm deduces the mapping ra-
tios using these number-to-concept mappings.
Here we use basic arithmetic principles for
ratio deduction. For an equation to make
sense, every term must correspond to the same
concept/unit. As in the equation "9 + 4 X
54 10 x 10 = z” in Figure 1, 79”7, 74x5”,
710x10”, and ”z” should share the same con-
cept. Based on the fact that ”9” and ”4” corre-
sponds to "penny” and "nickel”, respectively,
we can thus infer that ”5” serves as the map-
ping ratio that maps "nickel” to "penny”. Fig-
ure 1 illustrates the overall deduction flow for
a single MWP.

Finally, the algorithm collects the ratio can-
didates for the whole dataset. It calculates the
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Problem: | have 9 pennies, 4 nickels, and 10
dimes. How many cents do | have?

9+4*5+10*10=x

l Create mapping

9 — penny, 4 — nickel, 10 - dime, x — cent

l Apply mapping

penny + 5*nickel + dime*dime = cent

Equation:

Wi Y s e
{ { penny } { Sxnickel ; i dime*2 ; L

nickel = 5 penny

nickel = cent

nickel = 5 dime”®2
(a wrong one)

Figure 1: Flow of commonsense knowledge re-

trieval

occurrence frequency for each candidate and
then removes the ones whose counts are less
than a pre-specified threshold A, as a way to
filter wrongly generated ratios (like the one in
red in Figure 1).

4 Retrieving Domain Knowledge

Our next target is to retrieve the domain
knowledge involved in MWP solving. We con-
sider the types of domain knowledge used in
the form of formulas, and assume they (at least
the common ones) appear in more than one
problem in a dataset so that our algorithm can
discover them by finding common patterns.

4.1 Formulas and Concept Mappings

Generally, a solver uses a formula by substi-
tuting values (numbers) into it and then gen-
erating corresponding equations. As a result,
the generated equations more or less keep the
skeleton of the source formula, as shown in Fig-
ure 2. Thus, our goal is to retrieve the underly-
ing formula from equations by considering the
mapping between numbers and domain con-
cepts.

To find the mapping, our algorithm per-
forms entity recognition and relation predic-
tion to identify domain concepts, numbers,
and their mapping relationships, respectively.
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Find the area of the rectangle of
length 15 cm and breadth 6 cm.

Mapping: length x width = area
15 < length
6 <> width i

X <> area

15x6=x

Figure 2: Simple example showing the idea that
we have a mapping in mind when using formulas

As different domains may come with different
domain language in their problem description,
here we use neural models (which are more gen-
eralizable than semantic rules) for this task.
Our pilot study showed that little labeled data
is enough to train the models. Specifically, we
employ two intuitive Bert-based models for en-
tity recognition (Devlin et al., 2018) and rela-
tion prediction (Shi and Lin, 2019), and label a
small amount of data to finetune both models.

Here we describe the entity and relation
types as well as the model architectures we
use in details. In this work, we consider geom-
etry as the sample domain knowledge, and we
identify four important entity types that are
related to geometry domain: object, attribute,
value, and target. Table 3 gives a detailed de-
scription for each entity. We use the architec-
ture in Figure 3 to discern these entities in the
problem text. Specifically, the model is based
on Bert (Devlin et al., 2018) and fine-tuned on
our MWP entity data using 10 tagging.

Next, we seek to predict relationships be-
tween these entities. The relation types that
we use are: attribute-of, value-of, and none,
as described in Table 4. We adopt the frame-
work of (Shi and Lin, 2019) for our model, as
shown in Figure 4. In this framework, a special
format is used for the input, in which entity
mentions are replaced with entity-type masks
in their original position and then moved to
the end of the input. Such arrangement helps

[cLs]

r
CJ
r

OBJECT OBJECT none none none ATTRIBUTE

L LLLL.

Bert

t

@

... rectangular plot

softmax
classifier
layer

[CLS] is thrice its breadth .... [SEP]

Figure 3: Architecture of entity recognition model
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Description

A geometric shape or
real-world object, such as
"circle” or ”cylindrical
container”.

Attribute of the objects,
such as "length”, "width”.
Number or value of

a quantity, such as "two”
triangles and ”5” cm.

Entity types

object

attribute

value

The goal of the problem,
such as ”"volume” in
"what is the volume of X”.

target

Table 3: Entity types and their descriptions

attribute-of

E:j softmax classifier layer

[

[CLS] The [ATTR] of a [OBJ] is

)

Figure 4: Architecture of relation extraction
model. The original sentence "The length of a rect-
angular plot ...” becomes "The [ATTR] of a [OBJ]

. 7 and both entities are moved to the end of the
input.

Bert

[SEP] length [SEP] rectangular plot [SEP]

inform the model the two entities to focus on.
Specifically, the model takes the problem text
and two entities as input and is fine-tuned to
predict their corresponding relation. Finally,
we construct a concept mapping between an
attribute and a number if there is a ”"value-of”
relationship between them.

Types Description

Relation between object and
attribute, such as ”circle” and
“radius” in the description
“the radius of the circle”.

attribute-of

Relation between value and

value-of attribute, such as "radius” and
74” in "the radius is 4 cm”.
none None of the relations above.

Table 4: Relation types and their descriptions

4.2 Formula Candidate Generation

As shown in Section 3, our algorithm uses the
mappings generated by entity recognition and
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Problem: A rectangle is 25 by 16 cm. If a triangle with
base 10 cm has the same area as the
rectangle, what is its height?

Equations: 25*16=x, x/10%2=y
o |

l Create mapping |
- @@ -

25 - p1, 16 — p2, x — area, 10 — base, y — height

l ‘Generate candidates ]

(1) p1*p2 = area
(2) base * hegith/2 = area

Figure 5: Flow of domain knowledge retrieval. We
use i, to indicate that the concept of the number
is unknown.

relation extraction models to generate formula
candidates from the equations. Then, it splits
long candidates into shorter ones by addition
and subtraction operators, and normalize the
resulted candidates in order to reduce the de-
gree of freedom. After that, the algorithm
gathers all formula candidates for each MWP
in the dataset and calculates the occurrence
frequency of these candidates. Finally, it re-
moves the candidates whose counts are less
than a pre-specified threshold A.

5 UnitQA & GeometryQA

To check the effectiveness of our methodology,
we construct two middle-sized MWP datasets:
UnitQA and GeometryQA. The first dataset
contains 1128 MWPs that require the com-
monsense unit-conversion knowledge, while
the second dataset contains 675 MWPs that
require geometric domain knowledge.

Problems of both datasets are collected from
two large-scale datasets: Dolphin18K (Huang
et al., 2016) and MathQA (Amini et al., 2019).
We collect these MWPs using some domain-
relevant keywords. Then, we manually anno-
tate the required external knowledge (if any)
for each problem, as shown in Figure 6. We
select only a subset of problems from the large
datasets because we would like to focus on ba-
sic problems first. The more advanced ones
are left for future work.

Table 5 shows the statistics of UnitQA.
It contains a total of 1128 MWPs, 305 out
of which require unit-conversion knowledge
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Ronnie had a board that was 5 meters long, he
sawed off 80 centimeters to use on his garden how
much of the board was left?

Answer: 420
Equations:  5*100-80 = x
Knowledge: (length, 100 * centimeter = meter)

A rectangle is 25 by 16 cm. If a triangle with base 10 cm
has the same area as the rectangle, what is its height?

Answer: 80
Equations: 25*16=x, x/10* 2=y
Knowledge: (rectangle, length * breadth = area)

(triangle, base * height / 2 = area)

Figure 6: Sample MWPs from UnitQA (above)
and GeometryQA (below). The annotation is in
the form of ”(type, knowledge)”.

across 43 different types, including the con-
version knowledge between units of money,
time, length and so on. To test the capa-
bility for retrieving other types of common-
sense knowledge, we also heuristically select
25 problems that require object-property or
hypernym /hyponym knowledge. Due to
data sparsity, these problems are not large
enough to form a dataset, yet they should help
demonstrate the effectiveness of our algorithm
(details described in Section 6.2).

Table 6 shows the statistics of GeometryQA.
It contains 675 MWPs, 570 out of which re-
quire 40 different formulas for 18 different geo-
metric objects, including circle, rectangle, and
so on. In addition, we annotate an extra
193/46 geometric MWPs with corresponding
entities/relationships to train the two different
BERT models. We found that a small amount
of annotated MWPs are enough to make accu-
rate entity and relation predictions.

UnitQA

Total problems 1128
Knowledge required 305
Total knowledge types 43

Types of unit conversion: money(34.9%),
length(32.6%), time(14%), mass(11.6%),
volume(4.7%), and area(2.3%).

Table 5: Dataset statistics of UnitQA
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GeometryQA

Total problems 675

Knowledge required 570 (84% of 675)
Total formula types 40

There are 40 types of geometric formu-
las for 18 objects, including the area,
perimeter, and volume formulas for
square, circle, cubic, sphere, and so on.

Table 6: Dataset statistics of GeometryQA

6 Experimental Results

6.1 Experimental Settings

We use exact the same setting for both models
and implement them based on HuggingFace!.
The dropout rate is set to 0.1. The parame-
ters are optimized by Adam (Kingma and Ba,
2014), with learning rate le-4, batch size 50,
and a max sequence length for the input 68.

6.2 Retrieving Commonsense
Knowledge

We first conduct experiment on UnitQA to re-
trieve the commonsense unit-conversion knowl-
edge. We test with threshold A = 0,2,5 (for
larger dataset, the A should be adjusted ac-
cordingly.) Table 7 shows the overall perfor-
mance of the experiment. When A\ = 0, where
no candidate is eliminated for insufficient fre-
quency, it shows an upper bound of the recall
(79%). As expected, when the threshold in-
creases, it causes a decrease in recall and an
increase in precision. We found that for A = 2,
about 67% of the unretrieved cases are due
to concept identification errors, where the con-
cept for numbers are wrongly identified. This
suggests the limit of our rule-based deduction
strategy.

Due to data sparsity, we have not collected
enough problems that require object-property
or hyper/hyponym knowledge. Yet, in our
small-scale experiment (about 25 problems),
our algorithm can identify about 68% of the re-
quired knowledge and retrieve something like
“chicken < 2 feet” , “rabbit <> 4 feet” , and
" bicycle <> 2 wheels” for the first and second
types of knowledge in Table 1.

"https://github.com/huggingface/transformers
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Recall

79.1% (34/43)
69.8% (30/43)
20.9% (9/43)

Precision

47.8% (33/69)
90.9% (30/33)
100% (9/9)

> > >
[

ot N O

Table 7: Precision and recall for retrieving the unit-
conversion knowledge in UnitQA with A =0,2,5

6.3 Retrieving Domain Knowledge

In this experiment, we test the effectiveness of
our algorithm for retrieving domain knowledge
on Geaometry@QA. We test with A = 0,2, 5. Ta-
ble 8 presents the overall knowledge retrieval
result. When A = 0 , where no candidate is
eliminated for insufficient frequency, it shows
an upper bound of recall (70%). As expected,
when the threshold increases, it causes a de-
crease in recall and an increase in precision.
We conduct error analysis on A = 2 and find
that about 75% unretrieved formulas are also
caused by concept identification errors. That
is, if an equation contains several variables,
our algorithm cannot always find the corre-
sponding concept for each variable and thus
unable to retrieve the correct formula.

Recall

70% (28/40)
62.5% (25/40)
20% (8/40)

Precision

71.8% (28/39)
92.6% (25/27)
80% (8/10)

> > >
I

ot N O

Table 8: Precision and recall for knowledge re-
trieval on GeometryQA with A =0,2,5

7 Conclusion

In this paper, we introduced a task of re-
trieving the required knowledge for math word
problem datasets. By explicitly identifying the
required knowledge, we can characterize the
datasets and assist current neural solvers. We
then proposed two algorithms which retrieves
the commonsense and domain knowledge, re-
spectively, and constructed two datasets with
each MWP annotated with the required knowl-
edge. Experimental results demonstrated the
effectiveness of our algorithms.
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RCRNN-based Sound Event Detection System with Specific

‘ ‘ Speech Resolution ‘
AR TEZT PR RCRNN #FFHARMNAL
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HEFHMEAGBZLRRTETAT N
HEFHRLEMFS e RMAAFE
BREVGYBHRGFGESR 2 — A%
AR AR FEREZ N MA 9 RCRNN 4
SR TR KBRS A
Rk e mEFSEFTFHF BT ELA
RGN ET o ARMEN T 0
MR SRR ARANGFZHE - &
BA) R E AL ik % R TR AR —F R
fig o AL 89 £ 44 DCASE 2021 Task
4 8Bz % £ > PSDS (Polyphonic Sound
Detection Score)-scenario 1~ 2 #2 Event-
based F1-Score % 3|i£ %] 38.2%, 58.2% #=
44.3% > &7~ baseline 8 33.8%, 52.9% #=
40.7% °

Abstract

Sound event detection (SED) system out-
puts sound events and their time bound-
aries in audio signals. We proposed an
RCRNN-based SED system with residual
connection and convolution block atten-
tion mechanism based on the mean-teacher
framework of semi-supervised learning.
The neural network can be trained with
an amount of weakly labeled data and
unlabeled data. In addition, we con-
sider that the speech event has more in-
formation than other sound events. Thus,
we use the specific time-frequency resolu-
tion to extract the acoustic feature of the
speech event. Furthermore, we apply data
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augmentation and post-processing to im-
prove the performance. On the DCASE
2021 Task 4 validation set, the proposed
system achieves the PSDS (Poly-phonic
Sound Event Detection Score)-scenario 1,2
of 38.2%, 58.2% and event-based F1-score
of 44.3%, outperforming the baseline score
of 33.8%, 52.9% and 40.7%.

