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Abstract

In this paper, we propose spectral modifi-
cation by sharpening formants and by re-
ducing the spectral tilt to recognize chil-
dren’s speech by automatic speech recog-
nition (ASR) systems developed using
adult speech. In this type of mismatched
condition, the ASR performance is de-
graded due to the acoustic and linguis-
tic mismatch in the attributes between
children and adult speakers. The pro-
posed method is used to improve the
speech intelligibility to enhance the chil-
dren’s speech recognition using an acous-
tic model trained on adult speech. In
the experiments, WSJCAM0 and PFSTAR
are used as databases for adults’ and chil-
dren’s speech, respectively. The proposed
technique gives a significant improvement
in the context of the DNN-HMM-based
ASR. Furthermore, we validate the robust-
ness of the technique by showing that it
performs well also in mismatched noise
conditions.

Index Terms: Children speech recognition, Spec-
tral sharpening, Spectral tilt, DNN.

1 Introduction

Recent advances in ASR have impacted many ap-
plications in various fields, such as education, en-
tertainment, home automation, and medical assis-
tance (Vajpai and Bora, 2016). These applications
can benefit children in their daily life, in playing
games, reading tutors (Mostow, 2012), and learn-
ing both native and foreign languages (Evanini and
Wang, 2013; Yeung and Alwan, 2019).

The task of speech parameterization for the
front-end aims at a compact representation that
captures the relevant information in the speech sig-
nal by using short-time feature vectors. The two

commonly used feature sets are Mel-frequency
cepstral coefficients (MFCC) (Davis and Mermel-
stein, 1980) and the perceptual linear prediction
cepstral coefficients (PLPCC) (Lee et al., 1999;
Huber et al., 1999). Speech of adults and children
have large acoustic and linguistic differences (Lee
et al., 1999; Narayanan and Potamianos, 2002;
Potaminaos and Narayanan, 2003; Gerosa et al.,
2009). Both the Mel-filterbank and PLP coeffi-
cients are better suited for adults as they provide
better resolution for low-frequency contents while
a greater degree of averaging happens in the high-
frequency range (Davis and Mermelstein, 1980;
Hermansky, 1990a).

In the case of children’s speech, more rele-
vant information is available in the high-frequency
range. Therefore, to enhance the system per-
formance, a better resolution needs to be used
for the high-frequency range. Previous studies
have also shown that formant sharpening is help-
ful for increasing speech intelligibility (Chennu-
pati et al., 2019; Zorila Tudor-Catalin and Yannis,
2012; Potaminaos and Narayanan, 2003; Kathania
et al., 2014). Motivated by these observations, we
suggest to modify the speech spectrum by formant
sharpening and spectral tilt reduction.

In (Potamianos and Narayanan, 2003; Katha-
nia et al., 2014, 2016) , it was shown that the
word error rate (WER) in recognition of chil-
dren’s speech is much higher than that of adult
speech and specifically under mismatched and
noisy conditions. The problems are due to higher
inter-speaker variance caused by the development
of the vocal tract, leading to different formant
locations and spectral distribution (Hermansky,
1990b), and due to the inaccuracy in pronunci-
ation and grammar caused by language acqui-
sition. Most importantly, the insufficient train-
ing data limits the performance because collect-
ing large speech databases of children’s speech is
hard. Adult speech corpora normally contain hun-



dreds or thousands of hours of data, while most
publicly available corpora for children’s speech
have less than 100 hours of data (Panayotov et al.,
2015; Claus et al., 2013). Therefore, it is neces-
sary that ASR systems built for children are robust
for various mismatched conditions.

In this paper, a spectral sharpening and tilt re-
duction method is proposed to enhance the intelli-
gibility of children’s speech to boost the ASR sys-
tem performance under mismatched conditions.
Spectral sharpening and spectral tilt reduction
have been used in enhancement of speech intelli-
gibility in noise (Chennupati et al., 2019; Zorila
Tudor-Catalin and Yannis, 2012). In this study,
it is shown that the MFCC and PLPCC features
computed after the spectral modification (referred
to as SS-MFCC and SS-PLPCC) are found to out-
perform the conventional MFCC and PLPCC fea-
tures. This is demonstrated by both the spectral
analyses and experimental evaluations in this pa-
per. The robustness of the technique is further
validated by showing that it performs well in mis-
matched noise conditions also.

The remaining of this paper is presented as fol-
lows: In Section 2, the proposed spectral sharp-
ening and tilt reduction technique is discussed. In
Section 3, the speech corpora and ASR specifica-
tions are described. The results of the proposed
method are presented in Section 4. In Section 5,
the effects of noisy environment on the proposed
method are discussed. Finally, the paper is con-
cluded in Section 6.

