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Abstract

Multilingual pretrained language models
are rapidly gaining popularity in NLP sys-
tems for non-English languages. Most
of these models feature an important cor-
pus sampling step in the process of ac-
cumulating training data in different lan-
guages, to ensure that the signal from bet-
ter resourced languages does not drown
out poorly resourced ones. In this study,
we train multiple multilingual recurrent
language models, based on the ELMo ar-
chitecture, and analyse both the effect of
varying corpus size ratios on downstream
performance, as well as the performance
difference between monolingual models
for each language, and broader multilin-
gual language models. As part of this ef-
fort, we also make these trained models
available for public use.

1 Introduction

As part of the recent emphasis on language model
pretraining, there also has been considerable focus
on multilingual language model pretraining; this is
distinguished from merely training language mod-
els in multiple languages by the creation of a mul-
tilingual space. These have proved to be very use-
ful in ‘zero-shot learning’; i.e., training on a well-
resourced language (typically English), and rely-
ing on the encoder’s multilingual space to create
reasonable priors across languages.

The main motivation of this paper is to study the
effect of corpus sampling strategy on downstream
performance. Further, we also examine the util-
ity of multilingual models (when constrained to
monolingual tasks), over individual monolingual
models, one per language. This paper therefore
has two main contributions: the first of these is
a multilingual ELMo model that we hope would

see further use in probing studies as well as eval-
uative studies, downstream; we train these mod-
els over 13 languages, namely Arabic, Basque,
Chinese, English, Finnish, Hebrew, Hindi, Italian,
Japanese, Korean, Russian, Swedish and Turkish.
The second contribution is an analysis of sampling
mechanism on downstream performance; we elab-
orate on this later.

In Section 2 of this paper, we contextualise our
work in the present literature. Section 3 describes
our experimental setup and Section 4 our results.
Finally, we conclude with a discussion of our re-
sults in Section 5.

2 Prior work

Multilingual embedding architectures (static or
contextualised) are different from cross-lingual
ones (Ruder et al., 2019; Liu et al., 2019) in that
they are not products of aligning several mono-
lingual models. Instead, a deep neural model is
trained end to end on texts in multiple languages,
thus making the whole process more straightfor-
ward and yielding truly multilingual representa-
tions (Pires et al., 2019). Following Artetxe et al.
(2020), we will use the term ‘deep multilingual
pretraining’ for such approaches.

One of the early examples of deep multilingual
pretraining was BERT, which featured a multilin-
gual variant trained on the 104 largest language-
specific Wikipedias (Devlin et al., 2019). To
counter the effects of some languages having over-
whelmingly larger Wikipedias than others, Devlin
et al. (2019) used exponentially smoothed data
weighting; i.e., they exponentiated the probability
of a token being in a certain language by a cer-
tain α, and re-normalised. This has the effect of
‘squashing’ the distribution of languages in their
training data; larger languages become smaller, to
avoid drowning out the signal from smaller lan-
guages. One can also look at this technique as
a sort of sampling. Other multilingual models,



such as XLM (Lample and Conneau, 2019) and
its larger variant, XLM-R (Conneau et al., 2020),
use different values of α for this sampling (0.5
and 0.3 respectively). The current paper is aimed
at analysing the effects of different α choices; in
spirit, this work is very similar to Arivazhagan
et al. (2019); where it differs is our analysis on
downstream tasks, as opposed to machine transla-
tion, where models are trained and evaluated on a
very specific task. We also position our work as
a resource, and we make our multilingual ELMo
models available for public use.

3 Experimental setup

3.1 Background

When taken to its logical extreme, sampling essen-
tially reduces to truncation, where all languages
have the same amount of data; thus, in theory, in
a truncated model, no language ought to domi-
nate any other. Of course, for much larger mod-
els, like the 104-language BERT, this is unfea-
sible, as the smallest languages are too small to
create meaningful models. By selecting a set of
languages such that the smallest language is still
reasonably sized for the language model being
trained, however, we hope to experimentally de-
termine whether truncation leads to truly neutral,
equally capable multilingual spaces; if not, we at-
tempt to answer the question of whether compres-
sion helps at all.