MetT  AFFAER - HEFERRA - &
AEZI A~ EFF

Keywords: Sound event detection, Mean
teacher model, CBAM, Speech

BETEABROBFTAEATPRETE  AMHE
B R BN 0 A FF S AT B A B 89 P BT AR
mig WA RN EFOFAA > bl R
HERAANTFRIRG LT RE@RAEE » ML
RAKFEARG LR AMP G Rk EANE
ARG o B sk B KA R AT Bl R 8y
RRUAME T AT L BAEH B B F FA R
Jro AR F B A AR 6 P B A A 09 F A
P AR A B Ao 2 REF R BRI
THEEFFHMAREZME A R EFF AR
TTOAM B 6 KRR —HZIRABIRAE
HreFEfRLeEEaT M ER 5 AR
F et AT A ATAR LA R - K4 P4
#% % » DCASE(Detection and Classification
of Acoustic Scenes and Events) Challenge Task
4: Sound Event Detection and Separation in
Domestic Environments BP & & 74814 » B 4%

[y



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

RAZLESEETFHMLETRGHERT - 71
TR AR P AT A 0 B A A LR R
Boo bt RERFAAFHAFHZEGE
HAA g AL 0 BWHEFNEL ZETHR
B A AR 22 1 7409 B AHEATIAR ©

DCASE 2021 Task 4 # baseline (Turpault
et al., 2019) & —1E &7 CRNN 427 42 4% 4 3
FTEHMABR AL > BA R HEHEFRA (Tar-
vainen and Valpola, 2017 ; Lionel and Cyril,
2019) #3942/ RAAFZ AHMEFFEFXS
F o BT RFG TR GFS > RME
# Kim and Kim (2021) #2 & 49 RCRNN #
Ak ik ® o A F bR E EA4E (convolu-
tion layer) #-& 1 M 89 3% £ BRI (residual
convolution block) > B 8% A % i 8 e iR &
BAGHZYH R M PSRN
BRI % T B SRR T BRI & 0 3k
I EHAERERF 0 KM E iz EEFANE
TAR AR > WAL A T R B ARAT B 69 B S 4F
#% (Park et al., 2010 ; Zhang et al., 2007) » &
P ARAT B AR R 09 PP R S A R R A A
¥ W dotly @48 R 5 B BATRR TR K
(BB RAAL TR ) 89 HELE -
WA EBRENGRIET XM T 5
= B R 7 B4 baseline & #LA R FTAR 8
P FHE  ERAEMAETHE AR
W ARBIESFCRE s FHW  FRER L
# baseline AHLMAER AR BARER + &
B B BB R AR E B R R ARG F R
e e

2 BRIk
REF A F b KA E 69 BT F AR A

S OEBARBRFEFXETOER > &
AR ARG FT FZARBRREZ LA
2 o

2.1 EHEH
2.1.1 CRNN

DCASE Task4 & 7 42 8 89 baseline # # =&
A7 CRNN $RH - B2 & & > ARMAS
A7 #% (Convolution Neural Network,CNN)
#n i 5% 4% (Recurrent Neural Network, RNN)
Mg o B ¥ BB T AR AT 5 F B R A
B ARSI ST AR E BB ER
FAEGERR R RERBESK » TR EH
AR AT B8 887 - RIMTE T DCASE
Task4 B 7 #% #69 CRNN A4 (4R E 1) st
REBEMOZLREME » BHAEK D (ker-
nel size) & & 3 x 3~ BB R AL A P
FEHME T (Gated Linear Unit,GLU) » & &
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& (filter) 2 2 7] & 16, 32, 64, 128, 128,
128 #v 128 18 » /& 4% A T #uAR ZA4L (batch
normalization) #7 35 ¥4t (average pooling) *
TG SR DEIN A 2 x2, 2 %2,
1x2,1x2,1x2,1x24 1x2° #FFiEER
f 128 18 % 069 % &) P42 78R B L (Bidirec-
tional Gated Recurrent Unit,Bi-GRU) X i &
R SRR R R LR BB (sigmoid)
By IR AR B A S W TR 6 TR
A| (frame-level prediction or strong prediction
) HZTRBER L F AR AL FE R
o HEE—FHEBEZN AR (Atten-
tion pooling) ¥4 4% T8 ] 89 B B s BL-F-39 » 1L
133 3 #7542 FA A (clip-level prediction or weak
prediction) > ZTRRA LR AE & & FHH 3]

Sound clip

¥

Mel-spectrogram

¥

i Convolution block N
\ (3x3, 16 kernels, GLU, 2x2 pooling)

}

[ Convolution block
\ (3x3, 32 kernels, GLU, 2x2 pooling)

|

s Convolution block R
\ (3x3, 64 kernels, GLU, 1x2 pooling)

}

( Convolution block
\ (3x3, 128 kernels, GLU, 1x2 pooling)

|

i Convolution block N
\ (3x3, 128 kernels, GLU, 1x2 pooling)

}

[ Convolution block
\ (3x3, 128 kernels, GLU, 1x2 pooling)

|

s Convolution block R
\ (3x3, 128 kernels, GLU, 1x2 pooling)

|

[ 128 BGRU

|

| 128 BGRU

l

Fully connected layer

|

Strong prediction
and
weak prediction

1. Baseline : £ & F 88 MR 7 R &S 2
RADBRIKBEE ~ B H A LR S KR

Do R MEEREARORF AL

— g2

TEAK -
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2.1.2 RCRNN

AR (Kim and Kim, 2021) » &2 & base-
line 4% it fF — 185449 RCRNN R4 #
®o SRE 2> BER BRI KA
R A DI HMUT BMAT o LRBFR A
baseline 127 #) A] 1 & HATAZ K BB 7T x 7
1% ARG VA 4 & 2oms R & BARAR YA B AR IR
8972 & /1 %4 (CBAM,Convolution Block At-
tention Module) YA B 5% £ i& 4% 40 p%, 89 5% % 1%
B(HRE 2 HF349) 0 &R EMBREA
TRRAR DB ZAARGREALE (FERE
ARG ) » FlAR R T iz E1uf F 35
AL > TR F 6 A Je B R BRI R
FH# (Rectified Linear Unit,ReLU) » &A73 8
E & #H (Woo et al., 2018) 89 EAF 24 T
i EAENZ N

F'=M.(F)®F (1)
F" = My(F')® F' (2)
M.(F) = o(MLP(Avgpool(F)) 3)

+MLP(Mazpool(F)))

M(F) = o(f77(Avgpool (F); Maxpool (F))
(4)
» B B EE AR RE 0 HARGIEET]
AL A TR (sigmoid) HE (X o L&) »
M AR — LI B RE (softmax) » £ F F
BAT— R as sk > M, /M, ZiiE /) ERzESN
#eHl > Avgpool | Mazpool & ¥t 455 F 35 /&
KAt (Bp Al 82 F ) R A E B2 &
J#H > MR E/ EREE ) AR £ E R /R
WHE L) MLP #o f(7<7) 53| 2 4EH — R
PSR 09 % R Beda Bhe T x 7 09 BAARAE o
R SATAR I AR T 8 e R B AT S
BHAEHER > M ASRREEEF B
PEAZE R EATERGHH > REREGR
A B R B R R B R R A o
2.1.3 ¥EHXZY
A% R baseline AT A% A 69 35 45 30 45 4E R
(Mean-Teacher framework) » A AF & ¥ & & X,
£ F 07y ik —AM MBI T b R AE A
RAMEGZEF R AR > AAZEE
e % ISR A AL 98 B AL A B MR S B > FUER AR
A6 3 5 B R E B AR A R 69 S RGEAT
& &4 8 F 3 (exponential moving average)
HAFE] > = T X

0, =ald,_;+ (1 — )b, (5)
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10 Ao 0 AR TR AR SR AR A 8 &

ot IRAREAFR > o TN 01
MR GEROERERRRE > o
B B B E K48 R (Supervised loss) $2—Z I 48
%k (Consistency loss) » 1 # 1%l =L X L4
(Binary Cross-Entropy,BCE) » # # 1% M 3§
% % (Mean Square Error,MSE) ¢ B X4 %k
AR SRR R 2 AR A A AR T4
BTARERMET AR £4E 0 — BB KA
1% 34 75 2 RGHI B A AR A S 26T AR A Rt
HATA KRR RG — B o Loh o —HB
BEREABESGHE » AR > ALK
RBE > MERBERE T AZZOETH > |
FINRG B o> HEETFRFERRALEY &
TILA) A EMIAAEWE 3o

2.2 EAE %

BT #—F R A 0 K115 R baseline FiiE
A by FEAHRA (Mixup) RAE A BAHE %G 7
% (Zhang et al., 2018) » # B A1k KA EAT
B s s FRFH R AREA > BT

§=yi+ (1= Ny, (7)

’ —}I“:F X Fa Z;j %Fﬁ*&@ﬂléﬁlﬂtﬂ{@ ii\ﬁﬁ
HEaE oy oy REERERAGZE
Ae[0,1] mEHHK & (AReE ) ALgna
BB AW FR A BHE AR o

2.3 HBRREAL

i 42 48 3% 8 LR TR B (frame-level prediction)
FRE—FHATRRES THI RS E - 4
% > #H#BB AL (Threshold) A5 & # 3 18 4 % %,
A BE > AEBPEEAE (Median
filter) i — 3 PR LR > vlE % B R AGFAR] o
&AM 5 2 baseline FT1% A 8938 € » PTA F 448
BB BIMEE B 0.5 AL S RAEE 7 (8
B 0.45 #) o

3 TRHEE

3.1 AHE

#HE42 A 692 & DCASE 2021 Challenge
Task 4 # % # DESED(Domestic Environ-
ment Sound Event Detection) * & F &4 B4
AR AR Z A EH > 2R RERETH
# i Scaper LR A 8 BAZCEAH (RET

T TR B A FRG B AR R) AR
B A B Audioset #9554% ST A A (12

B A G ERIN) B RARREH 0 ZHR
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Sound clip

v

Mel-spectrogram

v

Convolution block j

(7x7, 16 kemels, GLU, 2x1 pooling)

l Previous layer

Convolution block M
(77, 32 kemels, GLU, 22 pooling) J

!

Residual convolution block ™y

Convolufion layer

{3x%3, 64 kernels, RelLU, 1x2 pooling) _/J Residual
l convolution

block

Convolufion layer

Residual convolution block
(3x3, 128 kemels, RelLU, 1x2 pooling)

!

Residual convolufion block
(3x3, 128 kemels, RelLU, 1x2 pooling)

'

Residual convolution block
(3x3, 128 kemnels, RelLU, 1x2 pooling)

!

Residual convolution block
(3x3, 128 kernels, RelLU, 1x3 pooling)

|

123 BGRU

|

123 BGRU

!

Fully connected layer

|

Strong prediciion
and
weak prediction

-

7 S

R

MNext layer

A

ANy

aYalataeayatatayaya

_/

2 R ¢ £ FHRyH 1 A8 %ﬁ/@#&é%ﬁﬁ#}i%éﬂ AR T By AR D R IR B
~ BB & E A A R AR 7!‘7 k J‘ » ¥ 5B & residual convolution block # R 48 4%

Strongly
labeled
data

Student Model Teacher Model

Unlabeled Strong a'nq waek BCEloss Strong qnq waek
data prediction prediction
MSE loss
All label All label
prediction prediction

B 3. ¥ EFAER (Mean-Teacher framework) BB RBAERES 5 0 55 B2 AR MR
Ao A AT GEARBER G A q’ﬁﬁ’iﬁ{*” by 5 AL — R B BT 7 A, m AR AR AL B £
ARBLBEATHES T > UFREAHRAG 5 - WARESRERRRE > 25 A EHFXBE X
#—EMAE K o
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Baseline RCRNN(A) RCRNN(B)
Alarm/bell /ringing 42.5% 44.7% 46.0%
Blender 46.8% 37.9% 48.7%
Cat 42.4% 46.6% 48.2%
Dishes 22.7% 32.2% 33.4%
Dog 25.8% 27.1% 27.1%
Electric shaver/toothbrush — 45.4% 59.0% 51.0%
Trying 313%  42.6% 37.2%
Running water 37.8% 39.4% 43.8%
Speech 53.0% 53.6% 61.4%
Vacuum cleaner 56.1% 47.7% 46.3%

& 1. BRI TR AT R #% RAET » £#85]8) Event-based F1 (event-f1) Score
FHE A 10000 ~ 1578 A= 14412 ¥ > BrEd THARBAALE O S H (RA B) & A

%+%vﬂdi&%?%+ B & 2500 = 1168 % 7% 74 A
FH o i R 2 B o
EES £ REFTH  AIXTH
B B AR BT BAR
KE 10000 1578 14412 2500 1168
(2 EX 5 L5 EX) EX)
*E E%Z10%9
R 1 2 2 1 1
ik FE (kHz) 16 44.1 44.1 16 16
& 2. DESED ##t%
3.2 AIRE