2 The spectral modification method

The proposed spectral modification technique con-
sists of formant sharpening and spectral tilt re-
duction as described below and depicted in the
block diagram in Fig 1. From the spectral exam-
ples shown in Fig 2 and spectrograms shown in
Fig 3, we can observe that the proposed method
enhances formant peaks and the level of higher
frequencies.
2.1 Adaptive spectral sharpening

The formant information is important for recog-
nizing speech, and Adaptive Spectral Sharpen-
ing (ASS) is a method that emphasizes the for-
mant information (Zorila Tudor-Catalin and Yan-
nis, 2012). For sharpening of formants, an ap-
proach that was motivated in speech intelligibil-
ity is utilised (Zorila Tudor-Catalin and Yannis,
2012). In this method, the magnitude spectrum is

extracted using the SEEVOC method (Paul, 1981)
for the pre-emphasized voice speech frame. The
adaptive spectral sharpening at frame t is given by

Hs(ω, t) =

(
E(ω, t)

T (ω, t)

)β
, (1)

where E(ω,t) is the estimated spectral envelope
computed using the SEEVOC method and T(ω,t)
is the spectral tilt for frame t. Spectral tilt T(ω,t)
is computed using cepstrum and is given by

log T (ω) = C0 + 2C1 cos(ω). (2)

Here Cm is the mth cepstral coefficients and is
given by

Cm =
1

(N2 + 1)

N
2∑

k=0

E(ωk) cos(mωk). (3)

Formant sharpening is performed using Eq. (1)
by varying β. Typically, the value of β is higher
for low signal-to-noise ratio (SNR) values and
lower for high SNR values. In this study, we
have investigated the extent of spectral sharpen-
ing by varying the β parameter from 0.15 to 0.35.
Note that spectral sharpening is performed only
in voiced segments using probability of voicing
as defined in (Zorila Tudor-Catalin and Yannis,
2012).

2.2 Spectral tilt modification
Apart from spectral sharpening, we also perform
fixed spectral tilt modification (Hr(ω)) to boost
the region between 1 kHz and 4 kHz by 12 dB and
to reduce the level of frequencies below 500 Hz
(by 6 dB/octave). The resulting magnitude spec-
trum for a frame after the ASS and fixed spectrum
tilt modification is given by

Ê(ω) = E(ω)Hs(ω)Hr(ω) (4)

The modified magnitude spectrum (Ê(ω)) is
combined with the original phase spectrum for re-
constructing the signal using IDFT and Overlap-
and-Add (OLA) (Rabiner and Gold, 1975).

A schematic block diagram describing the steps
involved in the proposed method is shown in Fig
1. Fig 2 illustrates the effect of spectral modifica-
tion for a voiced child’s speech segment. Here the
blue curve is the spectrum of the original speech
segment and the red curve is the modified speech
spectrum. From the figure, it can be seen that



Figure 1: Block diagram of the spectral modification method.
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Figure 2: Spectrum for a segment of child’s speech
(blue) and the corresponding spectrum after the
spectral modification (SM) (red).

(a) Spectrogram of children speech
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(b) Modified spectrogram with SM
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Figure 3: Spectrogram for a segment of child’s
speech shown in (a), and the corresponding spec-
trogram after spectral modification shown in (b).

formants are sharpened by the proposed method
(red curve). Specifically, it can be clearly seen
that formants are more prominent in the region
of 1 kHz to 4 kHz for the proposed method (red

curve), which is due to the spectral modification
as described in Section 2.2. Furthermore, illus-
trations of the spectrograms are shown in Fig 3.
Fig 3 (a) shows the child’s original spectrogram
before modifications and Fig 3 (b) shows the cor-
responding spectrogram after the proposed spec-
tral modification (SM) method. Again it can be
observed from Fig 3(b) that the spectrogram has a
larger high-frequency emphasis compared to spec-
trogram in Fig 3(a), due to spectral modification in
the proposed method.

3 Data and Experimental setup

This section describes the speech corpora (adult
and children), front-end speech features and spec-
ifications of ASR system.