Our encoder of choice for this analysis is an
LSTM-based ELMo architecture introduced by
Peters et al. (2018). This might strike some
as a curious choice of model, given the (now)
much wider use of transformer-based architec-
tures. There are several factors that make ELMo
more suitable for our analysis. Our main moti-
vation was, of course, resources – ELMo is far
cheaper to train, computationally. Next, while
pre-trained ELMo models already exist for several
languages (Che et al., 2018; Ulčar and Robnik-
Šikonja, 2020), there is, to the best of our knowl-
edge, no multilingual ELMo. The release of our
multilingual model may therefore also prove to be
useful in the domain of probing, encouraging re-
search on multilingual encoders, constrained to re-
current encoders.

3.2 Sampling

Our initial starting point for collecting the lan-
guage model training corpora were the CoNLL

2017 Wikipedia/Common Crawl dumps released
as part of the shared task on Universal Dependen-
cies parsing (Ginter et al., 2017); we extracted the
Wikipedia portions of these corpora for our set of
13 languages. This gives us a set of fairly typo-
logically distinct languages, that still are not en-
tirely poorly resourced. The smallest language in
this collection, Hindi, has ∼ 91M tokens, which
we deemed sufficient to train a reasonable ELMo
model.

Despite eliminating Common Crawl data, this
gave us, for our set of languages, a total corpus
size of approximately 35B tokens, which would
be an unfeasible amount of data given computa-
tional constraints. We therefore selected a base-
line model to be somewhat synthetic – note that
this is a perfectly valid choice given our goals,
which were to compare various sampling expo-
nents. Our ‘default’ model, therefore, was trained
on data that we obtained by weighting this ‘real-
world’ Wikipedia data. The largest α we could
use, that would still allow for feasible training,
was α = 0.4 (further on, we refer to this model
as M0.4); this gave us a total corpus size of ∼4B

tokens. Our second, relatively more compressed
model, used α = 0.2 (further on, M0.2); giving
us a total corpus size of ∼2B tokens; for our fi-
nal, most compressed model (further on, TRUNC),
we merely truncated each corpus to the size of our
smallest corpus (Hindi; 91M), giving us a corpus
sized ∼1.2B tokens. Sampling was carried out as
follows: if the probability of a token being sam-
pled from a certain language i is pi, the adjusted
probability is given by qi = pi∑N

j=1 pj
. Note that

this is a similar sampling strategy to the one fol-
lowed by more popular models, like mBERT. We
trained an out-of-the box ELMo encoder for ap-
proximately the same number of steps on each cor-
pus; this was equivalent to 2 epochs for M0.4 and
3 for M0.2.

Detailed training hyperparameters and precise
corpus sizes are presented in Appendices A and B.

3.3 Tasks
While there is a dizzying array of downstream
evaluation tasks for monolingual models, looking
to evaluate multilingual models is a bit harder. We
settled on a range of tasks in two different groups:

1. Monolingual tasks: these tasks directly test
the monolingual capabilities of the model,
per language. We include PoS tagging and



dependency parsing in this category. In addi-
tion to our multilingual models, we also eval-
uate our monolingual ELMo variants on these
tasks.

2. Transfer tasks: these tasks involve leverag-
ing the model’s multilingual space, to trans-
fer knowledge from the language it was
trained on, to the language it is being evalu-
ated on. These tasks include natural language
inference and text retrieval; we also convert
PoS tagging into a transfer task, by training
our model on English and asking it to tag text
in other languages.

In an attempt to illuminate precisely what the
contribution of the different ELMo models is, we
ensure that our decoder architectures – that trans-
late from ELMo’s representations to the task’s la-
bel space – are kept relatively simple, particularly
for lower-level tasks. We freeze ELMo’s parame-
ters: this is not a study on fine-tuning.

The tasks that we select are a subset of the tasks
mentioned in XTREME (Hu et al., 2020); i.e., the
subset most suitable to the languages we trained
our encoder on. A brief description follows:

PoS tagging: For part-of-speech tagging, we
use Universal Dependencies part-of-speech tagged
corpora (Nivre et al., 2020). Built on top of our
ELMo-encoder is a simple MLP, that maps repre-
sentations onto the PoS label space.

PoS tagging (transfer): We use the same archi-
tecture as for regular PoS tagging, but train on En-
glish and evaluate on our target languages.

Dependency parsing: We use dependency-
annotated Universal Dependencies corpora; our
metrics are both unlabelled and labelled attach-
ment scores (UAS/LAS). Our parsing architecture
is a biaffine graph-based parser (Dozat and Man-
ning, 2018).