EDEED“H? PTA &A% 09 4R ik R 1 B
it 3F—2 > R&RMAEF A FFmpeg I-,\
#EPTA A M 4 — B 16000 Hy A= § 448

%1% 18 Librosa L B4 548 T ¥ B 2 414

RAR B A 42 ﬁﬁlﬁééﬁé“)\ s s AR A6 AL 2 4%
M IR E o
3.3 JkHEZT

KM AL B R EE RCRNN £ 4 >
ToerEEtd i’i?f]ﬁ%fl‘fr}*’* By ARG 5 Aok

BRI ABTRITGETFAGEER » TRER
%#ﬁﬁﬁ&ﬁ\%ﬁﬁi‘ B R A Ky 0 M

baseline #93% & B 4 B £ fp 2.1.1 Rk (BA4T

B R & # ) RORNN #AARR ) o

3.3.1 KRAHANELH RCRNN #H

%&dﬁbl2£+%\%r’immﬁ
LE A58 RA A) B n mels: 128 (128

ﬂﬂ mel-filter bank) ~ n_ filters: 2048 (#&# 1%

FE 69k AE) ~ hop_length: 256 (4B {%

S E P9 window M) > n_ window: 2048

(2 A% 5 3469 window KDY ©

B fRAT ) RCRNN

RGBT AN LA B AR A o H

ﬁi #% ﬁi PR B G AT R BB AT A9 7E
FHA B B EREA FRFEF 16000 Hz

3.3.2
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n_mels: 96 > n_filters: 2048 ~ hop_ length:
192 ~n_window: 1536 (4# & 3) > » k
89 B4 T mel-filter bank JMEERAE > F
ShE T HFREME R DEEREGIREKR
AR 0 R e AR — B AL KB
2x 1451 x 3> debby3R 3t A dAE (Benito-
Gorrén et al., 2021) 8 F B F PSDS K\M ﬁ']
BT » &3 #ﬁ/ﬂ] by R A AR B4R

T ey Ht R ALAE B R B A F A R R A2 2‘%
BTA TR AR (4 & 3#) 5 7709 4% 558 5]
ERFERE R EOREZHRTA LIFW L
Ao B AR MBI LR EOBBT 29
#) -

A B
128 96
2048 2048
256 192
2048 1536

n_mels
n_filters
hop_ length
n_ window

k3 HEHMAEIRT BETRHAZLTH
JE o ﬂ%%%x&@ﬁm A ZEMBA B

B AR A

PSDS-1
0.338
0.374

PSDS-2
0.529
0.563

event-f1
40.7%
43.1%

kA RBAHER  ERFABNET » FRE%
RBOTRER

Baseline
RCRNN

MAE  PSDS-1 PSDS-2 event-fl
Baseline A 0.338 0.529 40.7%
A 0.374 0.563 43.1%
RCRNN B 0.382 0.582 44.3%
k5. BMERBER T E B E R A%
RHETHERER
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4 TEER
4.1 BAEZBAHER

% 4 23 baseline A A KM EY A&
Z AR L o £ &FHAEAZET » RCRNN 2R
e #atE 7S~ CRNN A » 7 PSDS scenario 1
W 0.338 427t & 0.374 » PSDS scenario 2 77 &
0.529 #7F £ 0.563 » event-f1 B & 40.7% =&
E A31% > BT R EmRE B R ERIEESD
BAIHAHCRA BERA -

4.2 BITEARIER

A5 INHETRRBITEZZHHERLT » 7R
BBREBOERER REA 1 AH K
BPBERT A& CRNN # A Fo iy & 7 A7 B 69
RCRNN A A & & 17 #8 7| F 478 8] 49 f1-score
WAk 1~440 5 9B RT A E RCRNN &%
BRI BRI > FFHNLBRTES
By EREVE o T P By FRAT R B9 AE R R T BT K
BRI FFFHEFNOFETFRERF - 4
EFH 3] fl-score FEF| 61.4% » T A A 4438
e B Pl ARAT BV 2 IRV R B AR T AR
RFEEEN AR ABEY B o

5 &k

VR E T —EER R A2 AR AR
8 RCRNN R A4 > BB R K F
RATEBG B > MR GBI EAEKGRA
EERAN R - B o 34 (PSDS
event fl-score) A P 1EIRF » LK baseline
A% A RCRNN A% 89 e & T R » RCRNN
& B BA 1R A baseline A %89 » £ R E) 8 /g
MBEH o EEREMNGTARNAABEGRT » mA
ARG T OREKARBEEE  L—2HRT
RCRNN B R TEATESEEE (Hlde
CNN 8 A MR I FREBSEE) =825
RATAE AR #7275 5 5| A k289 > WARIR
LA AT & BAFe9 R A o
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EALF XD BE S IEREN A &S
PE a0 AR FRE- B
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ESHEY ¥ A W e

ERRii ks
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-
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é_imau lﬁﬁ’s&ﬂ%ﬁ';’“ﬁi@{@])‘ J
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Abstract

There has been increasing demand to
develop  effective  computer-assisted
language training (CAPT) systems, which
can provide feedback on mispronunciations
and facilitate second-language (L2)
learners to improve their speaking
proficiency through repeated practice. Due
to the shortage of non-native speech for
training the automatic speech recognition
(ASR) module of a CAPT system, the
corresponding mispronunciation detection
performance is often affected by imperfect

124

ASR. Recognizing this importance, we in
this paper put forward a two-stage
mispronunciation detection method. In the
first stage, the speech uttered by an L2
learner is processed by an end-to-end ASR
module to produce N-best phone sequence
hypotheses. In the second stage, these
hypotheses are fed into a pronunciation
model which seeks to faithfully predict the
phone sequence hypothesis that is most
likely pronounced by the learner, so as to

improve the performance of
mispronunciation  detection. Empirical
experiments  conducted a  English

benchmark dataset seem to confirm the
utility of our method.

I*'WJ e

MaEF @ hitaE CIVAS
best £ ¥7# 5

Keywords : End-to-End Speech Recognition ,
Mispronunciation Detection and Diagnosis , N-best

Rescoring
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5% (Introduction)

AT ERAR S R
£95 - o iTE ?’I? BEEARIRL Y/ OF S S
gﬁllﬁr{»’%‘ FIFET S BAE ‘Hlf'
""T(in:}iﬁ = Yp_;‘&x m,ﬁ_%‘u j\éc fi=1 =
(Mark Warschauer, 1995; Mark
Warschauer et al., 2000) - 32 & ¥ (#0R 7
N A R (Computer Assisted
Pronunciation Training, CAPT) cr#= 7 i% B 3|
T ET R E R B EFRIARY fﬂ% it o

En
E
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-

E53
% 5
70
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gy —‘F*f € 195 CAPT i sidk eih~ A4k
(prompt):& 7 P 3 > kST RE A B % e
FHRELEE S RS RET T Y K
VUL T EAARY

B T TR A S L SR S PRI
L LM ¥ AP RS Z LS ERNE LD
TR R AR RE BT RES G
(canonical phone)ei+* 2 A L 3 5 & B 7| (7
VOE o BT IR IR & O] i © BB R
BOREA B E RV E ¥ 2 A (Deep

Neural Network-Hidden Markov Model, DNN-
HMM)(Geoffrey Hinton et al., 2012) 1% 5 2 /3%
%%ﬁﬁﬂ#ﬁJ%wﬁ—éﬁ?ﬁ%&“ﬁ%
RAggeenfitie e & > X & i @ i = )
cuE > AT o ¥ L CAPT A 53§ 7%
Ao B AR R g R eBRT o B
KR IFa s R 2 0rs 58 5 L %
AT K ﬂ (non-native speaker)’;\ 3R #—' ifﬁl
EaRIRERT 0 kB e EmS X ¥
'ﬂv—\;,}'} ie T MR *'?K o T 7}\#‘ > ?/L:—;J-Jf._ *3_ l]
(pronunmatlon model) L ,%*H,#é R =
kL E= %JL’% PR 2 4 R T
BRES o2 B AR 3 7f§7* o eSS/ f275
B $ad | FRE A T RYTi R

hagil 35, 0V

%ok
PR

oy)irr] £

.UZ
¥
,‘f 3
B

2 =¥t p 3 5 FREHEME (E2E ASR)

2.1 CTC (Connectionist Temporal

Classification)

W EPER A B S 3T 2006 # 3% 11 (Alex Graves
et al,, 2000) » PE4 5 X7 - BER L T kg
#U’“{)if'] X0 X={x,€ RP|t =1,..,T} (x;%
T e FtFIESOD ARG F e ) 2 - KL
)}?‘,Lm%}‘%ﬁkﬁ»ilc C={cqelU]|l=1,..,L}
(U 55 adikit b &) PR3 B8 FcHE
F #enfis%kped P(C1X) o CTC A3 pFsl »
1 3g b % v 4 (blank symbol) 0 T 5 RS
il o BRI EORREANT AT R Z=
{zze UU {<b>}|t =1,..,T} -CTC #1p %
Sfck T AeT

P (C1X) = X7 T=1 P(z¢|ze—1, C)P(2¢|X)

2 P(Ztlzt LO) &7 G EES S
P(z:|X) % CTC ¥E#3] > 7 d HiF4a50 2
g «EFBI’@’“ (ERED} e Ralt pli=tel g i

(1

o

[
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22 AR 4 18+ (Attention Mechanism)
% (Jan

B CTC = %7 b o A0 4 49
Chorowski etal.,2015) 7 fix e if i fb 7 B3K »

AR ERFERBF PCIX) - AR 4 A
SRR TR - A
Pae (C1X) = H1L=1 P(cley, ey €121, X) (2)
3P P(leg, ey c21,X) ¥ T AN S
Foi7
h; = Encoder(X) 3)
a { ContentAttention(q;_4, h;) @)
"“LocationAttention({a;1}" =1, q1—1, he)
1 = Yto1 Gehe 5)

P(c¢lcy, .., c1—1,X) = Decoder(r;, qi—1,¢1—1) (6)

¥ (3)E(6):% A~ B & % #h F (encoder) i

fEF %(decoder)f#ﬁ;ﬁ L N o ;wo\
Bl4eT D hy % encoder 'E R e £ v a5 LR
SRE . q Ao BRMEAE -nd

TE A muHER e R o LR 4 HlE CTC
LB BTLR S BAIE G Y BB

hF R oo

2.3 CTC-Attention ;& f=#-3| (Hybrid

CTC-Attention Model)
4 Shinji Watanabe (2017)3513‘ A g e CTC-
Attention & fofi-d fﬁ&rﬁg] 1 #+7 » 12 CTC B
%ﬂuvﬁxlk’aﬂzﬁ" Eixo E* F I F Yy
LR A A s B o CTC-Attention 8 fefic

Attention
Decoder

Shared
Encoder

) 1. CTC-Attention 72 o2 =4 =% 2 4 1.

! Bl ® B~ p #% < Hybrid CTC/Attention Architecture
for End-to-End Speech Recognition.
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)2 3 okl B ;ﬁ“ AR A A

i
dren

F] B FIJ& 7 CTC ¥+ B3 5 f2e7% HEF @ @?]
B B ATR R R R RS R 0 T3

i CTC jict 83 #rmk AT R R
et 7 4 WA 48 iE 42 o CTC-Attention 2 &
e Rt e B e

Med » kgdoT 0
Lyor = AMlogPy.(C1X) + (1 — DlogPgy (C1X) (7)

AT RN DE L HEE S ARITHRY K-
Febodk *  CTC-Attention 78 38 {7 3 eied §
BHCA 0 TR D BB R R R
(VGG-BlLSTM & Transformer) .7 F§ B 45 225
5 ERE g e

wev

3 %4 #73] (Pronunciation Model)

FRdes - 3 EY F 4 L0E g &R
T = #5 (02 North, /maorth/ 5 5)) * DF
Fyger A

=L =
PP

S VAN
= 4 # (Language transfer) :
H2iTmp EFS P S
FHE /no’ ssw/ o (QDF L FEF * g ik
2 ¥ L ehword %‘3”—*’1%9*4:4—51»1—' SNERp S
Blo Glde D mowr th/ > BEIRP F {&{1—’ it f%
AP g AN EREFBERE HF 2
% 7|(phone sequence): ¥ £ £ 8% & e 7% )=
P2 oo D 2 AT FyEage +
NF AR aTRE e
0 S EE § PR o
i BRI MR L R 2
T RS g o B gt
FLE P miEA ’I—*Ff il ‘ﬁ%n‘—'?z&t#pﬁf—j
B EHEFAEAFEY F iR A R
SERE RSN REE S TR %g—g@t
F A E RG] R P BT PR
(ASR) &+ 445 353 5 57%”%%"—?“‘ B iem P
- prEend wglptpufﬁ DRk R A o
BRGEFF T DEE P BFF ?”J%Fa B EiEA
ﬁ;“r% o deB 2 P57 o w:‘l:w? AEYET R
TG E 45 TR R B If?’%?ak R
BAB IS DD Y G R Pl AR R
IEREEAETCErS g 2 '2 5o
F4v 3 5 #03] (pronunciation model) # B4 %
8 g ORI B e R § L eIl
FES o

° Vl]—lzr:' :