3.1 Speech Corpora
Adult speech data used in this work was obtained
from WSJCAM0 (Robinson et al., 1995). Chil-
dren’s speech data was obtained from the PF-
STAR corpus (Batliner et al., 2005) to simulate
a mismatched ASR task. Both the WSJCAM0
and PF-STAR corpora are British English speech
databases. Details of both corpora are given in Ta-
ble 1

3.2 Front-end speech parameterization
The speech data was first pre-emphasized with a
first order FIR high-pass filter (with zero at z =
0.97). For frame-blocking, overlapping Hamming
windows with a length of 20 ms and an overlap
of 50% were used. 13-dimensional MFCCs were
extracted using 40 channels. The 13-dimensional
base MFCC features were then spliced in time tak-
ing a context size of 9 frames. Time-splicing re-
sulted in 117-dimensional features vectors. Lin-
ear discriminant analysis (LDA) and maximum-
likelihood linear transformation (MLLT) were



Table 1: Speech corpora details for WSJCAM0
and PFSTAR used in ASR

Corpus WSJCAM0 PF-STAR

Language British English British English

Purpose Training Testing Training Testing

Speaker group Adult Adult Child Child

No. of speakers 92 20 122 60

Speaker age > 18 years > 18 years 4-14 years 4-13 years

No. of words 132,778 5,608 46974 5067

Duration (hrs.) 15.50 0.60 8.3 1.1

used to reduce the feature vector dimension from
117 to 40. The 13-dimensional base PLPCC fea-
tures were derived using 12th-order linear pre-
diction (LP) analysis. Cepstral mean and vari-
ance normalization (CMVN) as well as feature-
space maximum-likelihood linear regression (fM-
LLR) were performed next to enhance robust-
ness with respect to speaker-dependent variations.
The required fMLLR transformations for the train-
ing and test data were generated through speaker
adaptive training.

The MFCC and PLPCC features computed af-
ter the proposed spectral modification (i.e., spec-
tral sharpening and tilting) are referred to as SS-
MFCC and SS-PLPCC, respectively. ASR results
are given for the baseline features (MFCC and
PLPCC) and the proposed features (SS-MFCC
and SS-PLPCC) for all the experiments conducted
in this paper.

3.3 ASR system specifications

To build the ASR system on the adult speech data
from the WSJCAM0 speech corpus, the Kaldi
toolkit (Povey et al., 2011) was used. Context-
dependent hidden Markov models (HMM) were
used for modeling the cross-word triphones. Deci-
sion tree-based state tying was performed with the
maximum number of tied-states (senones) being
fixed at 2000. A deep neural network (DNN) was
used in acoustic modeling. Prior to learning pa-
rameters of the DNN-HMM-based ASR system,
the fMLLR-normalized feature vectors were time-
spliced once again considering a context size of 9
frames. The number of hidden layers in the DNN
was set to 5 with 1024 hidden nodes in each layer.
The nonlinearity in the hidden layers was modeled

using the tanh function. The initial learning rate
for training the DNN-HMM parameters was set at
0.005 which was reduced to 0.0005 in 15 epochs.
The minibatch size for neural net training was set
to 512.

For decoding the test set for adults, the MIT-
Lincoln 5k vocabulary Wall Street Journal bi-gram
language model (LM) was used. The perplexity of
this LM for the adult test set is 95.3 while there are
no out-of-vocabulary (OOV) words. Furthermore,
a lexicon consisting of 5850 words including pro-
nunciation variants was used. While decoding
the test set for children’s speech, a 1.5k domain-
specific bigram LM was used. This bigram LM
was trained on the transcripts of speech data in PF-
STAR after excluding those corresponding to the
test set of children’s speech. The domain-specific
LM has an OOV rate of 1.20% and perplexity of
95.8 for the test set of children’s speech. In to-
tal 1969 words used including pronunciation vari-
ations in lexicon for decoding the children’s test
set.

4 Results and discussion

The baseline WERs for children’s test set in the
DNN-HMM systems is 19.76% and 20.00% for
the MFCC and PLPCC acoustic features respec-
tively (see Table 2). In order to improve the recog-
nition performance, the spectral sharpening tech-
nique is applied to mitigate the spectral differences
between adults’ and children’s speech. The spec-
tral sharpening algorithm includes the tunable β
parameter according to Eq. (1), and this parameter
was varied from 0.15 to 0.35 to sharpen the spec-
tral peaks (formants). The WERs obtained with
varying sharpening parameter are shown in Figure
4. From the figure, it can be observed that the best
WER was obtained with β = 0.25. The remaining
experiments are carried out using this value of β.

The baseline WERs for children’s test set with
respect to the DNN-HMM-based ASR systems
trained using the MFCC and PLPCC features are
given in Table 2. The MFCC and PLPCC features
computed after the formant modification are de-
noted as SS-MFCC and SS-PLPCC, respectively
in Table 2. A notable reduction in WER can be
observed for both the features.