XNLI: A transfer-based language inference
task; we use Chen et al.’s 2017 ESIM architec-
ture, train a tagging head on English, and evaluate
on the translated dev portions of other languages
(Conneau et al., 2018).

Tatoeba: The task here is to pick out, for each
sentence in our source corpus (English), the
appropriate translation of the sentence in our
target language corpus. This, in a sense, is the
most ‘raw’ tasks; target language sentences are

Figure 1: Performance difference between mono-
lingual and multilingual models, on our monolin-
gual tasks. Absent bars indicate that the language
was missing.

ranked based on similarity. We follow Hu et al.
(2020) and use the Tatoeba dataset.

We tokenize all our text using the relevant UD-
Pipe (Straka et al., 2019) model, and train/evaluate
on each task three times; the scores we report are
mean scores.

4 Results

First, we examine the costs of multilingualism,
as far as monolingual tasks are concerned. We
present our results on our monolingual tasks in
Figure 1. Monolingual models appear to per-
form consistently better, particularly PoS tagging;
this appears to be especially true for our under-
resourced languages, strengthening the claim that
compression is necessary to avoid drowning out
signal. For PoS tagging, the correlation be-
tween performance difference (monolingual vs.
M0.4) and corpus size is highly significant (ρ =
0.74; p = 0.006).

PoS UAS LAS PoS (trf.) XNLI Tatoeba

MONO 0.86 0.86 0.81 - - -
M0.4 0.83 0.85 0.80 0.36 0.45 0.18
M0.2 0.84 0.85 0.80 0.39 0.46 0.21
TRUNC 0.83 0.85 0.80 0.36 0.45 0.13

Table 1: Average scores for each task and encoder;
non-monolingual best scores in bold.

We find that compression appears to result in
visible improvements, when moving from α = 0.4
to α = 0.2. These improvements, while not dra-
matic, apply across the board (see Table 1), over
virtually all task/language combinations; this is
visible in Figure 2a. Note the drop in performance
on certain tasks for English, Swedish and Italian –



(a) M0.2 vs. M0.4 (b) TRUNC vs. M0.4

Figure 2: Performance differences between our models on our selected tasks.

we hypothesise that this is due to Swedish and Ital-
ian being closer to English (our most-sampled lan-
guage), and therefore suffering from the combina-
tion of the drop in their corpus sizes, as well as the
more significant drop in English corpus size. The
Pearson correlation between the trend in perfor-
mance for PoS tagging and the size of a language’s
corpus is statistically significant (ρ = 0.65; p =
0.02); note that while this is over multiple points,
it is single runs per data point.

Figure 2b also shows the difference in perfor-
mance between the truncated model, TRUNC, and
M0.4; this is a lot less convincing than the dif-
ference to M0.2, indicating that no additional ad-
vantage is to be gained by downsampling data for
better-resourced languages.

We include full, detailed results in Appendix C.

Cross-lingual differences Finally, in an attempt
to study the differences in model performance
across languages, we examine the results of all
models on Tatoeba. This task has numerous ad-
vantages for a more detailed analysis; i) it covers
all our languages, bar Hindi, ii) the results have
significant variance across languages, and iii) the
task does not involve any additional training. We
present these results in Figure 3.

We observe that M0.2 consistently appears to
perform better, as illustrated earlier. Performance
does not appear to have much correlation with
corpus size; however, the languages for which
M0.4 performs better are Swedish and Italian, co-
incidentally, the only other Latin-scripted Indo-
European languages. Given the specific nature of
Tatoeba, which involves picking out appropriate
translations, these results make more sense: these
languages receive not only the advantage of hav-
ing more data for themselves, but also from the

Figure 3: Accuracy on Tatoeba per model

additional data available to English, which in turn
optimises their biases solely by virtue of language
similarity.

5 Discussion

Our results allow us to draw conclusions that come
across as very ‘safe’: some compression helps, too
much hurts; when compression does help, how-
ever, the margin appears rather moderate yet sig-
nificant for most tasks, even given fewer training
cycles. Immediately visible differences along lin-
guistic lines do not emerge when ratios differ, de-
spite the relative linguistic diversity of our lan-
guage choices; we defer analysis of this to a future
work, that is less focused on downstream analysis,
and more on carefully designed probes that might
illuminate the difference between our models’ in-
ternal spaces. Note that a possible confounding
factor in our results is also the complexity of the
architectures we build on top of mELMO: they
also have significant learning capacity, and it is not
implausible that whatever differences there are be-
tween our models, are drowned out by highly pa-
rameterised downstream decoders.