2 ATy
*FE T E T 0 T

4L
4
wb

_1_

J’l 4 5;,"(_, ) %".‘
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)3

ZE i

’ ?ﬁ’sﬁ‘% R 4 ﬂ.f EATE#
FEHACR 3 A7 o B L #-iEE N-

w,q,

- 1 ﬁ » K (embedding layer)## =
» €05 & 4% »~ (phone embedding) ; 4%
i Bi-LSTM » Bi-LSTM ¢ p # % = & 7|
L7k R (eR 3RS S £ A5m) ;5 Boisd
TH - BASRR FPr T RAL AR B
P !;J«mﬁg?l I oh* 5iE- K AR (linear layer)
o ARG A RIERIEGE o B WA
PRE AR S - IFERGE S FRERA L izEN-
best B 71| b 88 5 Rl iAn Fl & #ico B
Beg WP LTS %3“1 BE SR 2 5%
S R T
Classification) cr3g | P 1% o < R AR L *
WS SHER A ERY 0 KRB HY VRS
2 % (Cross Entropy) i% & 45 4 S #ic o B3
PEB~ o SRR G B RO R RIIF L

g A LR T S FE R SETIE TR o

P

VAR

% ¥ W] A~ 3% (Multi-class

ks

plEfrE A

-

Top 1 73] Top 2 J731 Top N /7751

Embedding Layer

TreE

Linear Layer
|
LT T IvIE
M) 3. N-best 74 % 22 85 4 o 57 03] % 4
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4 % (Experiments)

41 FHRE

ﬁgg%?ﬁrﬂ;g‘}&’é}% ;}\_D;/I—a»%.%
(L1 speaker) e TIMIT (J. S. Garofolo et al., 1993)
[PIRA i # (L2 speaker) 7 L2-ARCTIC
(Guanlong Zhao et al., 2018) o

TIMIT ¥ %p 3R~ Bi&>3H FD630
PEFEFAFALEUR O 10 92 AR
7+ (prompt) » &3 5.4 ) BF o AT gk *K;‘%

*—”F&Fﬂﬂ’ﬂm— % mn e o EF R EE

A G 3D Fe T AL 1 AT o SA.:"«"
TS SX & SI A& *”é\ﬁ'i‘] e K E
LG B L0 315 Fe skt 034 ) pF
TEfEiEr » ¥itdok 2977 o

L2-ARCTIC # 42 1w (=3 224 2 4 4
g o F EFH SRS - g CMU
ARCTIC 1% A3 7 oéﬁ’——‘“—%‘m—‘?’gln\ 5] % e
RF TS EF 07317 F - PR OFE o4
B RO RFS ? f A e 387
T TR I sl
Breh o 4 RS lng—g 150 ¢ i FUL e
(annotation)zE ¢ » # ¢ 150 ¢ Av\“v'ltﬁ izl

100 @22 A3E5r > 11 E 50 P 4H4F 22 2 %F*#“
Fnd R Ay AR M HF 4
HA) o I TR B2 2] 5 3B 2.66 /] ;g S
HE 012 P RIEE 088 | PFiFL Ak
* fszgwc«% 4 #55 o
# 1. TIMIT F# &,
%Al SA  SX SI st
W k¥ 2 450 1890 2342

L AT R 630 7 1 -
{E.Eg’?;]‘”ﬁ“’ﬁ'? A~ #c 2 5 3 10

K R2E 3 1260 3150 1890 6300
2. %7 TIMIT 7 st
1R i
W 462 50
L3F ek i 8 8
&, o1 Hc 3696 400
5 & Bk 139,940 15,342
P £ 2 (hrs) 3.15 0.34
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# 3.L2-ARCTIC F#1 &.

EH * 3
ABA/SKA/ZHAA/YBAA [GEuN1zE
BWC /LXC/NCC/TXHC =%
ASI/RRBI/SVBI/ TNI PR
HJK / HKK / YDCK / YKWK i
EBVS/ERMS / MBMPS / NJS FFLI
HQTV/PNV/THV/TLV Ak F

# 4. F % ¢ L2-ARCTIC F AL it
251 e PR

ERES 2549 150 900
FRERE S 2 B# 71,935 4,054 25,690
B B 13,236 903 4314

P £ 253% (hrs) 2.66 0.12 0.88
42 3 QRELE TR
WA ERIERAPE AN Y R

& ;E[ I F] T BT o0 B _%z 3T #] ol
Recall(RE) ~ Precision(PR)£2 F & € (F1):* & =

e

REcor =50t at = e ” 100% )

PReor = Toas oo s i g = racrs* 100% (9)

Fl,,, = —ZE‘EEHX;R *100% (10)
° HFHEH

REmis = fizt’;?ii - TRTfFA *100% (1D

PRmis = fl #jp;jj it TRTfFR *100% (12)
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2XREisXPRypis

Flinis = g 2ier ™2 100% (13)
45 2R 5 1R an:‘,ﬂwa, ¢oehit frdEd TR >
HFx v s 28 m CD(? TPl g Y
Hohg A DRDETAS SRS R LB
& DE Be X228 Y Frass > L& I RY
STRA A AR B) o FIU R S LT AR
% (DAR ) B & N 4o T
DAR,,;, = — o FTe . 100%
FED ST SaE Fﬁ'—ﬁﬁ: CD+
(14)
43 FHRRZT

RN~ - PEERF i 0 B EES

PR B Espnet (Shinji Watanabe et al., 2018)
A RHBE SRR CTC
Attention & & $-7) 2¢ 1}@ » T EA B A ed
Bk T & B|F* VGG-BILSTM ¥ Transformer
F 5. SREERE G FEET KK L
VGG-BIiLSTM
feature 803: fli?nﬂ;iréﬁ -
encoder / decoder BiLSTM
encoder decoder
layers 2 layers 3
hidden size 1024 hidden size 1024
CTC/Attention ;& et 0.6/0.4
Transformer
feature 803: fiéﬁlnflt;iléﬁ -
encoder / decoder Transformer
encoder decoder
attention heads 8 attention heads 8
linear units 2048 linear units 2048
blocks 12 blocks 6
dropout rate 0.1 dropout rate 0.1
CTC/Attention ;& o+t 0.3/0.7
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Rl B RS B (TR S 0 LA R 5
B o

44 FREFaH

R N e = A R e B I S
A 4 S-best iZiE SR ¥ 0 E T PEEE S A
SR o VR A (S 0 R B0 A BRIRE

Fi&%ff*/ﬁ%mS best 15 iF 2 % o
R RN e R R S

(annotation):& {7 \* ¥+ e % 45 3% (phone error
rate) % Fir 6 ‘p 7] VGG-BILSTM
HE 3 RS & 4 5 Transformer 4 I X >
#-¢ BB VGG-BILSTM % "ol 245
VIR E SRR R R P Ea ) il
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after controlling for education, gender and
age, cognitive flexibility performance was
accompanied by the increasing adoption of
dynamic language, insight words and
family words. These findings serve as the
basis for the prediction of elders’ cognitive
flexibility through their daily language use.
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Increasing research efforts are directed
towards the relationship between cognitive
decline and language use. However, few of
them had focused specifically on how
language use is related to cognitive
flexibility. This study recruited 51 elders

e L

2015) for cognitive complexity and

dynamic language as well as content words
related to elders’ daily activities. The
interruption behavior during conversation
was also analyzed. The results showed that,
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Improve Chit-Chat and QA Sentence Classification in User Messages of Dialogue System
using Dialogue Act Embedding
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;}F §:i4 improving the user experience to mix some chats in

customer service conversations. However, users'

FE K HE AATESFETAER LR questions are expected to be answered, while chatting is
5 E R /34 WE BT 2 fh rﬂ;\: Mo Mg AL expected to 1nteract.w1th customer service. In order to
O R Ty ey I T & produce an appropriate response, the dialogue system

must be able to distinguish these two intentions
effectively. Dialog act is a classification that linguists
define according to its function. We think this

P e A RFHE S FF-zrz»mﬁ S ]
2 et JR2 B eh P o 145 % £ L R chig

o RIREEY gy AR rry 2o information will help distinguishing questioning
FLH Sk o R o PR ENY sentences and chatting sentences. In this paper, we
EBEE Rl Edh e nRG A& combine a published COVID-19 QA dataset and a
2RI B An o G HiES AL 0 Wi COVID-19-topic chat dataset to form our experimental

data. Based on the BERT (Bidirectional Encoder
Representation from Transformers) model, we build a
question-chat classifier model. The experimental results
show that the accuracy of the configuration with dialog
act embedding is 16% higher than that with only original
statement embedding. In addition, it is found that

o

R B SRR S i sl
HEF 5 (Dlalog Act) 83 5 § 7R
PR TR & D AU 5N o A
PIEEBFARG B NREHEFFro
ﬁj?\:/v\ o A *\lﬂf v :\‘.,’]aa ‘t.J;A_. Be o

B Covid-19F & T4 & 2 - B Covid-19 4 conversation behavior types such as "Statement-non-
RO PR B e A e B TR o A opinion", "Signal-non-understanding" and
i # % BERT (Bidirectional Encoder "Appreciation" are more related to question sentences,

- while  "Wh-Question", "Yes-No-Question" and
"Rhetorical-Question" questions are more related to chat
sentences.

MaEF @ ¥R S HE R
Keywords : Dialog act classification, Dialog system

Representation from Transformers) B E >
- R —F Fre o5 B o 0k
AT o 4o~ $3E 7 5 4t~ (Dialog Act
Embedding) e i b &R % JudeiE o 4k
e BB EFEE B T 16% o gttt S A
I » Statement-non-opinion ~ Signal-non- 1 3
understanding ~ Appreciation % ¥+35 {7 % 3 73)

23 B o #o4p B > Wh-Question ~ Yes-No- WL ALE NER A R R it 2
Question ~ Rhetorical-Question % #g 4| p| 22 WA R EHE A L k- FRPE
Fre Jfp B o AL BB R AP A BT 0 F BB EPR
Joreengtia o g e F TRE e rﬁ”’m
Abstract T R Lo }, VR RE R
. . . . eyl 2R # EFfEE > A
In recent years, dialogue system is booming and widely e " Z ’ ﬁfﬁ I f *f > A
. . . ] * 3 ¥ o L »

used in customer service system, and has achieved good ~ F7 R & ¥ & 44 TR B3 e
results. Viewing the conversation records between users Bl 2 g B W *“ ESIEI uf?’r 4w
and real customer service, we can see that the user's Lt AE R o LiNeh¥fis hiix 5 H - o
sentences are mixed with questions about products and WHn ks dot E ik e N $iE 4 % (Task
U P T, LU -

services, and chat with customer service. According to
the experience of professionals, it is helpful in

Oriented) ~  Fr;¢ $33& % 5L (Chit-Chat) e f® %
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Man

* Good morning.
Robot * Good morning. How are you?
Man * I can only stay at home the entire day,

and it males me terribly blue.

* You can talk with me. I’'m always here.
=
Bl i@+

¥ & 50 (Question Answering) % o B4t

* By the way, how many diagnosed are
there today?

 According to the government’s report,
there are 300.

N S GE A, g, S, Sy

Google 2432 12 2 Siri ii&iﬁ,rér"?“ AN N
AR BT R 2R R L PR

7 4% 5 FF ¥r(Chit-Chat) {" T 2k
TR RN P X 3 Google 7 Meena
(Adiwardana, et al., 2020)% &z ; B ¥ ;X
(Question Answering) & T * = =54 1) ’rﬁF“
o KFHEY FHEEFDE R L vl

= =4 > IBM 1 Watson (Gliozzo, et al., 2013)“’

Bz o vi ¥ *B*féﬁw,i‘ &’E\:vJ—JrFS ok
RARS 0 W*H%erw@’wKﬂ
?ﬁﬁgbmﬁﬂmﬁ - tomE
RS - o R SRR
PAEERAOHESERY o SRFAPE AL

?*Jﬂ%bﬂaipiﬂ»ﬁ%ﬁg
(Dialogue Act) (Perkoff, E Margaret, 2021) » %
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‘:>[ Conventional-opening ]‘:> Chit-Chat

‘:>[ Statement-non-opinion ]f:(} Chit-Chat

Wh-Question

= N

KRR 4

opinion 2| %7 /g > Chit-Chat ~ ¢ Wh-Question 2
# QA - 4k o

2 HMAE

2.1 Hybrid Dialogue System
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it Bk e 7 (Hosseini-Asl, et al.,

2020) (Adiwardana, et al ,2020) > A/ RAriE
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2.2 Dialogue Act in Dialogue system
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Rt (T 5 Tirdned o 50 Hiem 3 978
7 enF 3 > (Kumar et al., 2018) #-$F3% {7 5 4v
*EP e F P KB ks TR H SRS
2 ']{1" v Ji (next utterance selection) ° ¥f3&
FaFpd 0 g LREr S B agiE e
FOEFEFIREDTRG L T ke

BART L P R e HE TS
B S Z o LW AR ST ket F
LSRR AL A A ke T

Bhs 5 o

3 3k
3.1 BERT

* <2 i # 2" BERT (Devlin, Jacob, et al., 2019)
(2 % % Bidirectional Encoder Representations
from Transformers) % ~ QA % Chit-Chat °
BERT #_ Google 14 & E > 2 1% < £ &
Ty AyloehsE o R AHCAl > HFEHRG
Transformer (Vaswani, et al., 2017) ® 7 Encoder
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3.2 DialogTag