For further analysis, the children test data was
divided into three different test sets based on age
groups: 4 − 6 years, 7 − 9 years, and 10 − 13
years. Table 3 shows the results for baseline and
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Figure 4: WER results depicting the effect of spec-
tral modification (for varying the β parameter) on
recognition of children’s speech using an DNN-
HMM system trained using adult speech.

proposed features for three age groups. It can be
seen that the proposed approach improves the re-
sults in all the age groups for both of the proposed
features, SS-MFCC and SS-PLPCC. We have also
conducted significance test and notice that signed
pair comparison found significant difference be-
tween the two approaches at level p<0.01.

To further validate the effectiveness of the pro-
posed modification method, another DNN-HMM-
based ASR system was developed by pooling to-
gether speech data from training sets of both adults
and children. For children’s speech, the training
set derived from PF-STAR consisted of 8.3 hours
of speech by 122 speakers. The total number of
utterances in this training set was equal to 856
with a total of 46974 words. The training set of
adult speakers consisted of 15.5 hours of speech
from 92 speakers (both male and female). Fur-
ther, the training set comprised 132, 778 words
and the total number of utterances was 7852. The
developed ASR system exhibits a lower degree of
acoustic/linguistic mismatch due to the pooling of
children’s speech into training. As a result, the
baseline WERs for the developed system (given
in Table 2) are significantly lower when compared
to those obtained with respect to the ones trained
on adult speech only. Still, further reductions in
WERs are achieved when the spectral modifica-
tion technique is applied to enhance the speech in-
telligibility as shown in Table 2.

5 Experiments in Noisy conditions

To further validate the proposed technique, noise
robustness of the spectral modification technique
was studied. Four different noises (babble, white,
factory and volvo noise) extracted from NOISEX-
92 (Varga and Steeneken, 1993) were added to the

Table 2: WERs of the baseline and proposed
spectral modification method for children’s ASR.
The performance evaluation is done separately
using two ASR systems: a system trained with
only adult speech from WSJCAM0 and a system
trained by pooling also children’s speech.

WER in (%)

Training Testing DNN-HMM (Acoustic Model)

Data Data PLPCC SS-PLPCC MFCC SS-MFCC

Adult speech Children’s speech 20.00 19.38 19.76 18.23

Adult + children’s speech Children’s speech 12.89 12.43 12.26 11.70

Table 3: WERs for the age-wise grouped children
speech test sets with respect to adults data trained
ASR systems demonstrating the effect of the pro-
posed spectral modification.

Age wise WER (in %)
setup PLPCC SS-PLPCC MFCC SS-MFCC

4 - 6 72.36 70.18 70.48 68.18

7 - 9 20.11 17.24 19.38 16.20

10 - 13 12.35 11.72 11.78 10.53

test data under varying SNR levels. The noisy test
sets were then decoded using the acoustic models
trained with clean speech. WERs in the case of
adult/child mismatched testing are given in Table
4 for SNR values of 5 dB, 10 dB, and 15 dB. While
the MFCC features seem slightly more robust to
additive noise than the PLPCC features, the spec-
tral modification reduces WER clearly for both
of the acoustic features (denoted as SS-MFCC
and SS-PLPCC) at the three different SNR levels.
Hence, it can be concluded that the spectral sharp-
ening of formant peaks improves the ASR perfor-
mance also in various noisy conditions.

6 Conclusion

This work explores spectral modification (sharp-
ening of formants and reduction of spectral tilt)
to achieve robust recognition of children’s speech
under mismatched conditions. The explored spec-
tral modification technique is observed to enhance
ASR of children’s speech for both the MFCC and
PLPCC features. Also, ASR results are analyzed
for different age-groups and it was found that for
all the age-groups there exists an improvement



Table 4: WERs of the proposed spectral modifi-
cation method for children’s speech test set under
varying additive noise conditions.

Noise SNR WER in (%)

Type (dB) PLPCC SS-PLPCC MFCC SS-MFCC

Babble

5dB 83.69 82.67 79.70 80.35

10dB 64.62 58.36 59.7 56.41

15dB 48.47 42.61 40.34 38.08

White

5dB 86.54 83.61 87.40 86.25

10dB 79.01 77.26 73.78 72.62

15dB 66.79 63.58 54.00 53.46

Factory

5dB 86.54 83.61 92.32 90.86

10dB 67.13 65.96 68.96 66.95

15dB 49.32 48.65 45.33 43.55

Volvo

5dB 34.71 26.22 26.12 24.70

10dB 29.16 24.58 23.10 22.03

15dB 25.61 22.89 21.64 20.75

with the proposed approach compared to baseline.
Further, improvements were also observed in mis-
match conditions caused by additive noise.
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