To reiterate, this study is not (nor does it aim
to be) a replication of models with far larger pa-
rameter spaces and more training data. This is
something of a middle-of-the-road approach; fu-
ture work could involve this sort of evaluation
on downscaled transformer models, which we shy
away from in order to provide a usable model re-
lease. We hope that the differences between these
models provide some insight, and pave the way for
further research, not only specifically addressing
the question of sampling from a perspective of per-
formance, but also analytically. There has already
been considerable work in this direction on mul-
tilingual variants of BERT (Pires et al., 2019; Chi
et al., 2020), and we hope that this work motivates
papers applying the same to recurrent mELMo, as
well as comparing and contrasting the two. The
ELMo models described in this paper are publicly
released via NLPL Vector Repository.1
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Language AR EN EU FI HE HI IT JA KO RU SV TR ZH Total

M0.4 242.29 585.52 113.42 239.57 208.46 91.74 468.45 460.53 184.63 379.9 366.86 396.01 282.76 4020.14
M0.2 149.09 231.76 102.01 148.25 138.29 91.74 207.3 205.54 130.15 186.68 183.45 190.6 161.06 2125.92
TRUNC 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 1192.62

Table 3: Corpus sizes, in million tokens

Language AR EN EU FI HE HI IT JA KO RU SV TR ZH

POS

MONO 0.89 0.89 0.88 0.82 0.84 0.9 0.91 0.94 0.67 0.88 - 0.83 0.86
0.4 0.81 0.89 0.81 0.78 0.82 0.87 0.89 0.94 0.64 0.87 - 0.81 0.84
0.2 0.86 0.89 0.85 0.79 0.83 0.9 0.89 0.94 0.64 0.87 - 0.82 0.85

TRUNC 0.82 0.89 0.84 0.8 0.82 0.9 0.88 0.93 0.63 0.86 - 0.81 0.85

UAS

MONO 0.86 0.89 0.84 0.88 0.89 0.94 0.93 0.95 0.8 - 0.85 0.69 0.8
M0.4 0.85 0.89 0.83 0.85 0.89 0.94 0.93 0.95 0.79 - 0.84 0.68 0.78
M0.2 0.85 0.89 0.84 0.87 0.88 0.94 0.93 0.95 0.79 - 0.84 0.67 0.79

TRUNC 0.85 0.89 0.83 0.86 0.89 0.94 0.93 0.95 0.78 - 0.84 0.68 0.79

LAS

MONO 0.79 0.86 0.79 0.84 0.84 0.9 0.9 0.94 0.74 - 0.81 0.59 0.74
0.4 0.78 0.85 0.78 0.81 0.84 0.9 0.9 0.94 0.72 - 0.79 0.57 0.72
0.2 0.79 0.85 0.78 0.82 0.84 0.9 0.9 0.94 0.73 - 0.8 0.57 0.72

TRUNC 0.79 0.85 0.78 0.82 0.84 0.9 0.9 0.93 0.72 - 0.79 0.57 0.72

POS (trf.)
0.4 0.23 0.89 0.25 0.43 0.36 0.31 0.52 0.22 0.18 0.49 - 0.23 0.22
0.2 0.26 0.89 0.29 0.47 0.37 0.33 0.54 0.24 0.18 0.55 - 0.29 0.28

TRUNC 0.23 0.89 0.3 0.48 0.32 0.26 0.48 0.2 0.17 0.49 - 0.27 0.28

XNLI
M0.4 0.41 0.67 - - - 0.44 - - - 0.48 - 0.35 0.35
M0.2 0.46 0.56 - - - 0.45 - - - 0.49 - 0.45 0.34

TRUNC 0.43 0.66 - - - 0.43 - - - 0.43 - 0.43 0.35

Tatoeba
0.4 0.05 - 0.05 0.19 0.16 - 0.36 0.11 0.04 0.26 0.55 0.12 0.11
0.2 0.12 - 0.12 0.26 0.21 - 0.34 0.11 0.05 0.33 0.4 0.17 0.19

TRUNC 0.05 - 0.1 0.2 0.09 - 0.22 0.05 0.03 0.15 0.29 0.1 0.13

Table 4: Full score table across all languages, tasks and models
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