DialogTag #_ Bhavitvya Malik > 38 f4t:
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Rk S R rh%l dt o v §_i# * Tensorflow &
= ¢fi— B Transformer $-3] » # Python ¥ 7 %
ME PR A R o T R ALY
~ &2 4 e Switchboard Corpus (B i 35 %
&%) (Godfrey, etal., 1992) » H @ X 2 2541 42 46
3517 5 > DialogTag j& ¥ 46 P~ 38 fd 435 (7 &
IRt RN a N S

*F 3 %4 7 (Stolcke, Andreas, et al., 2000) 1
HHEF FHAFEFI 2 Z o L3 0

~
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-
(RS

1 Stor, Graf. “Dataset for Chatbot.” Kaggle, 14 June
2020, www.kaggle.com/grafstor/simple-dialogs-for-
chatbot.
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Classifier

I

Sentence Embedding + Dialogue Act Embedding

1

BERT (Epoch: 10, Loss Function: Adam, Loss: Binary Loss-Entropy)

1

Twice Dimensionality Reduction (1536-3768->1)

| I

Sentence (768 Dimensions) Dialogue Act (768 Dimensions)

B2 43l % 4

4 THE
41 SQuAD2.0

SQuAD?2.0 (Rajpurkar, Pranav, et al., 2018) &_d
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4.2 Dataset for chatbot Simple questions
and answers
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Dataset for chatbot Simple questions and
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43 COVID-QA
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2 Xhlulu. “COVID-QA.” Kaggle, 15 Apr. 2020,
www.kaggle.com/xhlulu/covidqa.
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chatbot Simple questions and answers 12 %
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Train Data Valid Data
# Chit-Chat #QA Sum # Chit-Chat #QA Sum
BERT_General 10500 10500 21000 2625 2625 5250
BERTBiZ“C”' 10500 10500 21000 2625 2625 5250
BERT General 10500 10500 21000 2625 2625 5250
Concatenation
BERT_COVID 10500 10500 21000 2625 2625 5250
(with COVID data) (with COVID data)
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DAC (with COVID data) (with COVID data)
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Collaborative, Conventional-closing, Conventional-opening,
Negative, Non-no Answers, No Answer, Open-Question, Or-

Signal-non-understanding, Statement-non-opinion,
Statementopinion, Wh-Question, Yes-No-Question

Acknowledge (Backchannel), Action-directive, Appreciation,

Declarative Yes-No-Question, Hold before Answer/Agreement,

Clause, Other, Quotation, Repeat, Rhetorical-Question, Self-talk,
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Pl RFR LB (2)F e r $E L e
LR(3)A e n 3753 LR o

QA Chit-Chat Total
Accuracy Accuracy Accuracy

BERT_General 61.4% 45.3% 58.1%
BERTﬁggneral_ 76% 61.4% 68.7%
BERT_General

Concatenation 80.7% 78% 4%
BERT_COVID 52.59% 99.8% 76.2%
BERT[;}C\?VID* 66% 99.5% 82.8%
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;}ﬁ §:i4 dysarthria. However, this type of assistive

devices demands a large amount of voice

GER SR R A R % data . from patients t(? incr.ease.: .the
Frocns k2 - o Ra inkE WELTE R efféctlveqess. In the meantlme., this will s%nk
;ﬁ Rl kR A HacE oA gatlgnts 1]1;‘[0 an ov}::rwhelimgg 1r.ecordlhnlg
Fder 2 nmige 3 E0 0 0 AR urden. Due totose.llcutles, t.1s
i research proposes a voice augmentation
LA D R R SR R é, ik system to conquer the aforementioned
BEBEIRSRLY R SRR E Mp concern. Furthermore, the system can
T EEEP TR 517~T§ et 2 improve the recognition efficiency. The
2k B A4 ﬂ ER RN S S results of this research reveal that the
B EAFE 2 a0 plob s g Jﬁ proposeq speech generator system for
Freetalk i T ch3 2042 2 & 7 E; dysarthria can launch corpus to be more

similarities to the patient's speech. Moreover,
the recognition rate, in duplicate sentences,
has been improved and promoted to the

64.42%'% 2 439% - @ gt = & F
*‘;é\UQﬁﬂ 2 /Z%‘é‘f/iiﬁﬁ-f—%?ﬂﬁ

“rfles o higher level. The word error rate can be

reduced from 64.42% to 4.39% in the case of

Abstract patients with Free-talk. According to these

results, our proposed system can provide

Voice-driven communication aids are one of more reliable and helpful technique for the
the methods commonly used by patients with development of communication aids.
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Keywords: dysarthria, communication assistance

system, data augmentation, deep learning
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A Survey of Approaches to Automatic Question Generation:
from 2019 to Early 2021

Chao-Yi Lu
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Abstract

To provide analysis of recent researches of
automatic question generation from text,
we surveyed 15 papers between 2019 to
early 2021, retrieved from Paper with Code
(PwC). Our research follows the survey re-
ported by Kurdi et al. (2020), in which
analysis of 93 papers from 2014 to early
2019 are provided. We analyzed the 15
papers from aspects including: (1) pur-
pose of question generation, (2) generation
method, and (3) evaluation. We found that
recent approaches tend to rely on semantic
information and Transformer-based mod-
els are attracting increasing interest since
they are more efficient. On the other hand,
since there isn’ t any widely acknowledged
automatic evaluation metric designed for
question generation, researchers adopt met-
rics of other natural language processing
tasks to compare different systems.

Keywords:  Automatic question genera-
tion, Survey, Natural language processing

1 Introduction

Questions are crucial tools for assessments and
providing assistance throughout the process of
learning. The functions of well-designed ques-
tions include: (1) providing opportunities to
practice retrieving information from memory,
(2) giving learners feedback about their mis-
conceptions, (3) focusing learners’ attention
on the most important material, and (4) rein-
forcing what learners have acquired through
repeating core concepts (Thalheimer, 2003).
With the rapid growth of online learning, the
demand for questions has increased. However,
creating questions by humans is not efficient
since the process requires training and cannot
produce results immediately.
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Input text:

The Royal Family of Enchancia go to watch a Flying Derby race. \

Sofia states that Flying Derby is her favorite sport in the Kingdom, \

with her mother adding how Sofia used to pretend to race using their old mop
as her flying horse. \

During the race, James reveals that Royal Prep has its own Flying Derby
Team, and Sofia agrees to be there for the tryouts.

Questions and Answers:
answer: The Royal Family of Enchancia
question: Who watchs a Flying Derby race?

answer: flying horse,
question: What did Sofia pretend to race using their old mop?

answer: Flying Derby Team,
question: What is the name of the team that Royal Prep has?

Figure 1: An example of AQG using the model by
Lopez et al. (2020). Questions and answers are pro-
vided originally as generated. Text source: Sofia
the First Wiki'

Question generation refers to the task of
generating questions from various inputs.(Rus
et al., 2008). Compared with humans, auto-
matic question generation (AQG) can produce
questions in lower cost and higher efficiency.
Despite the development of visual question
generation (generating questions from images)
is undoubtedly essential since it combines
natural language processing and com-
puter vision (Sarrouti et al., 2020), the fo-
cus of this survey is on AQG from texts due
to its extensive usage including assessments
(Stanescu et al., 2008; Ai et al., 2015), learn-
ing activities, and serving as a data augmenta-
tion approach for training Question Answering
(QA) systems (Lee et al., 2020; Fabbri et al.,
2020). For an example of question generation
from text, please refer to Figure 1.

Hoping to compare existing AQG systems in
our future works, we search the literature re-

"https://sofia.fandom.com/wiki/Princess_
Sofia
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viewed in this paper from Papers with Code?
(PwC). As a survey paper, our project is con-
cerned with reading and analyzing previous lit-
erature on AQG from text. We refer to the
survey reported by Kurdi et al. (2020), which
contains analysis of 93 papers from 2015 to
early 2019, focusing on education. The objec-
tives of Kurdi et al. (2020)’s review are (1)
providing an overview of the AQG community
and its activities, (2) summarising current QG
approaches, (3) identifying the gold-standard
performance in AQG, (4) Tracking the evo-
lution of AQG since the review by Alsubait
et al. (2016), which includes 81 papers pub-
lished up to the end of 2014. We focus on the
second objective and the evaluation of AQG
systems, on the other hand, we discuss RNN-
based and Transformer-based methods, both
of which are classified as "statistical methods”
during the procedure of transforming declara-
tive sentences into inquisitive ones in the re-
view proposed by Kurdi et al. (2020). Since
we aim to continue their work and track the
evolution of the AQG task, the papers investi-
gated in this review range from 2019 to early
2021.

2 Background

2.1 Summary of Kurdi et al.s’ Review

The work of Kurdi et al. (2020) groups the
93 papers they included together if they have
at least one shared author and use the same
type of AQG approach. There are a total of 72
groups, and evaluations have been made based
on these groups. Not only did they provide in-
formation on AQG studies about (1) rate of
publication, (2) types of papers and publica-
tion venues, and (3) research groups, but they
also analyzed AQG studies based on multiple
dimensions. The most crucial ones are pre-
sented in Table 1.

The results of Kurdi et al. (2020)’s evalua-
tion on different dimensions are summarized
in Table 1. Regarding "Domain”, ”Question
format”, and "Response format”, the statistics
are similar to the ones purposed by Alsubait
et al. (2016), which implies that these aspects
of AQG haven’t changed much throughout
the past decades. Generating domain-specific
questions are more common than generating

*https://paperswithcode.com/
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generic ones, and language learning received
the most attention; wh- questions and gap-fill
questions remain the most popular; multiple
choice and free response are two of the most
prevalent response formats. As for the devel-
opment of the AQG field, Kurdi et al. (2020)
found an rising tendency of publications per
year and research groups, which indicates that
AQG is attracting increasing interest and the
community is expanding.

2.2 Data Sources

We search PwC for papers from different con-
ferences on the question generation task and
only keep papers published from 2019 to early
2021. The search queries used and results are
provided in Table 2.

Using the data collecting method mentioned
in the previous paragraph, we select 15 pa-
pers from conferences and journals including
ACL, ICLR, EMNLP, and IJCNLP. Among
the 15 papers, 3 were published in 2019 (Al-
berti et al., 2019; Zhang and Bansal, 2019; Cho
et al., 2019a), 8 were published in 2020 (Lee
et al., 2020; Pan et al., 2020b; Dhole and Man-
ning, 2020; Fabbri et al., 2020; Chen et al.,
2019; Wang et al., 2020; Qi et al., 2020; Su
et al., 2020), and 4 in 2021 (Majumder et al.,
2021; Pan et al., 2020a; Roemmele et al., 2021;
Cho et al., 2019b).

3 Dimensions of AQG

The phrase "dimension” in our paper refers
to different aspects of an AQG system. We
will be providing analysis regarding (1) pur-
pose of question generation, which is the us-
age of the systems purposed in review litera-
ture, (2) generation method, which stands for
the approaches of understanding the input and
transforming declarative sentences into inquis-
itive ones, and (3) evaluation, which includes
the metrics and datasets the researchers used.

3Categories that occurred three times or less are
classified as  “Others” .

4Studies that do not specify any targeted field is
classified as ”Generic”

5Gap-fill questions or distract or generation are con-
sidered not having a transformation method since they
only remove or select a word or phrase of the input.

5Tn their review, verbalization is defined as “Any
process carried out to improve the surface struc-
ture of questions (grammaticality and fluency)
or to provide variations of questions (i.e. para-
phrasing).”



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

Dimension Categories studies | Percentage
Assessment 40 55.56%
Education(unspecified) 10 13.89%
Support Learning 10 13.89%
Purpose Self learning, self-study or self-assessment 9 12.50%
Generate practice questions 8 11.11%
Tutoring 5 6.94%
Others? 5 6.94%
Text 43 59.72%
QuestionStem/QuestionKey 10 13.89%
Input Ontology 8 8.33%
RDFKB ) 6.94%
Others? 10 13.89%
Generic? 33 45.83%
. Language 21 29.17%
Domain Math 4 5.56%
Others? 13 18.06%
Generation method- Semantic 60 83.33%
Level of understanding | Syntactic only 10 13.89%
) Template 27 37.50%
ng:;gﬁ;%no?eth‘)d' Rule 16 22.22%
transformation Statistical methods 9 12.50%
Not having one® 20 27.78%
wh-questions 22 30.56%
) Gap-fill Questions 20 27.78%
Question Format | w4 Problem 4 5.56%
Others® 37 51.39%
Multiple Choice 38 52.78%
Free Response 36 50.00%
Response Format True/false 2 2.78%
Sound 1 1.39%
Difficulty Controlling ;is ;g éggggj
Feedback Generation ?\Tfis 711 918.,3691(?%)
Yes 10 13.89%
Verbalization® No 61 84.72%
Not Clear 1 1.39%
Expert Review 22 30.56%
Compare with Human-authored questions 15 20.83%
Mock Exam 14 19.44%
Evaluation Automatic Evaluation 12 16.67%
Student Review 10 13.89%
Review(not clear by who)/Author Review 10 13.89%
Crowd-sourcing 9 12.50%
Compare with Another Generator 8 11.11%

Table 1: Results of Kurdi et al.s’ review. A study may include multiple purposes and question formats
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. No. of No. of
Database Conference Filter by Task Search Results Studies Tncluded
PwC ACL 2019 Question Generation 5 1
ACL 2020 Question Generation 5 4
NeurlPS 2019 Question Generation 1 0
NAACL 2019 Question Generation 1 0
NAACL 2021 Question Generation 2 2
ICLR 2020 Question Generation 1 1
ICLR 2021 Question Generation 2 0
EMNLP 2020 Question Generation 4 1
IJCNLP 2019 Question Generation 3 2
EACL 2021 Question Generation 3 2
Findings of the
Association for . .
Computational Question Generation 3 2
Linguistics 2020
Total: 28 Total: 15

Table 2: Search queries and results. No.

of Search Results shows the total papers involved with

question generation. No. of Studies Included refer the papers are under the category we are discussing.

3.1 Purpose of Question Generation

We found out that six of our reviewed papers
apply AQG for data augmentation of question
answering (QA), three aim to generate clari-
fication questions, questions that identify im-
portant and missing information in the given
text, one for boosting reading comprehension,
and eight papers do not have clearly-stated
purpose. The result is different from that of
the review reported by Kurdi et al. (2020).
(Table 1). As for domain, every paper falls into
the “generic’ category. Despite not included,
we find the cross-lingual training method pro-
posed by Kumar et al. (2019) useful for rare
languages.

3.2 Generation Method

In this section, we will discuss several ap-
proaches commonly used in AQG. In Kurdi
et al. (2020)’s review, Generation methods are
classified based on the level of understanding
and the procedure of transformation. Regard-
ing the level of understanding, the two cate-
gories are (1) syntactic approach, which is de-
fined as leveraging syntactic features of the in-
put (i.e. part of speech), and (2) semantic ap-
proach, which requires deeper understanding
than lexical and syntactic information, such
as contextual similarity and named entities
recognition. For example, obtaining informa-
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tion through semantic role labeling (Marquez
et al., 2008), which means identifying the se-
mantic relations held among a predicate and
its associated properties, are considered using
a semantic approach.

As for the procedure of transformation,
AQG has been mainly tackled by rule-based
approach, defined as template-based in this
survey along with the one reported by Kurdi
et al. (2020), and neural QG approach
(Du et al., 2017), classified as a ”statistical
method” in our paper and Kurdi et al. (2020)s’
work. Following the categories purposed by
Kurdi et al. (2020), we adopt a more detailed
classification, adding rule-based into the cate-
gories. The three categories are as following:
(1) template-based, which refers to structures
consisting of fixed texts and spaces that will
be substituted by values, (2) rule-based, which
annotates the input to navigate the selection of
a suitable question type and the manipulation
of the input to construct questions, and (3)
statistical methods, referring to learning the
transformation to inquisitive sentences from
training data.

3.2.1 Level of understanding

Level of understanding discusses the extend
AQG systems comprehend the input text. Ac-
cording to Dhole and Manning (2020), whose
system takes semantic roles as the heuristic



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

information, relying on syntactic information
alone is unlikely to obtain sufficient under-
standing for answering complicated questions
that contain multiple "wh” words. Nine stud-
ies (Lee et al., 2020; Dhole and Manning, 2020;
Wang et al., 2020; Zhang and Bansal, 2019;
Pan et al., 2020b; Chen et al., 2019; Fabbri
et al., 2020 Cho et al., 2019b; Su et al., 2020)
take advantage of both semantic and syntac-
tic information, three systems (Alberti et al.,
2019; Cho et al., 2019a; Qi et al., 2020) ex-
ploit only semantic features, and three of the
included studies (Majumder et al., 2021; Pan
et al., 2020a; Roemmele et al., 2021)only rely
on syntactic features.

As shown in Table 1, Kurdi et al. (2020)
suggests that most of the AQG studies from
2014 to early 2019 take semantic features
into consideration, and we observe that the
trend of performing AQG through semantic
approach has become more and more preva-
lent among systems purposed between 2019
and early 2021.

3.2.2 Procedure of Transformation

We take the survey reported by Kurdi et al.
(2020) as reference of the categories. As pre-
sented in Table 3, various statistical meth-
ods are the most popular, while the use of
rules and templates each reported by one
study. The results are different from that of
the review by Kurdi et al. (2020)(see Table
1). Compared with rule-based and template-
based techniques, which demands human ef-
fort including expert knowledge to construct
guidelines and the variety of questions gener-
ated are limited, statistical approaches require
far less labor and enable better language flex-
ibility (Pan et al., 2020b; Tuan et al., 2019).
We will succinctly introduce RNN-based (re-
current neural networks) and Transformer in
the following section.

RINN-Based RNN-based QG models use
encoder-decoder architecture to transform one
sequence into another. The major drawback of
RNN-based approaches is that they can only
function sequentially, which makes them slow
and suboptimal for longer sequences (Vaswani
et al., 2017). Since Serban et al. (2016) and Du
et al. (2017) applied neural-based approaches
for AQG, many improvements of RNN-based
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Method Approach Studies
RNN-based 8
Statistical methods Transformer 4
Graph to sequence 1
Template - 1
Rule - 1

Table 3: Procedure of Transformation. Statisti-
cal methods refers to the approaches in which
systems are trained upon massive amount of data.
In our study, three approaches are reported: RNN
models, Transformer, and Graph to sequence. As
for Rule-based and Template-based methods,
the former defines the law of the question forma-
tion, the models have to generate the whole se-
quence; the latter has prewritten templates, the
models only need to fill in the blanks.

models have been proposed. For instance, Du
et al. (2017) adopt an attention mechanism to
make the models focus on certain elements of
the input.

Transformer Transformer was proposed by
Vaswani et al. (2017). Like Seq2Seq, Trans-
former converts one sequence to another one
with encoder and decoder. However, instead
of recurrent networks, Transformer uses self-
attention mechanism instead, which can be
seen as the most important feature of Trans-
former. In self-attention, a word is operated
with every other word, including those that
appear later. Furthermore, since self-attention
computation has no notion of the order of the
inputs, parallelization is allowed and boosts
the efficiency. Since word order is an impor-
tant information as it may change the meaning
of the input sentences, the relative positions of
the words are added to the embedded represen-
tation (n-dimensional vector) of each word.

3.3 Paper Study

After discussing the generation methods, we
will move on to the overview of the AQG
studies from 2019 to early 2021. In the 15
papers we reviewed, 10 papers take various
approaches including reinforcement learning,
encoder-decoder, knowledge graph along with
RNN, semantic graph, and rule-based method
to tackle QG directly; 5 researches implement
QG as a method of generating datasets or
gather question-answer pairs for QA training.
We will mainly describe those papers focus-
ing on QG succinctly in the following para-
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graphs. Zhang and Bansal (2019) apply POS
and NER to deep contextualized word vectors
to enrich input information, along with self-
attention mechanism and reinforcement learn-
ing implemented to solve the “semantic drift”
problem in QG. Two semantics-enhanced re-
wards, QPP and QAP were proposed, the
former refers to the probability of the gener-
ated question and the ground-truth question
being paraphrased, and the latter stands for
the probability of the generated question be-
ing correctly answered by the given answer.
The proposed mechanism were obtained from
downstream question paraphrasing and ques-
tion answering tasks, aiming to improve the
quality of questions generated by regularizing
the QG model to produce semantically valid
questions.

Being aware of the fact that ignoring struc-
ture information hidden in text or excessively
relying on cross-entropy loss can lead to prob-
lems such as exposure bias, inconsistency be-
tween training and test measurements, and
inability to fully exploit the answer informa-
tion, Chen et al. (2019) propose a reinforce-
ment learning based graph-to-sequence model
for QG. Their model includes a Graph2Seq
(Xu et al., 2018) generator with an encoder
based on a Bidirectional Gated Graph Neu-
ral Network, which is introduced to learn the
graph embeddings from the constructed text
graph effectively. Authors also proposed a hy-
brid evaluator with objective that combines
cross-entropy and RL losses to ensure syntac-
tic and semantical validness. The paper fur-
ther introduces an effective Deep Alignment
Network for incorporating the answer informa-
tion into the passage at both the word and
contextual levels.

The semantically one-to-many relationships
between source and target sentences in QG of-
ten leads to poor performance when trying to
use standard Encoder-decoder model to gen-
erate a diverse and fluent output. Cho et al.
(2019a) present a method for diverse genera-
tion that separates diversification and genera-
tion stages. The diversification stage takes ad-
vantage of content selection to map the source
to multiple sequences, also known as “one-to-
many mapping”. The generation stage uses
a standard encoder-decoder model to perform
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one-to-one mapping by generating a target se-
quence given each selected content from the
source. In diversification stage, a new mod-
ule named SELECTOR is proposed to identify
key contents to focus on during generation.

Since failing to model fact information may
cause QG systems to generate irrelevant and
uninformative questions, Wang et al. (2020)
defines a new task of question generation in
which the system is given a query in the knowl-
edge graph of the input content. The au-
thors further divide the task into two steps,
query representation learning and query-based
question generation. First, the model learns
a query representation which stands for the
fact information that will be mentioned in the
query path, then a RNN-based generator is
employed to produce corresponding questions
based on these facts.The two module were
trained together in an end-to-end fashion, and
the interaction between these two modules is
enforced in a various framework.

Pan et al. (2020b) focus on Deep Ques-
tion Generation (DQG) task, which aims to
generate complex questions that require rea-
soning over multiple pieces of input informa-
tion. Authors present an innovative struc-
ture consisting of three parts: semantic graph
construction, semantic-enriched document rep-
resentation, and joint-task question genera-
tion. The proposed model becomes the first
research to construct a semantic-level graph
of the input document and encode the seman-
tic graph by introducing an attention-based
GGNN (Li et al., 2015) in QG area. After
that, the document-level and graph-level rep-
resentations are fused to conduct joint train-
ing on content selection and question decod-
ing. Their method allows models to capture
the global structure of the document and facil-
itate reasoning, which greatly reduces seman-
tic errors, increasing the quality of generated
question, and improves performance on Hot-
potQA (Yang et al., 2018).

Multi-hop Question Generation also re-
quires assembling and summarizing infor-
mation from multiple relevant documents.
(Gupta et al., 2020). Proposed by Su et al.
(2020), Multi-Hop Encoding Fusion Network
for Question Generation (MulQG), features
context encoding in multiple hops with Graph
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Convolutional Network and encoding fusion
via an Encoder Reasoning Gate. The authors
claim to be the first to tackle multi-hop rea-
soning over paragraphs without sentence-level
information. Pan et al. (2020a) propose MQA-
QG, an unsupervised framework for generat-
ing human-like multi-hop QA training data.
MQA-QG generates questions by first select-
ing relevant information from each data source
and then integrating the multiple information
to form a multi-hop question. Using solely the
generated training data, the authors success-
fully train a competent multi-hop QA system.

Roemmele et al. (2021) present a system
that integrates QA and QG in order to pro-
duce QA pairs that convey the content of
multi-paragraph documents. They explore the
impact of different training data by having one
system trained on SQUAD and NEWSQA,
one on the production of rule-based QG sys-
tems, and one on both kinds of data; the lat-
ter is the most outstanding. Since their model
performs extractive QA, in which answers to
questions are extracted directly from the given
text, the evaluation focus on whether ques-
tions are answerable and relative to the input
text.

Dhole and Manning (2020) consider QG as
a generally simple syntactic transformation in-
fluenced by semantics. They porposed Syn-
QG, a QG system, to implement their obeser-
The system includes a set of trans-
parent syntactic rules that utilize universal
dependencies, shallow semantic parsing, lexi-
cal resources, and custom rules of transform-
ing declarative sentences into question-answer
pairs. The authors apply back-translation over
the rules to improve syntactic fluency and elim-
inate grammatical errors at a slight cost of
generating irrelevant questions. The crowd-
sourced evaluations result shows that thier sys-
tem can generate a larger number of grammat-
ically correct and relevant questions than pre-
vious QG systems.

vation.

Questions also serve the need of acquiring in-
formation.Majumder et al. (2021) believe that
the ability to generate questions that identify
useful missing information in a given context is
important, and to identify these information,
humans compare global view consists of pre-
vious experience with similar contexts to the
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given context. The authors propose a model
for clarification question generation in which
“what is missing” is identified first by compar-
ing the global and the local view and then a
model identifies what is useful and generate
a question about it. Qi et al. (2020) dedicate
their research to the scenario in which the ques-
tioner is given the shared conversation history
but not the context from which answers are
drawn, thus must ask questions to obtain new
information. To generate pragmatic questions,
the authors use reinforcement learning to opti-
mize an informativeness metric they propose,
along with a reward function which encourages
more specific questions.

In this paragraph, we will briefly introduce
the researches aiming to generate question-
answer pairs or obtaining training data for
QA. Alberti et al. (2019) introduce a novel
method of generating synthetic question an-
swering corpora by combining models of ques-
tion generation and answer extraction, and
filtering the results to ensure roundtrip con-
sistency. Significant improvements were ob-
tained after pretraining on the resulting cor-
pora. The authors also describe a variant
that does full sequence-to-sequence pretrain-
ing for question generation, obtaining out-
standing performance on SQuAD 2.0 (Ra-
jpurkar et al., 2018). Fabbri et al. (2020)
demonstrate that generating questions for QA
training by applying a simple template on a re-
lated, retrieved sentence rather than the origi-
nal context sentence allows the model to learn
more complex context-question relationships
thus improves unsupervised QA. To cope with
the scarcity of question-answer pairs for a spe-
cific domain with human annotation, Lee et al.
(2020) propose a hierarchical conditional vari-
ational auto encoder (HCVAE) for generating
QA pairs from unstructured texts given as con-
text and maximizing mutual information be-
tween generated QA pairs to ensure consis-
tency.

3.4 Evaluation

According to Amidei et al. (2018), currently,
the evaluation of automatic question genera-
tion includes a wide variety of both intrinsic
and extrinsic evaluation methodologies. Since
the evaluation of AQG has no exclusive, com-
monly agreed metric, most literature adopts
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multiple evaluation metrics. The statistics of
our survey are provided in Table 5. Unlike
the results of the review reported by Kurdi
et al. (2020) (Table 1), the most common
evaluation method is comparison with man-
ually written ground truth questions. Since
there is no common framework for evaluating
AQG systems, researchers use n-gram mod-
els including BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), and
ROUGE (Lin, 2004). Note that none of the
mentioned metrics were created specifically for
the evaluation of AQG, BLEU and METEOR
were designed for evaluating machine trans-
lation, while ROUGE aims to evaluate text
summarization. Nema and Khapra (2018) has
delineated that the evaluation of natural lan-
guage generation systems, including those of
AQG, using the aforementioned n-gram based
similarity metrics sometimes shows poor corre-
lation with human judgments in terms of an-
swerability.

On the other hand, the variety of datasets
used for evaluation also makes comparison be-
tween different models more difficult (Amidei
et al., 2018). We noticed that except Pan
et al. (2020b) and Cho et al. (2019a), other
studies included the SQuAD (Rajpurkar et al.,
2016) in their evaluation datasets or used it as
the only source (See Table 4 for the details).
Nevertheless, SQuAD 2.0 contains unanswer-
able questions written by crowdworkers while
SQuAD 1.1 does not, which can affect the re-
sult of evaluation. Comparison with another
generator remains the second most popular.
8 of the studies compare the results of auto-
matic evaluation with baseline models and 6
studies compare with other models through
human evaluation. The most common dimen-
sions include fluency, relevance, syntactic or
grammar correctness, with occurrences of four,
three, and three, respectively.

4 Conclusion

In our survey, analysis of 15 AQG conference
papers from PwC reported between 2019 and
early 2021 is provided, taking the survey by
Kurdi et al. (2020) as reference and tracking
the development of the AQG field. Focusing
on the purposes, methods, and evaluation of
AQG, our findings are as follow:
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Evaluation Method No. of Studies
Compare with manually
written  ground  truth 3
through automatic evalua-
tion
Compare with another 3
generator
Crowd sourcing 4
Human review 3

Table 4: Evaluation Methods. Multiple evalua-
tion methods can be implemented in one study.
The statistics demonstrate that using ground truth
written manually for evaluation, or using the an-
swers from other QG generator models for com-
parison, is the mainstream evaluating method in
recent years.

(1) Purposes of AQG

Recent studies tend to focus on data aug-
mentation of QA. 6 of the 15 papers we review
use AQG to generate QA training data.

(2) Generation Method

When it comes to the level of understanding,
most AQG systems take semantic information
into consideration since it provides the sys-
tems with more understanding to answer com-
plicated questions. Regarding the procedure
of transformation, Statistical methods have be-
come more popular for the AQG task. Since
Transformer provides self-attention and par-
allelization thus significantly boosts accuracy
and efficiency, respectively, it is attracting in-
creasing interest.

(4) Evaluation

Despite there being no widely acknowledged
evaluation metric for AQG, researchers adopt
automatic evaluation metrics for other NLP
tasks to compare with human-authored ques-
tions and different models.

(5) Evolvement of AQG since Kurdi et al.
(2020) s’ survey

The results of our review differ from that of
Kurdi et al. (2020). Kurdi et al. (2020) when
it comes to the purpose of using AQG and
the process of creating inquisitive sentences.
We found out that recent researches tend to
focus on data augmentation of QA systems
instead of generating assessments, and using
templates to convert input text into questions
is gradually replaced by implementing RNN-
Based methods and Transformer.



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

Dataset Source Development Content 0oCC
method
Questions and
SQuAD1.1 Wikipedia Crowdsourcing paragraph-answer 9
pairs
SQuADI1.1 plus
SQuAD2.0 Wikipedia Crowdsourcing unanswerable 2
questions
Hotpot QA Wikipedia Crowdsourcing (?e?lcé)ill(l;zui?edntim_ 4
Questions cor-
. Search queries responding
g\;aug)lral Questions issued to Google | Crowdsourcing Wikipedia page, a 2
search engine long response and
a short one
. o . QA pairs and
HarvestingQA Wikipedia Automatic Wikipedia articles 1
. o . QA pairs and evi-
TriviaQA Web, Wikipedia Crowdsourcing 1
dence documents
DROP Wikipedia Crowdsourcing Questions 1
Relationships  be-
Amazon Review Amazon.com Not specified twee? objects, 1
an image and a
category label
. . Questions and an-
Amazon Question- Collecting and la-
answering Amazon.com beling swers about prod- 1
ucts
Multi-hop ques-
HybridQA Wikipedia Crowdsourcing E;ﬁi’ anyggéizg;z 1
linked with it
NEWSQA lc\jTle\Ivlv\? articles from Crowdsourcing ?v;iztlons and an- 1
Questions, related
Search queries is- web pages,  crowd-
MS-MARCO QA sued to Bing or | Crowdsourcing sourced answer 1
Cortana, web pages and Supporting
’ information if
answerable
i . Information-
QuAC Xi‘ziﬂmedla founda- Crowdsourcing seeking QA  di- 1
alogues

Table 5: Information of datasets used in reviewed studies. Of the 15 papers, a total of 13 datasets are
used, including SQuAD, HotpotQA, Natural Question (Kwiatkowski et al., 2019), HarvestingQA (Du
and Cardie, 2018), TriviaQA (Joshi et al., 2017), DROP (Dua et al., 2019), Amazon Review (McAuley
et al., 2015), AmazonQuestion-answering (McAuley and Yang, 2016), HybridQA (Chen et al., 2020),
NEWSQA (Trischler et al., 2016), MS-MARCO QA (Nguyen et al., 2016), QuAC (Choi et al., 2018). We
also provide their data source, develop method, and content description of the data.
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Abstract

Due to the development of deep learning,
the natural language processing tasks have
made great progresses by leveraging the
bidirectional encoder representations from
Transformers (BERT). The goal of
information retrieval is to search the most
relevant results for the user's query from a
large set of documents. Although BERT-
based retrieval models have shown
excellent results in many studies, these
models usually suffer from the need for
large amounts of computations and/or
additional storage spaces. In view of the
flaws, a BERT-based Siamese-structured
retrieval model (BESS) is proposed in this
paper. BESS not only inherits the merits of
pre-trained language models, but also can
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generate extra information to compensate
the original query automatically. Besides,
the reinforcement learning strategy is
introduced to make the model more robust.
Accordingly, we evaluate BESS on three
public-available  corpora, and the
experimental results demonstrate the
efficiency of the proposed retrieval model.
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Num. of Queries Avg. Avg. Rel. Num. of Avg.
Train Dev Test Tokens/Query Passages/Query  Passages Tokens/Passage

MovieQA 38,417 4,333 4,327 8.80 1.55 86,360 99.39

MovieQA 36417 4333 4327 12.85 1.37 107,340 167.88

Chinese

MS
MARCO 808,731 101,093 101,092 7.46 1.05 8,841,823 74.46
# 1: MovieQA ~ MovieQA Chinese &2 MS MARCO F# & 23t F 3 -

PHCAI iR R AL 0 R RA S an A MovieQA #d 5 i 5 + F ik MR
4z%£ﬁﬁﬂmg%¢m«mﬁ%w’ﬂ PR BRI E 0 2 70 400 530
ER R o )'”ﬁﬁpéjvﬁég"%pﬁmi‘%? < TR M Y & THEY 0F BR R
BFE F A (Outlier) » $ T B v > K a g I - RipM 2 2pd i BE XN lFWw%
¥ R A Pl FRGE TR FEREY e BN RBRET F BER
PEL LR T A RRHEN L 100 % H 37 P F B 439 ST
AT R Ft e AL S SRBART A gp—i S e 0 S A
EALEE ttﬂwzma P A PRUR RS ATF VIR LTRSS B EIT R RS
Bl T aE o BB o WA SRR ﬂ’ﬂW%*%ﬁwﬁwﬁﬂvﬂﬂMwﬂM
s ] 5 T R Rt R

s Bkl g AT e 1 =kl
M weight(Qm)sim(me'fn;rn) 3: 2 7} ? @‘E}J Sl MOVleQA 3 1 §= #B
L= Ym=1—log M | - &2 MS MARCO #p# > % MovieQA £

Sim(me.fD;-n)+Zg=1 Sim(me'fD;n,n)

H P weight(Qm) % 7" RAF[ Qv 4 > 7
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MARCO & - i d fcgic e 2016 # 4 03 % 3+ FF
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WADFTHE e 77 880 FBRF ¢ kL

4.1

z )
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MovieQA MovieQA Chinese MS MARCO
MAP@10/50/100 MAP@10/50/100 MRR@10/100
BM25 38.4/39.1/39.2 33.3/34.1/34.2 16.7 / - (official)
Cross-Encoder 42.1/42.9/42.9 38.4/39.3/394 32.2/33.4
DPR 66.6/67.0/67.2 61.2/61.4/61.5 32.5/33.0
ColBERT 70.4/70.9 /71.0 63.5/63.9/64.0 33.4/34.3
# 20 A #H M % H3]3T MovieQA ~ MovieQA Chinese &2 MS MARCO T f 2. R % % % ©
4.3 -’? %%.ﬁc g’_‘lg&% T ° 'F]_ % » BESSGaussian ™ BESSTriangle >
BESS osine - BESS rcle /’~7 V7| t I“ /g # Q—L ﬁ] Pk:’
B BRSSP FAFHAR L ; e
_ g 5 Xk s & > Ok A A A ] BESS B4 > & MovieQA FH &
= O = 3o &
= B AR e ok @ 35k Okapt R AT W R DR R
Best Match 25 (BM25) (Robertson et al., 1995) ~ . - .
%*BHU”C Encod. t al., 2021):% CARFRT AR st > B AT H 2 F U g
: e - TR
ross-Encoder (Qu et a ) i 4% MAP ; - MovieQA Chinese 7 4%
F B H 4 e g% 40 DPR (Karpukhin et al,. 5

2020)_55 ColBERT (Khattab and Zaharia., 2020) >

BEHEE A 2 AT oo AP E UF IR 0 Y
BERT % # # ¢ Cross-Encoder ~ DPR #2
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MovieQA MovieQA Chinese MS MARCO
MAP@10/50/100 MAP@10/50/100 MRR@10/100
BESScGaussian 70.9/71.2/71.2 63.4/63.6/63.6 33.6/34.3
BESStriangte 69.0/69.3/69.4 63.6/63.8/63.9 n/a
BESScosine 66.1/66.7/66.7 62.5/62.7/62.7 n/a
BESScircle 70.0/70.2/70.2 63.7/63.9/63.9 n/a
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Abstract

Aspect Category Sentiment Analysis
(ACSA), which aims to identify fine-
grained sentiment polarities of the aspect
categories discussed in user reviews.
ACSA is challenging and costly when
conducting it into real-world applications,
that mainly due to the following reasons:
1.) Labeling the fine-grained ACSA data
is often labor-intensive. 2.) The aspect
categories will be dynamically updated
and adjusted with the development of ap-
plication scenarios, which means that the
data must be relabeled frequently. 3.) Due
to the increase of aspect categories, the
model must be retrained frequently to fast
adapt to the newly added aspect category
data. To overcome the above-mentioned
problems, we introduce a mnovel Meta
Multi-Task Learning (MMTL) approach,
that frame ACSA tasks as a meta-learning
problem (i.e., regarding aspect-category
sentiment polarity classification problems
as the different training tasks for meta-
learning) to learn an ideal and shareable
initialization for the multi-task learning
model that can be adapted to new ACSA
tasks efficiently and effectively. FExper-
iment results show that the proposed
approach significantly outperforms the
strong  pre-trained  transformer-based
baseline model, especially, in the case of
less labeled fine-grained training data.

Keywords:  Aspect Category Sentiment
Analysis, Meta-Learning, Multi-Task Learn-
ing

1 Introduction

Aspect-Based Sentiment Analysis (ABSA)
(Pontiki et al., 2014a,b,c) is an important fine-
grained task in the field of sentiment analysis,

*denotes equal contribution
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that is considerable for grasping and under-
standing user comments in real-world applica-
tions. ABSA contains several sub-tasks, four
of which are Aspect Term Extraction (ATE),
Aspect Term Sentiment Analysis (ATSA), As-
pect Category Detection (ACD), and Aspect
Category Sentiment Analysis (ACSA). ATE
extracts and identifies the corresponding As-
pect Term from the sentences of user com-
ments and ATSA aims to predict the polarity
of the sentiment toward the identified aspect
terms. ACD detects the aspect categories men-
tioned in review sentences, and ACSA classi-
fies the sentiments of the detected aspect cat-
egories.

Since the ATE and ATSA aim to extract
the aspect terms of sentences and to predict
sentiments corresponding to the extracted as-
pect terms, this may encounter some problems
when the aspect term is not explicitly men-
tioned or pointed out in the sentence. For ex-
ample, 7 "R#ERE, RAFL” (Good-tasting).
This is an example often seen in real inter-
net reviews for a restaurant, which gives posi-
tive reviews on the taste of food but does not
indicate the corresponding aspect term. To
cope with the above problems, we mainly fo-
cus on the methods of ACD and ACSA (usu-
ally, the two will be combined and referred
to as ACSA tasks), which dedicate to detects
aspect categories of given sentences and classi-
fying the sentiments polarities toward the de-
tected aspect categories. For the above exam-
ple, we can define suitable categories to con-
duct aspect-based sentiment analysis on user
reviews by the ACD and ACSA approach, even
the aspect term is not explicitly mentioned.
For example, it may be detected as the taste
of food category with positive reviews.

Since a user review may discuss more than
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one aspect category and express different sen-
timents toward them, how to effectively detect
various categories with their sentiment polar-
ity at the same time is one of the most im-
portant research directions of ACSA. Wang
et al. (2016) used the attention-based LSTM
models for aspect-level sentiment classifica-
tion. Cheng et al. (2017) proposed a HiEr-
archical ATtention (HEAT) network consist-
ing of aspect attention and sentiment atten-
tion. Xue and Li (2018) introduced the Gated
Convolutional Networks for ACSA and ATSA
tasks with appropriate accuracy. Schmitt
et al. (2018) used End-to-End Neural Net-
works which jointly model the detection of as-
pects and the classification of their polarity.

Recently, the transformer (Vaswani et al.,
2017) based pre-trained language models such
as BERT (Pre-training of Deep Bidirectional
Transformers for Language Understanding)
(Devlin et al., 2019), XLNet (Generalized Au-
toregressive Pretraining for Language Under-
standing) (Yang et al., 2019b), RoBERTa
(A Robustly Optimized BERT Pretraining
Approach) (Liu et al., 2019b), ELECTRA
(Pre-training Text Encoders as Discriminators
Rather Than Generators) (Clark et al., 2020)
and DeBERTa (Decoding-enhanced BERT
with Disentangled Attention) (He et al., 2020)
have significantly improved the performance of
many natural language processing (NLP) tasks
on several benchmarks (Wang et al., 2019b,a;
Xu et al., 2020).

In the ABSA field, some previous works
have shown the promising of the pre-trained
transformer models. Li et al. (2019) investi-
gated the modeling power of contextualized
embeddings from BERT to deal with End2End
ABSA. Li et al. (2020) proposed a Multi-
Instance Multi-Label Learning Network for
ACSA tasks, and their experimental results
showed that the BERT-based models signifi-
cantly performed better than the non-BERT
models (non-pre-trained transformer models)
on the public datasets.

Despite previous studies that have demon-
strated the success of deep learning models,
especially, the pre-trained transformer mod-
els on the ABSA-related research and exper-
iment setting, few works are studying and
considering the crucial issues when conduct-
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ing the deep ACSA models into real-world
applications. In practical application, ACSA
may be quite challenging and costly due to
the following reasons: Firstly, Labeling the
fine-grained ACSA data is often complicated
and labor intensive (there may be so many
aspect categories that need to detect and an-
alyze). Secondly, the aspect categories may
be dynamically updated and adjusted with the
progress of application scenarios, which means
that the data may need to be relabeled not in-
frequently. Thirdly, the model must be able
to fast adapt to the newly added aspect cate-
gory data, due to the increasing and changing
of aspect categories.

In this paper, we propose a novel Meta
Multi-Task Learning (MMTL) approach that
considers ACSA tasks with various aspect cat-
egories as meta-learning and multi-task learn-
ing tasks (i.e., regarding aspect-category sen-
timent polarity classification problems as the
training tasks for meta-learning and multi-
task learning). Primary, we investigate the
efficient and effective approaches for learning
the well-conditioned and shareable initializa-
tion via the Model-Agnostic Meta-Learning
algorithm (MAML) (Finn et al.,, 2017) and
its variants (Nichol et al., 2018) for multi-
task learning models. Different from previ-
ous MAML related works, in our case, the
initialization learned through meta-learning
must be shareable (parameter sharing) across
the different polarity classification tasks of as-
pect categories with the same user review in-
put. Because in actual applications, there
will be a large number of aspect categories,
and it is costly that different models are
used to extract features for different aspect
categories individually. Therefore, parame-
ter (feature) sharing strategies such as multi-
task learning is more appropriate. To achieve
the above-mentioned goals, we introduce the
new Meta Multi-Task Learning (MMTL) ap-
proach, which divides the model parameters
into independent and shareable parts and uses
different meta-learning objective functions for
training on these two parts. For the part of pa-
rameter sharing, we employ the proximal reg-
ularization term in the objective function in
the meta-learning inner loop training phase to
encourage the model to learn parameters and
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Figure 1: The architecture of the MMTL model for ACSA tasks. For each aspect category sentiment
polarity classification task, most of the model parameters and features are shared, and only the parameters
of the individual aspect category polarity classification layer (single layer neural network) are independent.

features that can be shared on different aspect
categories tasks.

2 Related Work

Learning general representations of given text
inputs for many tasks is the important goal
for many Natural Language Processing (NLP)
fields. The same is true for the Aspect
Based Sentiment Analysis (ABSA) and its sub-
tasks. Xue et al. (2017) proposed a multi-
task learning model based on neural net-
works to solve the Aspect Category Classifi-
cation and Aspect Term Extraction together.
Yang et al. (2019a) introduced a Multi-task
Learning Model for Aspect Polarity Classifica-
tion and Aspect Term Extraction for Chinese-
oriented tasks.

Since the transformer-based pre-trained lan-
guage models have demonstrated their success
in many NLP tasks, some works explored the
potential of integrating the multi-task learning
and pre-trained language models. Mainly, Liu
et al. (2019a) presented Multi-Task Deep Neu-
ral Network (MT-DNN) learning representa-
tions by leveraging large amounts of cross-task
data and obtaining state-of-the-art results on
several NLU tasks.

However, there still exist some potential
problems when adopting multi-task learning
related algorithms into real-world applica-
tions. The most important is that multi-task
learning may favor the tasks with more la-
beled data over the tasks with less labeled data
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ones. Inspired by Raghu et al. (2020); Ra-
jeswaran et al. (2019) (they found that feature
reuse is the dominant factor of the effective-
ness of Model Agnostic Meta-Learning based
algorithms, which means that meta-learning
has the trend to learn features that can be
reused in different tasks), we propose the Meta
Multi-Task Learning (MMTL) approach to ap-
plying meta-learning algorithms for finding
the well-conditioned and shareable initializa-
tion for multi-task learning models, such that
the model can be significantly improved in the
case of a small amount of data and can effi-
ciently learn new tasks.

3 Proposed Approaches

The architecture of the Meta Multi-Task
Learning (MMTL) model is shown in Fig-
ure 1. The proposed approaches are briefly
described as follows. First, we treat dif-
ferent aspect categories of polarity classifica-
tion tasks as different training tasks. Sec-
ond, we apply the Model Agnostic Meta-
Learning (MAML) based algorithms (Finn
et al., 2017; Nichol et al., 2018) to finding
the well-conditioned and shareable initializa-
tion for multi-task learning models for the dif-
ferent polarity classification tasks of aspect
categories with the same review text. Fi-
nally, we using the multi-task learning ap-
proach with the shareable general representa-
tions and initialization to fine-tune the model
on all aspect categories sentiment polarity clas-
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(a) Multi-Task Learning

(¢) Meta Learning (Feature Reuse)

(b) Meta Learning (Rapid Learning)

(d) MMTL (Shared Layers)

Figure 2: Differences in multi-task learning, rapid learning (meta-learning), feature reuse (meta-learning),
and MMTL. (a) Multi-task learning can share the same parameter weights among different tasks, but it
may favor the tasks with more data. (b) The Meta-Learning (Rapid Learning) obtains well-conditioned
model initialization parameters through outer loop training, and inner loop updates result in significant
task specialization. (¢) The Meta-Learning (Feature Reuse) through the outer loop training to find the
ideal initialization parameters of the model that can be feature reused. There are fewer differences in
the updated parameters of different tasks during the inner loop training. (d) The MMTL utilizes the
Meta-Learning (Feature Reuse) algorithm to find the ideal model initialization parameters that can be
shared for different tasks. Then fine-tune the model through multi-task learning, so that the MMTL
model can combine the advantages of multi-task learning and meta-learning, i.e. it can share most of the
parameters on different tasks, and it can be adapted to new tasks with fewer training samples.

sification tasks. However, achieving the above
goals is not trivial works. In particular, meta-
learning and multi-task learning were regarded
as two completely different methods in the
past and few studies have discussed how to in-
tegrate the two methods and their respective
advantages. Below, we will introduce details
of the proposed method.

3.1 Meta-Learning and Multi-Task
Learning

Since there are some obvious differences be-
tween meta-learning and multi-task learning,
it is not trivial work to integrate these two
learning algorithms with their advantages and
characteristics. The differences between meta-
learning and multi-task learning are shown in
Figure 2. Multi-task learning trains differ-
ent tasks together at the same time. This
will cause multi-task learning to favor tasks
with more annotated data and significantly
worse performance for tasks with less anno-
tated data. The main goal of the MAML
algorithm (Finn et al., 2017) is to find good
model initialization parameters such that the
model can perform well to new tasks, even on
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tasks with fewer data. Even in many stud-
ies, it has been shown that the MAML algo-
rithm can perform well in new tasks (especially
in the case of a small amount of annotated
data) (Finn et al., 2017; Gu et al., 2018; Nichol
et al., 2018; Dou et al., 2019), why MAML
has good learning ability in new tasks is still
an issue to be analyzed. The effectiveness of
MAML is mainly discussed in two different as-
pects (Raghu et al., 2020), 1.) Rapid Learn-
ing: There are large and effective changes
in the representations, 2.) Feature Reuse:
the meta-initialization containing high quality
and reusable features. Since previous studies
have found that MAML has the characteristics
and capabilities of feature reuse, we explore
ways to further impose training constraints on
the model to encourage the MAML model to
have the ability to share features for differ-
ent tasks. Finally, we propose the novel Meta
Multi-Task Learning (MMTL) algorithm to in-
tegrate meta-learning and multi-task learning
algorithms. Experimental results show that
the proposed MMTL algorithm can combine
the advantages of meta-learning and multi-
task learning, and is significantly outperform
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the strong pre-trained language model base-
line.

3.2 The Proposed Meta Multi-Task
Learning (MMTL) Model

First, we regard the ACSA tasks of differ-
ent s aspect categories as a set of tasks
{T1,Ty,...,Ts} for meta-learning. Given a
model fy with parameters 6 and a task distri-
bution p(7T') over a set of tasks {11, 75, ..., Ts}.
We sample a batch of tasks {1} ~ p(T'), and
update the model parameters by k gradient de-
scent steps for each task {73} for the inner loop
training of meta-learning. Where, the & > 1
and the p(T') is a uniform probability distribu-
tion. For the inner loop (task specific) training
of meta learning, we use the following equation
to update the model parameters 6:

Qék) = OISk_l) — ﬁvel()k—l)Lb (felgkl))

Where L, is the objective function (de-
scribed as follows) and (3 is the learning rate
(a hyperparameter) of the inner loop training.

To encourage the model to have the abil-
ity to share the parameters (feature reuse) for
different tasks, we divide the model into the
shared layers part and the task-specific layers
part. For the shared layers part, we add a
proximal regularization term in the inner loop
training phase. Therefore, the definition of the
objective function (loss function) of the shared
layers part is as follows:

Ly = LOSS(fel()k—U) + A Hﬁék—l) _ 9H

And the definition of the objective function
(loss function) of the task-specific layers part
is as follows:

L, = Loss(feék_1))

Where, the Loss is the Cross-Entropy Loss
calculated on the inner loop training task {7},
the A is a hyperparameter, and the @ is the pa-
rameter of the model. Initially, 6 is the weight
of the pre-trained model and is updated by the
training of the outer loop of the meta-learning.

Since the original MAML algorithm (Finn
et al., 2017) needs to calculate the second
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derivatives, resulting in excessive calculation
and memory usage, we use the Reptile (a first-
order gradient-based meta-learning algorithm)
(Nichol et al., 2018) to update the model pa-
rameters # for the outer loop phase.

The equation of the Reptile is defined as:

0=0+~

1
) 4,

Where the + is the learning rate (a hyperpa-
rameter) of the outer loop training.

Finally, we use the model parameters
trained via meta-learning as the initialization
parameters, and perform multi-task learning
training (fine-tuning) on the data of ACSA
tasks. Overall, the training process of MMTL
mainly consists of three stages: 1.) the pre-
training stage as in BERT or ELECTRA, 2.)
the meta-learning stage, and 3.) the multi-
task learning fine-tuning stage.

The model trained by the proposed MMTL
algorithm is different from the multi-task
learning model (that is shown in Figure 2).
Attributable to the fact that we first use meta-
learning and some constraints to make the
parameters of the model can be shared on
different tasks and perform ideally on new
tasks, even if the new task only has a rel-
atively sma